1
|
Bepler T, Barrera MD, Rooney MT, Xiong Y, Kuang H, Goodell E, Goodwin MJ, Harbron E, Fu R, Mihailescu M, Narayanan A, Cotten ML. Antiviral activity of the host defense peptide piscidin 1: investigating a membrane-mediated mode of action. Front Chem 2024; 12:1379192. [PMID: 38988727 PMCID: PMC11233706 DOI: 10.3389/fchem.2024.1379192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024] Open
Abstract
Outbreaks of viral diseases are on the rise, fueling the search for antiviral therapeutics that act on a broad range of viruses while remaining safe to human host cells. In this research, we leverage the finding that the plasma membranes of host cells and the lipid bilayers surrounding enveloped viruses differ in lipid composition. We feature Piscidin 1 (P1), a cationic host defense peptide (HDP) that has antimicrobial effects and membrane activity associated with its N-terminal region where a cluster of aromatic residues and copper-binding motif reside. While few HDPs have demonstrated antiviral activity, P1 acts in the micromolar range against several enveloped viruses that vary in envelope lipid composition. Notably, it inhibits HIV-1, a virus that has an envelope enriched in cholesterol, a lipid associated with higher membrane order and stability. Here, we first document through plaque assays that P1 boasts strong activity against SARS-CoV-2, which has an envelope low in cholesterol. Second, we extend previous studies done with homogeneous bilayers and devise cholesterol-containing zwitterionic membranes that contain the liquid disordered (Ld; low in cholesterol) and ordered (Lo, rich in cholesterol) phases. Using dye leakage assays and cryo-electron microscopy on vesicles, we show that P1 has dramatic permeabilizing capability on the Lo/Ld, an effect matched by a strong ability to aggregate, fuse, and thin the membranes. Differential scanning calorimetry and NMR experiments demonstrate that P1 mixes the lipid content of vesicles and alters the stability of the Lo. Structural studies by NMR indicate that P1 interacts with the Lo/Ld by folding into an α-helix that lies parallel to the membrane surface. Altogether, these results show that P1 is more disruptive to phase-separated than homogenous cholesterol-containing bilayers, suggesting an ability to target domain boundaries. Overall, this multi-faceted research highlights how a peptide that interacts strongly with membranes through an aromatic-rich N-terminal motif disrupt viral envelope mimics. This represents an important step towards the development of novel peptides with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Tristan Bepler
- New York Structural Biology Center, New York, NY, United States
| | - Michael D. Barrera
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mary T. Rooney
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
- Department of Chemistry, Hofstra University, Hempstead, NY, United States
| | - Yawei Xiong
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, United States
| | - Evan Goodell
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
| | - Matthew J. Goodwin
- Department of Chemistry, William & Mary, Williamsburg, VA, United States
| | - Elizabeth Harbron
- Department of Chemistry, William & Mary, Williamsburg, VA, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Manassas, VA, United States
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
2
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
3
|
Yu C, Wang G, Liu Q, Zhai J, Xue M, Li Q, Xian Y, Zheng C. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect 2023; 12:2164742. [PMID: 36591809 PMCID: PMC9897805 DOI: 10.1080/22221751.2022.2164742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.
Collapse
Affiliation(s)
- Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China,Mengzhou Xue
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Qiang Li
| | - Yuanhua Xian
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China,Yuanhua Xian
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China,Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada, Chunfu Zheng
| |
Collapse
|
4
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
5
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
8
|
HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122089. [PMID: 36556453 PMCID: PMC9781275 DOI: 10.3390/life12122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused two major viral outbreaks during the last century. Two major aspects of HIV-1 and SARS-CoV-2 co-infection have been extensively investigated and deserve attention. First, the impact of the co-infection on the progression of disease caused by HIV-1 or SARS-CoV-2. Second, the impact of the HIV-1 anti-retroviral treatment on SARS-CoV-2 infection. In this review, we aim to summarize and discuss the works produced since the beginning of the SARS-CoV-2 pandemic ranging from clinical studies to in vitro experiments in the context of co-infection and drug development.
Collapse
|
9
|
Kumar G, Gireesh-Babu P, Rajendran KV, Goswami M, Chaudhari A. Gain of function studies on predicted host receptors for white spot virus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:196-205. [PMID: 36152802 DOI: 10.1016/j.fsi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Three decades after its first outbreak, the shrimp white spot virus (WSV) is still a global cause of concern due to considerable losses and lack of effective control measures. Several candidate host receptor proteins have been identified, but the pathogenesis is not clearly understood, although the key role of the WSV envelope protein VP28 in virus internalization is established. Here, protein-protein docking is applied to evaluate the interaction of VP28 trimeric extracellular region with four host (Penaeus monodon) receptors reported earlier, Rab7 GTPase (PmRab7), glucose transporter 1 (PmGLUT1), C-type lectin (PmCTL) and calreticulin (PmCRT). The stability of predicted complexes evaluated in terms of binding energy per unit buried surface area ranged from -8.46 to -11.82 cal mol-1/Å2, which is not sufficient for functional interaction. Nevertheless, each of these host proteins was tested by a gain-of-function approach by observing their ability to make a fish cell line permissive to the shrimp WSV. Full-length expression constructs of the four receptors were transfected into SSN1 snakehead fish cells that are non-permissive to WSV. Transfected SSN1 cells and WSV permissive insect Sf9 cells were challenged with purified WSV. After 24 h, the presence of receptor transcripts was confirmed in the treated SSN1 cells, and not in the non-transfected SSN1 cells. Further, vp28 transcript was detected in Sf9 cells, but not in any of the treated SSN1 cells, indicating that none of the receptors were singly sufficient to make SSN1 cells permissive to WSV, even though PmRab7 was a strong candidate that alone showed >85% protection in virus neutralization experiments. For the other 3 candidates, previous reports predicted the involvement of co-receptors, which is confirmed here by their inability to act singly.
Collapse
Affiliation(s)
- Gulshan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - P Gireesh-Babu
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - K V Rajendran
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Mukunda Goswami
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
10
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
11
|
Kubiszewski-Jakubiak S, Worch R. Unique properties of Coronaviridae single-pass transmembrane domain regions as an adaptation to diverse membrane systems. Virology 2022; 570:1-8. [PMID: 35306415 PMCID: PMC8922268 DOI: 10.1016/j.virol.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
Enveloped viruses such as Coronaviridae (CoV) enter the host cell by fusing the viral envelope directly with the plasma membrane (PM) or with the membrane of the endosome. Replication of the CoV genome takes place in membrane compartments formed by rearrangement of the endoplasmic reticulum (ER) membrane network. Budding of these viruses occurs from the ER-Golgi intermediate compartment (ERGIC). The relationship between proteins and various membranes is crucial for the replication cycle of CoVs. The role of transmembrane domains (TMDs) and pre-transmembrane domains (pre-TMD) of viral proteins in this process is gaining more recognition. Here we present a thorough analysis of physico-chemical parameters, such as accessible surface area (ASA), average hydrophobicity (Hav), and contribution of specific amino acids in TMDs and pre-TMDs of single-span membrane proteins of human viruses. We focus on unique properties of these elements in CoV and postulate their role in adaptation to diverse host membranes and regulation of retention of membrane proteins during replication.
Collapse
|
12
|
Rastegarpanah M, Azadmanesh K, Negahdari B, Asgari Y, Mazloomi M. Screening of candidate genes associated with high titer production of oncolytic measles virus based on systems biology approach. Virus Genes 2022; 58:270-283. [PMID: 35477822 DOI: 10.1007/s11262-022-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The number of viral particles required for oncolytic activity of measles virus (MV) can be more than a million times greater than the reported amount for vaccination. The aim of the current study is to find potential genes and signaling pathways that may be involved in the high-titer production of MV. In this study, a systems biology approach was considered including collection of gene expression profiles from the Gene Expression Omnibus (GEO) database, obtaining differentially expressed genes (DEGs), performing gene ontology, functional enrichment analyses, and topological analyses on the protein-protein interaction (PPI) network. Then, to validate the in-silico data, total RNA was isolated from five cell lines, and full-length cDNA from template RNA was synthesized. Subsequently, quantitative reverse transcription-PCR (RT-qPCR) was employed. We identified five hub genes, including RAC1, HSP90AA1, DNM1, LTBP1, and FSTL1 associated with the enhancement in MV titer. Pathway analysis indicated enrichment in PI3K-Akt signaling pathway, axon guidance, proteoglycans in cancer, regulation of actin cytoskeleton, focal adhesion, and calcium signaling pathways. Upon verification by RT-qPCR, the relative expression of candidate genes was generally consistent with our bioinformatics analysis. Hub genes and signaling pathways may be involved in understanding the pathological mechanisms by which measles virus manipulates host factors in order to facilitate its replication. RAC1, HSP90AA1, DNM1, LTBP1, and FSTL1 genes, in combination with genetic engineering techniques, will allow the direct design of high-throughput cell lines to answer the required amounts for the oncolytic activity of MV.
Collapse
Affiliation(s)
- Malihe Rastegarpanah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammadali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
13
|
Marques MC, Lousa D, Silva PM, Faustino AF, Soares CM, Santos NC. The Importance of Lipid Conjugation on Anti-Fusion Peptides against Nipah Virus. Biomedicines 2022; 10:biomedicines10030703. [PMID: 35327503 PMCID: PMC8945041 DOI: 10.3390/biomedicines10030703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/23/2023] Open
Abstract
Nipah virus (NiV) is a recently emerging zoonotic virus that belongs to the Paramyxoviridae family and the Henipavirus genus. It causes a range of conditions, from asymptomatic infection to acute respiratory illness and fatal encephalitis. The high mortality rate of 40 to 90% ranks these viruses among the deadliest viruses known to infect humans. Currently, there is no antiviral drug available for Nipah virus disease and treatment is only supportive. Thus, there is an urgent demand for efficient antiviral therapies. NiV F protein, which catalyzes fusion between the viral and host membranes, is a potential target for antiviral drugs, as it is a key protein in the initial stages of infection. Fusion inhibitor peptides derived from the HRC-domain of the F protein are known to bind to their complementary domain in the protein’s transient intermediate state, preventing the formation of a six-helix bundle (6HB) thought to be responsible for driving the fusion of the viral and cell membranes. Here, we evaluated the biophysical and structural properties of four different C-terminal lipid-tagged peptides. Different compositions of the lipid tags were tested to search for properties that might promote efficacy and broad-spectrum activity. Fluorescence spectroscopy was used to study the interaction of the peptides with biomembrane model systems and human blood cells. In order to understand the structural properties of the peptides, circular dichroism measurements and molecular dynamics simulations were performed. Our results indicate a peptide preference for cholesterol-enriched membranes and a lipid conjugation-driven stabilization of the peptide α-helical secondary structure. This work may contribute for the development of highly effective viral fusion against NiV inhibitors.
Collapse
Affiliation(s)
- Marta C. Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Patrícia M. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - André F. Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
- Correspondence:
| |
Collapse
|
14
|
Ortega-Gonzalez P, Taylor G, Jangra RK, Tenorio R, Fernandez de Castro I, Mainou BA, Orchard RC, Wilen CB, Brigleb PH, Sojati J, Chandran K, Sachse M, Risco C, Dermody TS. Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathog 2022; 18:e1010322. [PMID: 35263388 PMCID: PMC8906592 DOI: 10.1371/journal.ppat.1010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-β-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Collapse
Affiliation(s)
- Paula Ortega-Gonzalez
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
- PhD Program in Molecular Biosciences, Autonoma de Madrid University, Madrid, Spain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gwen Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Isabel Fernandez de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Bernardo A. Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Martin Sachse
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
15
|
Harbison AM, Fogarty CA, Phung TK, Satheesan A, Schulz BL, Fadda E. Fine-tuning the spike: role of the nature and topology of the glycan shield in the structure and dynamics of the SARS-CoV-2 S. Chem Sci 2022; 13:386-395. [PMID: 35126971 PMCID: PMC8729800 DOI: 10.1039/d1sc04832e] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
The dense glycan shield is an essential feature of the SARS-CoV-2 spike (S) architecture, key to immune evasion and to the activation of the prefusion conformation. Recent studies indicate that the occupancy and structures of the SARS-CoV-2 S glycans depend not only on the nature of the host cell, but also on the structural stability of the trimer; a point that raises important questions about the relative competence of different glycoforms. Moreover, the functional role of the glycan shield in the SARS-CoV-2 pathogenesis suggests that the evolution of the sites of glycosylation is potentially intertwined with the evolution of the protein sequence to affect optimal activity. Our results from multi-microsecond molecular dynamics simulations indicate that the type of glycosylation at N234, N165 and N343 greatly affects the stability of the receptor binding domain (RBD) open conformation, and thus its exposure and accessibility. Furthermore, our results suggest that the loss of glycosylation at N370, a newly acquired modification in the SARS-CoV-2 S glycan shield's topology, may have contributed to increase the SARS-CoV-2 infectivity as we find that N-glycosylation at N370 stabilizes the closed RBD conformation by binding a specific cleft on the RBD surface. We discuss how the absence of the N370 glycan in the SARS-CoV-2 S frees the RBD glycan binding cleft, which becomes available to bind cell-surface glycans, and potentially increases host cell surface localization.
Collapse
Affiliation(s)
- Aoife M Harbison
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| | - Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia QLD Australia
| | - Akash Satheesan
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia QLD Australia
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| |
Collapse
|
16
|
The pH-sensitive action of cholesterol-conjugated peptide inhibitors of influenza virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183762. [PMID: 34478733 DOI: 10.1016/j.bbamem.2021.183762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Influenza viruses are major human pathogens, responsible for respiratory diseases affecting millions of people worldwide, with high morbidity and significant mortality. Infections by influenza can be controlled by vaccines and antiviral drugs. However, this virus is constantly under mutations, limiting the effectiveness of these clinical antiviral strategies. It is therefore urgent to develop new ones. Influenza hemagglutinin (HA) is involved in receptor binding and promotes the pH-dependent fusion of viral and cell endocytic membranes. HA-targeted peptides may emerge as a novel antiviral option to block this viral entry step. In this study, we evaluated three HA-derived (lipo)peptides using fluorescence spectroscopy. Peptide membrane interaction assays were performed at neutral and acidic pH to better resemble the natural conditions in which influenza fusion occurs. We found that peptide affinity towards membranes decreases upon the acidification of the environment. Therefore, the released peptides would be able to bind their complementary domain and interfere with the six-helix bundle formation necessary for viral fusion, and thus for the infection of the target cell. Our results provide new insight into molecular interactions between HA-derived peptides and cell membranes, which may contribute to the development of new influenza virus inhibitors.
Collapse
|
17
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
18
|
Shahgolzari M, Yavari A, Arjeini Y, Miri SM, Darabi A, Mozaffari Nejad AS, Keshavarz M. Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. GENE REPORTS 2021; 25:101417. [PMID: 34778602 PMCID: PMC8570409 DOI: 10.1016/j.genrep.2021.101417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) directly interacts with host's epithelial and immune cells, leading to inflammatory response induction, which is considered the hallmark of infection. The host immune system is programmed to facilitate the clearance of viral infection by establishing a modulated response. However, SARS-CoV-2 takes the initiative and its various structural and non-structural proteins directly or indirectly stimulate the uncontrolled activation of injurious inflammatory pathways through interaction with innate immune system mediators. Upregulation of cell-signaling pathways such as mitogen-activate protein kinase (MAPK) in response to recognition of SARS-CoV-2 antigens by innate immune system receptors mediates unbridled production of proinflammatory cytokines and cells causing cytokine storm, tissue damage, increased pulmonary edema, acute respiratory distress syndrome (ARDS), and mortality. Moreover, this acute inflammatory state hinders the immunomodulatory effect of T helper cells and timely response of CD4+ and CD8+ T cells against infection. Furthermore, inflammation-induced overproduction of Th17 cells can downregulate the antiviral response of Th1 and Th2 cells. In fact, the improperly severe response of the innate immune system is the key to conversion from a non-severe to severe disease state and needs to be investigated more deeply. The virus can also modulate the protective immune responses by developing immune evasion mechanisms, and thereby provide a more stable niche. Overall, combination of detrimental immunostimulatory and immunomodulatory properties of both the SARS-CoV-2 and immune cells does complicate the immune interplay. Thorough understanding of immunopathogenic basis of immune responses against SARS-CoV-2 has led to developing several advanced vaccines and immune-based therapeutics and should be expanded more rapidly. In this review, we tried to delineate the immunopathogenesis of SARS-CoV-2 in humans and to provide insight into more effective therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Yaser Arjeini
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Miri
- Freelance Researcher of Biomedical Sciences, No 32, Vaezi Street, Tehran, Iran
| | - Amirhossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Sasan Mozaffari Nejad
- Department of Microbiology, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
19
|
Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli A, Kadian N, Sanyal S, Roy A, Dodd‐o J, Acevedo‐Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. ADVANCED THERAPEUTICS 2021; 4:2100104. [PMID: 34514085 PMCID: PMC8420164 DOI: 10.1002/adtp.202100104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 (coronavirus disease) global pandemic, caused by the spread of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, currently has limited treatment options which include vaccines, anti-virals, and repurposed therapeutics. With their high specificity, tunability, and biocompatibility, small molecules like peptides are positioned to act as key players in combating SARS-CoV-2, and can be readily modified to match viral mutation rate. A recent expansion of the understanding of the viral structure and entry mechanisms has led to the proliferation of therapeutic viral entry inhibitors. In this comprehensive review, inhibitors of SARS and SARS-CoV-2 are investigated and discussed based on therapeutic design, inhibitory mechanistic approaches, and common targets. Peptide therapeutics are highlighted, which have demonstrated in vitro or in vivo efficacy, discuss advantages of peptide therapeutics, and common strategies in identifying targets for viral inhibition.
Collapse
Affiliation(s)
- Disha Panchal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Jeena Kataria
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kamiya Patel
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kaytlyn Crowe
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Varun Pai
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abdul‐Rahman Azizogli
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Neil Kadian
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Sreya Sanyal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abhishek Roy
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Joseph Dodd‐o
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | | | - Vivek A. Kumar
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringDepartment of ChemicalBiological and Pharmaceutical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| |
Collapse
|
20
|
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 2021; 21:216. [PMID: 34454481 PMCID: PMC8397866 DOI: 10.1186/s12906-021-03386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.
Collapse
Affiliation(s)
- Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Yina Pájaro-González
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia.,Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla, Colombia
| | - Andrés Felipe Oliveros-Díaz
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Fredyc Diaz-Castillo
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales. Universidad de Antioquia, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
21
|
Somsoros W, Sangawa T, Takebe K, Attarataya J, Wongprasert K, Senapin S, Rattanarojpong T, Suzuki M, Khunrae P. Crystal structure of the C-terminal domain of envelope protein VP37 from white spot syndrome virus reveals sulphate binding sites responsible for heparin binding. J Gen Virol 2021; 102. [PMID: 34106826 DOI: 10.1099/jgv.0.001611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White spot syndrome virus (WSSV) is the most virulent pathogen causing high mortality and economic loss in shrimp aquaculture and various crustaceans. Therefore, the understanding of molecular mechanisms of WSSV infection is important to develop effective therapeutics to control the spread of this viral disease. In a previous study, we found that VP37 could bind with shrimp haemocytes through the interaction between its C-terminal domain and heparin-like molecules on the shrimp cells, and this interaction can also be inhibited by sulphated galactan. In this study, we present the crystal structure of C-terminal domain of VP37 from WSSV at a resolution of 2.51 Å. The crystal structure contains an eight-stranded β-barrel fold with an antiparallel arrangement and reveals a trimeric assembly. Moreover, there are two sulphate binding sites found in the position corresponding to R213 and K257. In order to determine whether these sulphate binding sites are involved in binding of VP37 to heparin, mutagenesis was performed to replace these residues with alanine (R213A and K257A), and the Surface Plasmon Resonance (SPR) system was used to study the interaction of each mutated VP37 with heparin. The results showed that mutants R213A and K257A exhibited a significant loss in heparin binding activity. These findings indicated that the sites of R213 and K257 on the C-terminal domain of envelope protein VP37 are essential for binding to sulphate molecules of heparin. This study provides further insight into the structure of C-terminal domain of VP37 and it is anticipated that the structure of VP37 might be used as a guideline for development of antivirus agent targeting on the VP37 protein.
Collapse
Affiliation(s)
- Wasusit Somsoros
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Takeshi Sangawa
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsuki Takebe
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jakrada Attarataya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
22
|
From Structural Studies to HCV Vaccine Design. Viruses 2021; 13:v13050833. [PMID: 34064532 PMCID: PMC8147963 DOI: 10.3390/v13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.
Collapse
|
23
|
Tang X, Cao J, Zhang J, Xing J, Sheng X, Zhan W. Development of monoclonal antibody against glycoprotein of hirame novirhabdovirus (HIRRV) with virus neutralizing activity. Microb Pathog 2021; 154:104868. [PMID: 33771630 DOI: 10.1016/j.micpath.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/15/2022]
Abstract
Hirame rhabdovirus (HIRRV) is one of the most important viruses of fish, posing a great threat to the fish industry in Asia and Europe. The glycoprotein (G) of HIRRV is known to play important roles in virus attachment and entry, making it an ideal target for both diagnosis and therapy. In this study, a truncated G of HIRRV was expressed as a fusion protein in Escherichia coli. Using the recombinant G protein (rG), monoclonal antibodies (mAbs) were prepared by the hybridoma technology. Subsequently, positive clones were screened by indirect enzyme-linked immunosorbent assay (ELISA) and further characterized by Western blot and immunofluorescence assay (IFA). ELISA results showed that two mAbs (3E5 and 4D10) could react with the rG, as well as the purified HIRRV. Western blot analysis showed that the mAbs belong to the IgG isotype and could recognize a 60 kDa viral protein, which is consistent with the molecular weight of G protein and determined to be the G protein of HIRRV by mass spectrometry. The virions in HIRRV-infected EPC could also be recognized by two mAbs in IFA. Moreover, neutralization assay showed that mAb 4D10 could significantly inhibit the proliferation of HIRRV and delay the development of cytopathic effect in viral-infected EPC cells, and in vivo neutralization assay also showed that mAb 4D10 could significantly reduce the mortality of HIRRV-infected flounder, indicating that mAb 4D10 can partially neutralize the HIRRV infection. Western blot analysis showed that mAb 4D10 could specifically bind the C-terminal domain of HIRRV-G protein. These results demonstrated that the produced mAbs could specifically recognize the G protein of HIRRV and displayed virus-neutralizing activity in vitro and in vivo, which could serve as effective detection probes and potential neutralizing antibodies for HIRRV.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China
| | - Jing Cao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jialin Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China.
| |
Collapse
|
24
|
Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo‐peptide based Fusion Inhibitor**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Avijit Sardar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Aritraa Lahiri
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Mithila Kamble
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Amirul I. Mallick
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Pradip K. Tarafdar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| |
Collapse
|
25
|
Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo-peptide based Fusion Inhibitor*. Angew Chem Int Ed Engl 2021; 60:6101-6106. [PMID: 33241871 PMCID: PMC7753697 DOI: 10.1002/anie.202013848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The entry of enveloped virus requires the fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such membrane fusion may emerge as a broad-spectrum antiviral agent against a wide range of viral infections. Mycobacterium survives inside the phagosome by inhibiting phagosome-lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat protein suggest that the trp-asp (WD) sequence is placed at distorted β-meander motif (more exposed) in coronin 1. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (myr-WD), which effectively inhibits membrane fusion by modulating the interfacial order, water penetration, and surface potential. The mycobacterium inspired lipo-dipeptide was successfully tested to combat type 1 influenza virus (H1N1) and murine coronavirus infections as a potential broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Avijit Sardar
- Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Aritraa Lahiri
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Mithila Kamble
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Amirul I. Mallick
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Pradip K. Tarafdar
- Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| |
Collapse
|
26
|
Fadda E. Understanding the Structure and Function of Viral Glycosylation by Molecular Simulations: State-of-the-Art and Recent Case Studies. COMPREHENSIVE GLYCOSCIENCE 2021. [PMCID: PMC7834635 DOI: 10.1016/b978-0-12-819475-1.00056-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Lay Mendoza MF, Acciani MD, Levit CN, Santa Maria C, Brindley MA. Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses 2020; 12:E1457. [PMID: 33348746 PMCID: PMC7766484 DOI: 10.3390/v12121457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Viral entry is the first stage in the virus replication cycle and, for enveloped viruses, is mediated by virally encoded glycoproteins. Viral glycoproteins have different receptor affinities and triggering mechanisms. We employed vesicular stomatitis virus (VSV), a BSL-2 enveloped virus that can incorporate non-native glycoproteins, to examine the entry efficiencies of diverse viral glycoproteins. To compare the glycoprotein-mediated entry efficiencies of VSV glycoprotein (G), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S), Ebola (EBOV) glycoprotein (GP), Lassa (LASV) GP, and Chikungunya (CHIKV) envelope (E) protein, we produced recombinant VSV (rVSV) viruses that produce the five glycoproteins. The rVSV virions encoded a nano luciferase (NLucP) reporter gene fused to a destabilization domain (PEST), which we used in combination with the live-cell substrate EndurazineTM to monitor viral entry kinetics in real time. Our data indicate that rVSV particles with glycoproteins that require more post-internalization priming typically demonstrate delayed entry in comparison to VSV G. In addition to determining the time required for each virus to complete entry, we also used our system to evaluate viral cell surface receptor preferences, monitor fusion, and elucidate endocytosis mechanisms. This system can be rapidly employed to examine diverse viral glycoproteins and their entry requirements.
Collapse
Affiliation(s)
- Maria Fernanda Lay Mendoza
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Marissa Danielle Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Courtney Nina Levit
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Christopher Santa Maria
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Critical Residues and Contacts within Domain IV of Autographa californica Multiple Nucleopolyhedrovirus GP64 Contribute to Its Refolding during Membrane Fusion. J Virol 2020; 94:JVI.01105-20. [PMID: 32699096 DOI: 10.1128/jvi.01105-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/19/2020] [Indexed: 01/14/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 is a class III viral fusion protein that mediates low-pH-triggered membrane fusion during virus entry. Although the structure of GP64 in a postfusion conformation has been solved, its prefusion structure and the mechanism of how the protein refolds to execute fusion are unknown. In its postfusion structure, GP64 is composed of five domains (domains I to V). Domain IV (amino acids [aa] 374 to 407) contains two loops (loop 1 and loop 2) that form a hydrophobic pocket at the membrane-distal end of the molecule. To determine the roles of domain IV, we used alanine-scanning mutagenesis to replace each of the individual residues and the contact-forming residues within domain IV and evaluate their contributions to GP64-mediated membrane fusion and virus infection. In many cases, replacement of a single amino acid had no significant impact on GP64. However, replacement of R392 or disruption of the N381-N385, N384-Y388, N385-W393, or K389-W393 contact resulted in poor cell surface expression and fusion loss of the modified GP64, whereas replacement of E390 or G391 or disruption of the N381-K389, N381-Q401, or N381-I403 contact reduced the cell surface expression level of the constructs and the ability of GP64 to mediate fusion pore expansion. In contrast, replacement of N407 or disruption of contact D404-S406 appeared to restrict fusion pore expansion without affecting expression. Combined with the finding that these constructs remain in the prefusion conformation or have a dramatically less efficient transition from the prefusion to the postfusion state under acidic conditions, we proposed that domain IV is necessary for refolding of GP64 during membrane fusion.IMPORTANCE Baculovirus GP64 is grouped with rhabdovirus G, herpesvirus gB, and thogotovirus glycoproteins as a class III viral fusion protein. In their postfusion structures, these proteins contain five domains (domains I to V). Distinct from domain IV of rhabdovirus G and herpesvirus gB proteins, which is composed of β-sheets, domain IV of GP64 is a loop region; the same domain in thogotovirus glycoproteins has not been solved. In addition, domain IV is proximal to domain I (fusion domain) in prefusion structures of vesicular stomatitis virus (VSV) G and human cytomegalovirus (HCMV) gB but resides at the domain I-distal end of the molecule in a postfusion conformation. In this study, we identified that highly conserved residues and contacts within domain IV of AcMNPV GP64 are necessary for low-pH-triggered conformational change and fusion pore expansion. Our results highlight the roles of domain IV of class III viral fusion proteins in refolding during membrane fusion.
Collapse
|
29
|
Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics Issues on Human Positive ssRNA Virus Infection: An Update. Metabolites 2020; 10:E356. [PMID: 32878290 PMCID: PMC7569815 DOI: 10.3390/metabo10090356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
The pathogenic mechanisms underlying the Biology and Biochemistry of viral infections are known to depend on the lipid metabolism of infected cells. From a lipidomics viewpoint, there are a variety of mechanisms involving virus infection that encompass virus entry, the disturbance of host cell lipid metabolism, and the role played by diverse lipids in regard to the infection effectiveness. All these aspects have currently been tackled separately as independent issues and focused on the function of proteins. Here, we review the role of cholesterol and other lipids in ssRNA+ infection.
Collapse
Affiliation(s)
- David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Husarg. 3, 75123 Uppsala, Sweden;
| | - Luis Gil-de-Gómez
- Center of Childhood Cancer Center, Children’s Hospital of Philadelphia, Colket Translational Research Center, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA;
| | - Olimpio Montero
- Spanish National Research Council (CSIC), Boecillo’s Technological Park Bureau, Av. Francisco Vallés 8, 47151 Boecillo, Spain
| |
Collapse
|
30
|
Sultana H, Neelakanta G. Arthropod exosomes as bubbles with message(s) to transmit vector-borne diseases. CURRENT OPINION IN INSECT SCIENCE 2020; 40:39-47. [PMID: 32590312 DOI: 10.1016/j.cois.2020.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Ticks and mosquitoes are medically important vectors that transmit several pathogens, including arboviruses, to humans. Understanding how these blood-feeding arthropods transmit pathogens to humans requires knowledge on the molecular and cellular interplay at vector-host interface. Recent studies have highlighted the role of tick and mosquito small extracellular vesicles (EVs), including exosomes, facilitating arbovirus transmission within arthropod cells and from arthropod to mammalian cells. In this review, we summarize this emerging line of investigation in understanding the role of tick and mosquito exosomes in vector-pathogen-host tripartite interactions. Understanding the role of arthropod exosomes in pathogen interactions could lead to the discovery of novel therapeutic targets to interfere with the life cycle of several pathogens transmitted by vectors.
Collapse
Affiliation(s)
- Hameeda Sultana
- Center for Molecular Medicine, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| | - Girish Neelakanta
- Center for Molecular Medicine, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
31
|
Zeng L, Wang MD, Ming SL, Li GL, Yu PW, Qi YL, Jiang DW, Yang GY, Wang J, Chu BB. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox Biol 2020; 36:101601. [PMID: 32535542 PMCID: PMC7278711 DOI: 10.1016/j.redox.2020.101601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 02/02/2023] Open
Abstract
Emerging viral pathogens cause substantial morbidity and pose a severe threat to health worldwide. However, a universal antiviral strategy for producing safe and immunogenic inactivated vaccines is lacking. Here, we report an antiviral strategy using the novel singlet oxygen (1O2)-generating agent LJ002 to inactivate enveloped viruses and provide effective protection against viral infection. Our results demonstrated that LJ002 efficiently generated 1O2 in solution and living cells. Nevertheless, LJ002 exhibited no signs of acute toxicity in vitro or in vivo. The 1O2 produced by LJ002 oxidized lipids in the viral envelope and consequently destroyed the viral membrane structure, thus inhibiting the viral and cell membrane fusion necessary for infection. Moreover, the 1O2-based inactivated pseudorabies virus (PRV) vaccine had no effect on the content of the viral surface proteins. Immunization of mice with LJ002-inactiviated PRV vaccine harboring comparable antigen induced more neutralizing antibody responses and efficient protection against PRV infection than conventional formalin-inactivated vaccine. Additionally, LJ002 inactivated a broad spectrum of enveloped viruses. Together, our results may provide a new paradigm of using broad-spectrum, highly effective inactivants functioning through 1O2-mediated lipid oxidation for developing antivirals that target the viral membrane fusion process. LJ002 efficiently generates 1O2 in solution and living cells. LJ002 oxidizes lipids in the viral envelope, thus inhibiting fusion between the virus and cell membrane. LJ002-inactivated PRV vaccine has no effect on the content of antigens on the viral surface. LJ002-inactivated PRV vaccine elicits a strong neutralizing antibody response. LJ002 can inactivate a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Meng-Di Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Peng-Wei Yu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Yan-Li Qi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
32
|
Adeoye AO, Oso BJ, Olaoye IF, Tijjani H, Adebayo AI. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J Biomol Struct Dyn 2020; 39:3469-3479. [PMID: 32375574 PMCID: PMC7232887 DOI: 10.1080/07391102.2020.1765876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reemergence of coronavirus prompts the need for the development of effective therapeutics to prevent the cellular entry and replication of coronavirus. This study demonstrated the putative inhibitory potential of lopinavir, remdesivir, oseltamir, azithromycin, ribavirin, and chloroquine towards V-ATPase, protein kinase A, SARS-CoV spike glycoprotein/ACE-2 complex and viral proteases. The pharmacodynamic and pharmacokinetic properties were predicted through the pkCSM server while the corresponding binding affinity of the selected drugs towards the proteins was computed using AutodockVina Screening tool. The ADMET properties revealed all the drugs possess drug-like properties. Lopinavir has the highest binding affinities to the pocket site of SARS-CoV spike glycoprotein/ACE-2 complex, cyclic AMP-dependent protein kinase A and 3-Chymotrypsin like protease while redemsivir has the highest binding affinities for vacuolar proton-translocating ATPase (V-ATPase) and papain-like proteins. The amino acids Asp269, Leu370, His374, and His345 were predicted as the key residues for lopinavir binding to human SARS-CoV spike glycoprotein/ACE-2 complex while His378, Tyr515, Leu73, Leu100, Phe32 and Phe40 for remdesivir and Tyr510, Phe504, Met62, Tyr50, and His378 were predicted for azithromycin as the key residues for binding to SARS-CoV spike glycoprotein/ACE-2 complex. Moreover, it was also observed that chloroquine has appreciable binding affinities for 3-Chymotrpsin- like protease and cyclic AMP-dependent protein kinase A when compared to Oseltamivir and ribavirin. The study provided evidence suggesting putative repurposing of the selected drugs for the development of valuable drugs for the prevention of cellular entry and replication of coronavirus. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | | | - Ige Francis Olaoye
- Department of Biochemistry, McPherson University, Seriki Sotayo, Nigeria
| | - Habibu Tijjani
- Department of Biochemistry, Natural Product Research Laboratory, Bauchi State University, Gadau, Nigeria
| | - Ahmed I Adebayo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
33
|
Plemper RK. Measles Resurgence and Drug Development. Curr Opin Virol 2020; 41:8-17. [PMID: 32247280 DOI: 10.1016/j.coviro.2020.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Measles caused an estimated minimum of one million fatalities annually before vaccination. Outstanding progress towards controlling the virus has been made since the measles vaccine was introduced, but reduction of measles case-fatalities has stalled at around 100,000 annually for the last decade and a 2019 resurgence in several geographical regions threatens some of these past accomplishments. Whereas measles eradication through vaccination is feasible, a potentially open-ended endgame of elimination may loom. Other than doubling-down on existing approaches, is it worthwhile to augment vaccination efforts with antiviral therapeutics to solve the conundrum? This question is hypothetical at present, since no drugs have yet been approved specifically for the treatment of measles, or infection by any other pathogen of the paramyxovirus family. This article will consider obstacles that have hampered anti-measles and anti-paramyxovirus drug development, discuss MeV-specific challenges of clinical testing, and define drug properties suitable to address some of these problems.
Collapse
Affiliation(s)
- Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
34
|
Aggarwal M, Plemper RK. Structural Insight into Paramyxovirus and Pneumovirus Entry Inhibition. Viruses 2020; 12:E342. [PMID: 32245118 PMCID: PMC7150754 DOI: 10.3390/v12030342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Paramyxoviruses and pneumoviruses infect cells through fusion (F) protein-mediated merger of the viral envelope with target membranes. Members of these families include a range of major human and animal pathogens, such as respiratory syncytial virus (RSV), measles virus (MeV), human parainfluenza viruses (HPIVs), and highly pathogenic Nipah virus (NiV). High-resolution F protein structures in both the metastable pre- and the postfusion conformation have been solved for several members of the families and a number of F-targeting entry inhibitors have progressed to advanced development or clinical testing. However, small-molecule RSV entry inhibitors have overall disappointed in clinical trials and viral resistance developed rapidly in experimental settings and patients, raising the question of whether the available structural information may provide a path to counteract viral escape through proactive inhibitor engineering. This article will summarize current mechanistic insight into F-mediated membrane fusion and examine the contribution of structural information to the development of small-molecule F inhibitors. Implications are outlined for future drug target selection and rational drug engineering strategies.
Collapse
Affiliation(s)
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
35
|
Huo Y, Yu Y, Liu Q, Liu D, Zhang M, Liang J, Chen X, Zhang L, Fang R. Rice stripe virus hitchhikes the vector insect vitellogenin ligand-receptor pathway for ovary entry. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180312. [PMID: 30967014 DOI: 10.1098/rstb.2018.0312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is known that plant arboviruses infect insect vector cells by endocytosis; however, the cellular receptors that mediate endocytosis have not been well defined. In our recently published work and this study, by clarifying the vertical transmission mechanism of Rice stripe virus (RSV) in Laodelphax striatellus, we provide a novel paradigm for how arboviruses enter insect germ-line cells. Instead of direct interaction with a viral receptor, the virus binds to a secreted ligand protein, hitchhiking the ligand-receptor pathway to achieve cell entry. Vitellogenin (Vg) is an indispensable protein for embryo development that is synthesized extra-ovarially and taken up by germ-line cells through Vg receptor (VgR)-mediated endocytosis. After revealing that RSV invades L. striatellus ovary by a specific molecular interaction with the insect Vg in haemolymph, this study addressed VgR's function in mediating the RSV invasion of the germarium nurse cells, further confirming the ligand's receptor-mediated viral cell-invasion mechanism. Understanding the viral ovary-entry pathways in vectors will help to find suitable measures to block the trans-generation transmission of the viruses. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yan Huo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| | - Yuanling Yu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Qing Liu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Da Liu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Mengting Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jingnan Liang
- 4 Public Technology Service Center, Institute of Microbiology , Beijing 100101, People's Republic of China
| | - Xiaoying Chen
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| | - Lili Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| | - Rongxiang Fang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| |
Collapse
|
36
|
Inflammation During Virus Infection: Swings and Roundabouts. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121364 DOI: 10.1007/978-981-15-1045-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammation constitutes a concerted series of cellular and molecular responses that follow disturbance of systemic homeostasis, by either toxins or infectious organisms. Leukocytes modulate inflammation through production of secretory mediators, like cytokines and chemokines, which work in an autocrine and/or paracrine manner. These mediators can either promote or attenuate the inflammatory response and depending on differential temporal and spatial expression play a crucial role in the outcome of infection. Even though the objective is clearance of the pathogen with minimum damage to host, the pathogenesis of multiple human pathogenic viruses has been suggested to emanate from a dysregulation of the inflammatory response, sometimes with fatal consequences. This review discusses the nature and the outcome of inflammatory response, which is triggered in the human host subsequent to infection by single-sense plus-strand RNA viruses. In view of such harmful effects of a dysregulated inflammatory response, an exogenous regulation of these reactions by either interference or supplementation of critical regulators has been suggested. Currently multiple such factors are being tested for their beneficial and adverse effects. A successful use of such an approach in diseases of viral etiology can potentially protect the affected individual without directly affecting the virus life cycle. Further, such approaches whenever applicable would be useful in mitigating death and/or debility that is caused by the infection of those viruses which have proven particularly difficult to control by either prophylactic vaccines and/or therapeutic strategies using specific antiviral drugs.
Collapse
|
37
|
Shrestha A, Champagne DE, Culbreath AK, Abney MR, Srinivasan R. Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species. PLoS One 2019; 14:e0223438. [PMID: 31600262 PMCID: PMC6786753 DOI: 10.1371/journal.pone.0223438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/20/2019] [Indexed: 11/22/2022] Open
Abstract
Thrips transmit one of the most devastating plant viruses worldwide–tomato spotted wilt tospovirus (TSWV). Tomato spotted wilt tospovirus is a type species in the genus Orthotospovirus and family Tospoviridae. Although there are more than 7,000 thrips species, only nine thrips species are known to transmit TSWV. In this study, we investigated the molecular factors that could affect thrips ability to transmit TSWV. We assembled transcriptomes of a vector, Frankliniella fusca [Hinds], and a non-vector, Frankliniella tritici [Fitch], and performed qualitative comparisons of contigs associated with virus reception, virus infection, and innate immunity. Annotations of F. fusca and F. tritici contigs revealed slight differences across biological process and molecular functional groups. Comparison of virus cell surface receptors revealed that homologs of integrin were present in both species. However, homologs of another receptor, heperan sulfate, were present in F. fusca alone. Contigs associated with virus replication were identified in both species, but a contig involved in inhibition of virus replication (radical s-adenosylmethionine) was only present in the non-vector, F. tritici. Additionally, some differences in immune signaling pathways were identified between vector and non-vector thrips. Detailed investigations are necessary to functionally characterize these differences between vector and non-vector thrips and assess their relevance in orthotospovirus transmission.
Collapse
Affiliation(s)
- Anita Shrestha
- Department of Entomology, University of Georgia, Griffin, GA, United States of America
| | - Donald E. Champagne
- Department of Entomology, University of Georgia, Athens, GA, United States of America
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States of America
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA, United States of America
| | | |
Collapse
|
38
|
Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses 2019; 11:v11060497. [PMID: 31151254 PMCID: PMC6630264 DOI: 10.3390/v11060497] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage.
Collapse
|
39
|
Chen S, He H, Yang H, Tan B, Liu E, Zhao X, Zhao Y. The role of lipid rafts in cell entry of human metapneumovirus. J Med Virol 2019; 91:949-957. [PMID: 30698826 PMCID: PMC7166723 DOI: 10.1002/jmv.25414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/28/2018] [Accepted: 01/03/2019] [Indexed: 11/13/2022]
Abstract
Human metapneumovirus (hMPV) is a crucial pathogen in children. A cell entry is the first step for infection. Our previous study indicated that there was an endocytosis pathway for hMPV cell entry. Lipid raft is a specific structure at the cell surface and it has been demonstrated to play an important role in endocytosis process of many viruses. In this study, we investigated whether and how lipid raft can take part in the hMPV entry. The confocal microscope was used to detect colocalization of hMPV and lipid raft marker. We demonstrated that colocalizations were increased along with the viral infection and hMPV particles transferred to the perinuclear region with lipid raft. When specific lipid raft inhibitors: methyl‐β cyclodextrin and nystatin were used, hMPV cell entry was inhibited and viral titer decreased dramatically. With the replenishment of exogenous cholesterol, hMPV recovered quickly. These data suggest that lipid raft plays an important role in hMPV endocytosis and maybe one of the pathways for hMPV cell entry. This study showed lipid raft, as the specific structure at cell surface, plays an important role in hMPV endocytosis and maybe the one of the pathways for hMPV cell entry. This study gave a better understanding of the mechanisms of hMPV cell entry and a new way to prevent and treat its infection.
Collapse
Affiliation(s)
- Suhua Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao He
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Tan
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Enmei Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Xu W, Fan Y, Wang H, Feng M, Wu X. Bombyx mori nucleopolyhedrovirus F-like protein Bm14 affects the morphogenesis and production of occlusion bodies and the embedding of ODVs. Virology 2019; 526:61-71. [DOI: 10.1016/j.virol.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
41
|
Falanga A, Galdiero M, Morelli G, Galdiero S. Membranotropic peptides mediating viral entry. Pept Sci (Hoboken) 2018; 110:e24040. [PMID: 32328541 PMCID: PMC7167733 DOI: 10.1002/pep2.24040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
The means used by enveloped viruses to bypass cellular membranes are well characterized; however, the mechanisms used by non-enveloped viruses to deliver their genome inside the cell remain unresolved and poorly defined. The discovery of short, membrane interacting, amphipathic or hydrophobic sequences (known as membranotropic peptides) in both enveloped and non-enveloped viruses suggests that these small peptides are strongly involved in breaching the host membrane and in the delivery of the viral genome into the host cell. Thus, in spite of noticeable differences in entry, this short stretches of membranotropic peptides are probably associated with similar entry-related events. This review will uncover the intrinsic features of viral membranotropic peptides involved in viral entry of both naked viruses and the ones encircled with a biological membrane with the objective to better elucidate their different functional properties and possible applications in the biomedical field.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Massimiliano Galdiero
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli,” Via de CrecchioNaples80134Italy
| | - Giancarlo Morelli
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
42
|
Zhang W, Zheng Q, Yan M, Chen X, Yang H, Zhou W, Rao Z. Structural characterization of the HCoV-229E fusion core. Biochem Biophys Res Commun 2018; 497:705-712. [PMID: 29458023 PMCID: PMC7092869 DOI: 10.1016/j.bbrc.2018.02.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 01/10/2023]
Abstract
HCoV-229E spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This protein is composed of an N-terminal receptor-binding domain (S1) and a C-terminal trans-membrane fusion domain (S2). S2 contains a highly conserved heptad repeat 1 and 2 (HR1 and HR2). In this study, the HRs sequences were designed and connected with a flexible linker. The recombinant fusion core protein was crystallized and its structure was solved at a resolution of 2.45 Å. Then we characterized the binding of HR1s and HR2s via both sequence alignment and structural analysis. The overall structures, especially the residues in some positions of HR2 are highly conserved. Fourteen hydrophobic and three polar residues from each HR1 peptide are packed in layers at the coiled-coil interface. These core amino acids can be grouped into seven heptad repeats. Analysis of hydrophobic and hydrophilic interactions between HR2 helix and HR1 helices, shows that the HR1 and HR2 polypeptides are highly complementary in both shape and chemical properties. Furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting membrane fusion, a crucial step of HCoV-229E infection.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qianqian Zheng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| | - Mengrong Yan
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaobo Chen
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haitao Yang
- College of Life Sciences, Tianjin University, Tianjin, 300071, People's Republic of China
| | - Weihong Zhou
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Zihe Rao
- College of Life Sciences, College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
43
|
Xia WQ, Liang Y, Chi Y, Pan LL, Zhao J, Liu SS, Wang XW. Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathog 2018; 14:e1006866. [PMID: 29370296 PMCID: PMC5800681 DOI: 10.1371/journal.ppat.1006866] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Begomoviruses are exclusively transmitted by whiteflies in a persistent circulative manner and cause considerable economic losses to crop production worldwide. Previous studies have shown that begomoviruses accumulate in vesicle-like structures in whitefly midgut cells and that clathrin-mediated endocytosis is responsible for their internalization. However, the process by which begomoviruses are trafficked within whitefly midgut cells remains largely unknown. In this study, we investigated the roles of vesicle trafficking in the transport of Tomato yellow leaf curl virus (TYLCV), a begomovirus that has spread to over 50 countries and caused extensive damage to a range of important crops, within midgut cells of whitefly (Bemisia tabaci). By disrupting vesicle trafficking using RNA silencing and inhibitors, we demonstrated that the early steps of endosomal trafficking are important for the intracellular transport of TYLCV in the whitefly midgut. In addition, our data show that, unlike many animal viruses, TYCLV is trafficked within cells in a manner independent of recycling endosomes, late endosomes, lysosomes, the Golgi apparatus and the endoplasmic reticulum. Instead, our results suggest that TYLCV might be transported directly from early endosomes to the basal plasma membrane and released into the hemolymph. Silencing of the sorting nexin Snx12, which may be involved in membrane tubulation, resulted in fewer viral particles in hemolymph; this suggests that the tubular endosomal network may be involved in the transport of TYLCV. Our results also support a role for the endo-lysosomal system in viral degradation. We further showed that the functions of vector early endosomes and sorting nexin Snx12 are conserved in the transmission of several other begomoviruses. Overall, our data indicate the importance of early endosomes and the tubular endosomal network in begomovirus transmission.
Collapse
Affiliation(s)
- Wen-Qiang Xia
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Wu Y, Jiang S, Ying T. Single-Domain Antibodies As Therapeutics against Human Viral Diseases. Front Immunol 2017; 8:1802. [PMID: 29326699 PMCID: PMC5733491 DOI: 10.3389/fimmu.2017.01802] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs) offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1), influenza viruses, hepatitis C virus (HCV), respiratory syncytial virus (RSV), and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Tartour K, Nguyen XN, Appourchaux R, Assil S, Barateau V, Bloyet LM, Burlaud Gaillard J, Confort MP, Escudero-Perez B, Gruffat H, Hong SS, Moroso M, Reynard O, Reynard S, Decembre E, Ftaich N, Rossi A, Wu N, Arnaud F, Baize S, Dreux M, Gerlier D, Paranhos-Baccala G, Volchkov V, Roingeard P, Cimarelli A. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathog 2017; 13:e1006610. [PMID: 28957419 PMCID: PMC5619827 DOI: 10.1371/journal.ppat.1006610] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle. IFITMs are interferon-regulated proteins that inhibit a broad range of viruses. Until recently, IFITMs had been described to arrest incoming viral particles in target cells, by inducing their retention in endosomal vesicles. More recently in the case of HIV-1, ours and other laboratories have highlighted the existence of an additional antiviral mechanism with which IFITMs could act in virus-producing cells, leading to the production of virion particles of reduced infectivity. In the present study, we assessed whether the negative imprinting of the virion particles infectivity was a conserved antiviral property of IFITMs by examining a panel of fourteen different DNA or RNA viruses. Our results indicate that a wide spectrum of viruses is susceptible to this antiviral mechanism of inhibition, although some are able to resist it. Swapping of elements between susceptible and resistant viruses strongly suggests that specificities in the mode of virion assembly and not the viral glycoprotein are the dominant factor in the susceptibility of a given virus to this inhibition. However, we also show that HIV-1 strains that engage the CCR5 co-receptor display a notable resistance towards IFITM3, indicating that at least in the case of HIV-1, co-receptor usage is likely to add an additional layer of complexity in the relationship established between IFITMs and the virus, that may or may not extend to other viral families as well. In the context of spreading infections, the results of this study highlight that the overall antiviral effect of IFITMs is mechanistically caused by a previously unappreciated dual mode of action in which they act both in target cells and in virus-producing cells, by respectively forcing endosome trapping of incoming viruses and by commandeering the formation of new virion particles of reduced infectivity. Overall, the results presented here indicate that the negative imprinting of viral particles is a largely conserved antiviral feature of IFITMs and point to IFITMs as a novel paradigm of innate defense proteins capable of interfering with viral replication at two distinct steps of a virus life cycle.
Collapse
Affiliation(s)
- Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Romain Appourchaux
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Sonia Assil
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Véronique Barateau
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Louis-Marie Bloyet
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Julien Burlaud Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université F. Rabelais et CHRU de Tours, Tours, France
- INSERM U966, Université F. Rabelais et CHRU de Tours, Tours, France
| | - Marie-Pierre Confort
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Beatriz Escudero-Perez
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Saw See Hong
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Marie Moroso
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Fondation Mérieux, Lyon, France
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Stéphanie Reynard
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Institut Pasteur, Lyon, France
| | - Elodie Decembre
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Najate Ftaich
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Axel Rossi
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Institute of BioMedical Science (IBMS), East China Normal University (ECNU), Shanghai, China
| | - Frédérick Arnaud
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Sylvain Baize
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Institut Pasteur, Lyon, France
| | - Marlène Dreux
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Denis Gerlier
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Glaucia Paranhos-Baccala
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Fondation Mérieux, Lyon, France
| | - Viktor Volchkov
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université F. Rabelais et CHRU de Tours, Tours, France
- INSERM U966, Université F. Rabelais et CHRU de Tours, Tours, France
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- * E-mail:
| |
Collapse
|
46
|
Cox RM, Plemper RK. Structure and organization of paramyxovirus particles. Curr Opin Virol 2017; 24:105-114. [PMID: 28601688 DOI: 10.1016/j.coviro.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
The paramyxovirus family comprises major human and animal pathogens such as measles virus (MeV), mumps virus (MuV), the parainfluenzaviruses, Newcastle disease virus (NDV), and the highly pathogenic zoonotic hendra (HeV) and nipah (NiV) viruses. Paramyxovirus particles are pleomorphic, with a lipid envelope, nonsegmented RNA genomes of negative polarity, and densely packed glycoproteins on the virion surface. A number of crystal structures of different paramyxovirus proteins and protein fragments were solved, but the available information concerning overall virion organization remains limited. However, recent studies have reported cryo-electron tomography-based reconstructions of Sendai virus (SeV), MeV, NDV, and human parainfluenza virus type 3 (HPIV3) particles and a surface assessment of NiV-derived virus-like particles (VLPs), which have yielded innovative hypotheses concerning paramyxovirus particle assembly, budding, and organization. Following a summary of the current insight into paramyxovirus virion morphology, this review will focus on discussing the implications of these particle reconstructions on the present models of paramyxovirus assembly and infection.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
47
|
Inhibition of endocytic pathways impacts cytomegalovirus maturation. Sci Rep 2017; 7:46069. [PMID: 28406138 PMCID: PMC5390266 DOI: 10.1038/srep46069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Endocytic processes are critical for cellular entry of several viruses; however, the role of endocytosis in cellular trafficking of viruses beyond virus entry is only partially understood. Here, we utilized two laboratory strains (AD169 and Towne) of human cytomegalovirus (HCMV), which are known to use cell membrane fusion rather than endocytosis to enter fibroblasts, in order to study a post-entry role of endocytosis in HCMV life cycle. Upon pharmacological inhibition of dynamin-2 or clathrin terminal domain (TD) ligand association, these strains entered the cells successfully based on the expression of immediate early viral protein. However, both the inhibitors significantly reduced the growth rates and final virus yields of viruses without inhibiting the expression of early to late viral proteins. Clathrin accumulated in the cytoplasmic virus assembly compartment (vAC) of infected cells co-localizing with virus tegument protein pp150 and the formation of vAC was compromised upon endocytic inhibition. Transmission electron micrographs (TEM) of infected cells treated with endocytosis inhibitors showed intact nuclear stages of nucleocapsid assembly but the cytoplasmic virus maturation was greatly compromised. Thus, the data presented here implicate endocytic pathways in HCMV maturation and egress.
Collapse
|
48
|
A 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 confers protections against HIV-1 infection. Microbes Infect 2016; 19:69-74. [PMID: 27652980 DOI: 10.1016/j.micinf.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/23/2022]
Abstract
We investigated whether a 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 (T-cell immunoglobulin and mucin domain 1), modulates susceptibility to HIV-1 infection. The polymorphism was genotyped in three case/control cohorts of HIV-1 exposed seronegative individuals (HESN) and HIV-1 infected subjects from Italy, Peru, and Colombia; data from a Thai population were retrieved from the literature. Across all cohorts, homozygosity for the short TIM-1 allele was more common in HESNs than in HIV-1 infected subjects. A meta-analysis of the four association analyses yielded a p value of 0.005. In vitro infection assays of CD4+ T lymphocytes indicated that homozygosity for the short allele is associated with lower rate of HIV-1 replication. These results suggest that the deletion allele protects from HIV-1 infection with a recessive effect.
Collapse
|
49
|
Liu Q, Zhou YH, Ye F, Yang ZQ. Antivirals for Respiratory Viral Infections: Problems and Prospects. Semin Respir Crit Care Med 2016; 37:640-6. [PMID: 27486742 PMCID: PMC7171711 DOI: 10.1055/s-0036-1584803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Yuan-Hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Feng Ye
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Neelakanta G, Sultana H. Viral receptors of the gut: vector-borne viruses of medical importance. CURRENT OPINION IN INSECT SCIENCE 2016; 16:44-50. [PMID: 27720049 DOI: 10.1016/j.cois.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/08/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Arthropods transmit several medically important arboviruses that cause diseases in humans. Therapeutic strategies to treat or prevent diseases transmitted by the arthropods are limiting. Understanding the role of arthropod gut receptors in the interactions with various arboviruses would provide important means for the development of a strong anti-vector vaccine. In this review, we summarize some of the potential findings in the field of arthropod gut receptors for tick-borne or mosquito-borne viruses and discuss their relevance in the development of a broad-spectrum transmission-blocking vaccine to treat or control various diseases caused by arboviruses.
Collapse
Affiliation(s)
- Girish Neelakanta
- Center for Molecular Medicine, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| | - Hameeda Sultana
- Center for Molecular Medicine, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|