1
|
Ursin RL, Dhakal S, Liu H, Jayaraman S, Park HS, Powell HR, Sherer ML, Littlefield KE, Fink AL, Ma Z, Mueller AL, Chen AP, Seddu K, Woldetsadik YA, Gearhart PJ, Larman HB, Maul RW, Pekosz A, Klein SL. Greater Breadth of Vaccine-Induced Immunity in Females than Males Is Mediated by Increased Antibody Diversity in Germinal Center B Cells. mBio 2022; 13:e0183922. [PMID: 35856618 PMCID: PMC9426573 DOI: 10.1128/mbio.01839-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.
Collapse
Affiliation(s)
- Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sahana Jayaraman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Harrison R. Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten E. Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zexu Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alice L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison P. Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yishak A. Woldetsadik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Muralidharan A, Gravel C, Harris G, Hashem AM, Zhang W, Safronetz D, Van Domselaar G, Krammer F, Sauve S, Rosu-Myles M, Wang L, Chen W, Li X. Universal antibody targeting the highly conserved fusion peptide provides cross-protection in mice. Hum Vaccin Immunother 2022; 18:2083428. [PMID: 35724343 PMCID: PMC9621047 DOI: 10.1080/21645515.2022.2083428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Influenza is a major public health concern causing millions of hospitalizations every year. The current vaccines need annual updating based on prediction of likely strains in the upcoming season. However, mismatches between vaccines and the actual circulating viruses can occur, reducing vaccine effectiveness significantly because of the remarkably high rate of mutation in the viral glycoprotein, hemagglutinin (HA). Clearly, it would be of great interest to determine the potential role of universally conserved epitopes in inducing protective immunity. Here, an antibody against the 14-aa fusion peptide sequence at the N-terminus of the HA2 subunit (Uni-1) was investigated for its ability to elicit antibody-dependent cellular cytotoxicity (ADCC) in vitro and cross-protection against lethal infection in animals. Uni-1, known to neutralize influenza type A (IAV) in vitro, was found to induce strong ADCC against diverse influenza viruses, including human and avian IAVs and both lineages of type B (IBV). The ADCC effects against human IAVs by Uni-1 was comparable to ADCC induced by well-characterized antibodies, F10 and FI6V3. Importantly, mice treated with Uni-1 were protected against lethal challenge of IAV and IBV. These results revealed the versatile effector functions of this universal antibody against markedly diverse strains of both IAV and IBV. The fusion peptide is the only universally conserved epitope in both IAV and IBV Mono-specific universal antibody induces strong ADCC against human and avian IAV Mono-specific universal antibody induces strong ADCC against IBV from both genetic lineages of IBV The antibody has bi-functional effector functions against several influenza viruses
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Greg Harris
- Human Health Therapeutics (HHT) Research Center, National Research Council of Canada, Ottawa, Canada
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wanyue Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council of Canada, Ottawa, Canada
| | - Xuguang Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| |
Collapse
|
3
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
Idrees M, Noorani MY, Altaf KU, Alatawi EA, Aba Alkhayl FF, Allemailem KS, Almatroudi A, Ali Khan M, Hamayun M, Khan T, Ali SS, Khan A, Wei DQ. Core-Proteomics-Based Annotation of Antigenic Targets and Reverse-Vaccinology-Assisted Design of Ensemble Immunogen against the Emerging Nosocomial Infection-Causing Bacterium Elizabethkingia meningoseptica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:194. [PMID: 35010455 PMCID: PMC8750920 DOI: 10.3390/ijerph19010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Elizabethkingia meningoseptica is a ubiquitous Gram-negative emerging pathogen that causes hospital-acquired infection in both immunocompromised and immunocompetent patients. It is a multi-drug-resistant bacterium; therefore, an effective subunit immunogenic candidate is of great interest to encounter the pathogenesis of this pathogen. A protein-wide annotation of immunogenic targets was performed to fast-track the vaccine development against this pathogen, and structural-vaccinology-assisted epitopes were predicted. Among the total proteins, only three, A0A1T3FLU2, A0A1T3INK9, and A0A1V3U124, were shortlisted, which are the essential vaccine targets and were subjected to immune epitope mapping. The linkers EAAK, AAY, and GPGPG were used to link CTL, HTL, and B-cell epitopes and an adjuvant was also added at the N-terminal to design a multi-epitope immunogenic construct (MEIC). The computationally predicted physiochemical properties of the ensemble immunogen reported a highly antigenic nature and produced multiple interactions with immune receptors. In addition, the molecular dynamics simulation confirmed stable binding and good dynamic properties. Furthermore, the computationally modeled immune response proposed that the immunogen triggered a strong immune response after several doses at different intervals. Neutralization of the antigen was observed on the 3rd day of injection. Conclusively, the immunogenic construct produces protection against Elizabethkingia meningoseptica; however, further immunological testing is needed to unveil its real efficacy.
Collapse
Affiliation(s)
- Muhammad Idrees
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Khyber Pakhtunkhwa, Pakistan; (M.I.); (S.S.A.)
| | | | | | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.S.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51418, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.S.A.)
| | - Murad Ali Khan
- Department of Chemistry, Kohat University of Sciences and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.K.); (A.K.)
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Khyber Pakhtunkhwa, Pakistan; (M.I.); (S.S.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.K.); (A.K.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.K.); (A.K.)
- Peng Cheng Laboratory, Shenzhen 518066, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
5
|
A statistical analysis of antigenic similarity among influenza A (H3N2) viruses. Heliyon 2021; 7:e08384. [PMID: 34825090 PMCID: PMC8605065 DOI: 10.1016/j.heliyon.2021.e08384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
An accurate assessment of antigenic similarity between influenza viruses is important for vaccine strain recommendations and influenza surveillance. Due to the mechanisms that result in frequent changes in the antigenicities of strains, it is desirable to obtain an antigenic similarity measure that accounts for specific changes in strains that are of epidemiological importance in influenza. Empirically grounded statistical models best achieve this. In this study, an interpretable machine-learning model was developed using distinguishing features of antigenic variants to analyze antigenic similarity. The features comprised of cluster information, amino acid sequences located in known antigenic and receptor-binding sites of influenza A (H3N2). In order to assess validity of parameters, accuracy and relevance of model to vaccine effectiveness, the model was applied to influenza A (H3N2) viruses due to their abundant genetic data and epidemiological relevance to influenza surveillance. An application of the model revealed that all model parameters were statistically significant to determining antigenic similarity between strains. Furthermore, upon evaluating the model for predicting antigenic similarity between strains, it achieved 95% area under Receiver Operating Characteristic curve (AUC), 94% accuracy, 76% precision, 97% specificity, 68% sensitivity and a diagnostic odds ratio (DOR) of 83.19. Above all, the model was found to be strongly related to influenza vaccine effectiveness to indicate the correlation between vaccine effectiveness and antigenic similarity between vaccine and circulating strains in an epidemic. The study predicts probabilities of antigenic similarity and estimates changes in strains that lead to antigenic variants. A successful application of the methods presented in this study would complement the global efforts in influenza surveillance.
Collapse
|
6
|
McCarthy KR, Von Holle TA, Sutherland LL, Oguin TH, Sempowski GD, Harrison SC, Moody MA. Differential immune imprinting by influenza virus vaccination and infection in nonhuman primates. Proc Natl Acad Sci U S A 2021; 118:e2026752118. [PMID: 34074774 PMCID: PMC8201799 DOI: 10.1073/pnas.2026752118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immune memory of a first infection with influenza virus establishes a lasting imprint. Recall of that memory dominates the response to later infections or vaccinations by antigenically drifted strains. Early childhood immunization before infection may leave an imprint with different characteristics. We report here a comparison of imprinting by vaccination and infection in a small cohort of nonhuman primates (NHPs). We assayed serum antibody responses for binding with hemaglutinnins (HAs) both from the infecting or immunizing strain (H3 A/Aichi 02/1968) and from strains representing later H3 antigenic clusters ("forward breadth") and examined the effects of defined HA mutations on serum titers. Initial exposure by infection elicited strong HA-binding and neutralizing serum antibody responses but with little forward breadth; initial vaccination with HA from the same strain elicited a weaker response with little neutralizing activity but considerable breadth of binding, not only for later H3 HAs but also for HA of the 2009 H1 new pandemic virus. Memory imprinted by infection, reflected in the response to two immunizing boosts, was largely restricted (as in humans) to the outward-facing HA surface, the principal region of historical variation. Memory imprinted by immunization showed exposure to more widely distributed epitopes, including sites that have not varied during evolution of the H3 HA but that yield nonneutralizing responses. The mode of initial exposure thus affects both the strength of the response and the breadth of the imprint; design of next-generation vaccines will need to take the differences into account.
Collapse
Affiliation(s)
- Kevin R McCarthy
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Tarra A Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute and Harvard Medical School, Boston, MA 02115
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710;
- Department of Pediatrics, Duke University Medical School, Durham, NC 27710
| |
Collapse
|
7
|
Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE. Broad Reactivity Single Domain Antibodies against Influenza Virus and Their Applications to Vaccine Potency Testing and Immunotherapy. Biomolecules 2021; 11:biom11030407. [PMID: 33802072 PMCID: PMC8001348 DOI: 10.3390/biom11030407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
The antigenic variability of influenza presents many challenges to the development of vaccines and immunotherapeutics. However, it is apparent that there are epitopes on the virus that have evolved to remain largely constant due to their functional importance. These more conserved regions are often hidden and difficult to access by the human immune system but recent efforts have shown that these may be the Achilles heel of the virus through development and delivery of appropriate biological drugs. Amongst these, single domain antibodies (sdAbs) are equipped to target these vulnerabilities of the influenza virus due to their preference for concave epitopes on protein surfaces, their small size, flexible reformatting and high stability. Single domain antibodies are well placed to provide a new generation of robust analytical reagents and therapeutics to support the constant efforts to keep influenza in check.
Collapse
Affiliation(s)
- Andrew Tung Yep
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Yasu Takeuchi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
- Advanced Therapies Division, NIBSC, Potters Bar, Hertfordshire EN6 3QG, UK
| | | | - Simon E. Hufton
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire EN6 3QG, UK;
- Correspondence:
| |
Collapse
|
8
|
Cohen AA, Yang Z, Gnanapragasam PNP, Ou S, Dam KMA, Wang H, Bjorkman PJ. Construction, characterization, and immunization of nanoparticles that display a diverse array of influenza HA trimers. PLoS One 2021; 16:e0247963. [PMID: 33661993 PMCID: PMC7932532 DOI: 10.1371/journal.pone.0247963] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Current influenza vaccines do not elicit broadly protective immune responses against multiple strains. New strategies to focus the humoral immune response to conserved regions on influenza antigens are therefore required for recognition by broadly neutralizing antibodies. It has been suggested that B-cells with receptors that recognize conserved epitopes would be preferentially stimulated through avidity effects by mosaic particles presenting multiple forms of a variable antigen. We adapted SpyCatcher-based platforms, AP205 virus-like particles (VLPs) and mi3 nanoparticles (NPs), to covalently co-display SpyTagged hemagglutinin (HA) trimers from group 1 and group 2 influenza A strains. Here we show successful homotypic and heterotypic conjugation of up to 8 different HA trimers to both VLPs and NPs. We characterized the HA-VLPs and HA-NPs by cryo-electron tomography to derive the average number of conjugated HAs and their separation distances on particles, and compared immunizations of mosaic and homotypic particles in wild-type mice. Both types of HA particles elicited strong antibody responses, but the mosaic particles did not consistently elicit broader immune responses than mixtures of homotypic particles. We conclude that covalent attachment of HAs from currently-circulating influenza strains represents a viable alternative to current annual influenza vaccine strategies, but in the absence of further modifications, is unlikely to represent a method for making a universal influenza vaccine.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Priyanthi N. P. Gnanapragasam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Susan Ou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
9
|
Zhao S, Schuurman N, Tieke M, Quist B, Zwinkels S, van Kuppeveld FJM, de Haan CAM, Egberink H. Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. J Clin Microbiol 2020; 58:e01689-20. [PMID: 32878956 PMCID: PMC7587082 DOI: 10.1128/jcm.01689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) infect humans and a variety of other animal species. Infections with some subtypes of IAV were also reported in domestic cats and dogs. In addition to animal health implications, close contact between companion animals and humans also poses a potential risk of zoonotic IAV infections. In this study, serum samples from different cat and dog cohorts were analyzed for IAV antibodies against seven IAV subtypes, using three distinctive IAV-specific assays differing in IAV subtype-specific discriminatory power and sensitivity. Enzyme-linked immunosorbent assays against the complete hemagglutinin (HA) ectodomain or the HA1 domain were used, as well as a novel nanoparticle-based, virus-free hemagglutination inhibition assay. Using these three assays, we found cat and dog sera from different cohorts to be positive for antibodies against one or more IAV subtypes and/or strains. Cat and dog serum samples collected after the 2009 pandemic H1N1 outbreak exhibit much higher seropositivity against H1 compared to samples from before 2009. Cat sera, furthermore, displayed higher reactivity for avian IAVs than dog sera. Our findings show the added value of using complementary serological assays, which are based on reactivity with different numbers of HA epitopes, to study IAV antibody responses and for improved serosurveillance of IAV infections. We conclude that infection of cats and dogs with both human and avian IAVs of different subtypes is prevalent. These observations highlight the role of cats and dogs in IAV ecology and indicate the potential of these companion animals to give rise to novel (reassorted) viruses with increased zoonotic potential.
Collapse
Affiliation(s)
- Shan Zhao
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nancy Schuurman
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Malte Tieke
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berit Quist
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Steven Zwinkels
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman Egberink
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Boyoglu-Barnum S, Hutchinson GB, Boyington JC, Moin SM, Gillespie RA, Tsybovsky Y, Stephens T, Vaile JR, Lederhofer J, Corbett KS, Fisher BE, Yassine HM, Andrews SF, Crank MC, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nat Commun 2020; 11:791. [PMID: 32034141 PMCID: PMC7005838 DOI: 10.1038/s41467-020-14579-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/18/2020] [Indexed: 11/23/2022] Open
Abstract
The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38HA1 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38HA1 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, ATRF, 8560 Progressive Drive, Frederick, MD, 21702, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, ATRF, 8560 Progressive Drive, Frederick, MD, 21702, USA
| | - John R Vaile
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, New Research Complex Zone 5, Doha, Qatar
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Von Holle TA, Moody MA. Influenza and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2019; 10:1457. [PMID: 31316510 PMCID: PMC6611398 DOI: 10.3389/fimmu.2019.01457] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the availability of yearly vaccinations, influenza continues to cause seasonal, and pandemic rises in illness and death. An error prone replication mechanism results in antigenic drift and viral escape from immune pressure, and recombination results in antigenic shift that can rapidly move through populations that lack immunity to newly emergent strains. The development of a “universal” vaccine is a high priority and many strategies have been proposed, but our current understanding of influenza immunity is incomplete making the development of better influenza vaccines challenging. Influenza immunity has traditionally been measured by neutralization of virions and hemagglutination inhibition, but in recent years there has been a growing appreciation of other responses that can contribute to protection such as antibody-dependent cellular cytotoxicity (ADCC) that can kill influenza-infected cells. ADCC has been shown to provide cross-strain protection and to assist in viral clearance, making it an attractive target for “universal” vaccine designs. Here we provide a brief overview of the current state of influenza research that leverages “the other end of the antibody.”
Collapse
Affiliation(s)
- Tarra A Von Holle
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Kanekiyo M, Joyce MG, Gillespie RA, Gallagher JR, Andrews SF, Yassine HM, Wheatley AK, Fisher BE, Ambrozak DR, Creanga A, Leung K, Yang ES, Boyoglu-Barnum S, Georgiev IS, Tsybovsky Y, Prabhakaran MS, Andersen H, Kong WP, Baxa U, Zephir KL, Ledgerwood JE, Koup RA, Kwong PD, Harris AK, McDermott AB, Mascola JR, Graham BS. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat Immunol 2019; 20:362-372. [PMID: 30742080 PMCID: PMC6380945 DOI: 10.1038/s41590-018-0305-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Cross Reactions/drug effects
- Cross Reactions/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunization
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hadi M Yassine
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaroslav Tsybovsky
- Electron Microscope Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Madhu S Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Baxa
- Electron Microscope Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Cryo-EM facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathryn L Zephir
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Liu Y, Tan HX, Koutsakos M, Jegaskanda S, Esterbauer R, Tilmanis D, Aban M, Kedzierska K, Hurt AC, Kent SJ, Wheatley AK. Cross-lineage protection by human antibodies binding the influenza B hemagglutinin. Nat Commun 2019; 10:324. [PMID: 30659197 PMCID: PMC6338745 DOI: 10.1038/s41467-018-08165-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
Influenza B viruses (IBV) drive a significant proportion of influenza-related hospitalisations yet are understudied compared to influenza A. Current vaccines target the head of the viral hemagglutinin (HA) which undergoes rapid mutation, significantly reducing vaccine effectiveness. Improved vaccines to control IBV are needed. Here we developed novel IBV HA probes to interrogate humoral responses to IBV in humans. A significant proportion of IBV HA-specific B cells recognise both B/Victoria/2/87-like and B/Yamagata/16/88-like lineages in a distinct pattern of cross-reactivity. Monoclonal antibodies (mAbs) were reconstituted from IBV HA-specific B cells, including mAbs providing broad protection in murine models of lethal IBV infection. Protection was mediated by neutralising antibodies targeting the receptor binding domain, or via Fc-mediated functions of non-neutralising antibodies binding alternative epitopes including the IBV HA stem. This work defines antigenic cross-recognition between IBV lineages and provides guidance for the rational design of improved IBV vaccines for broad and durable protection. Immune recognition of Influenza B virus (IBV) is poorly understood. Here, Liu et al. use flow cytometry to characterize IBV-specific memory B cell responses following seasonal vaccination and show that elicited cross-reactive antibodies can protect against infection, providing a platform for vaccine design.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Danielle Tilmanis
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Malet Aban
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia. .,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
15
|
Abstract
In contrast to adaptive antibodies, natural antibodies are present in a non-immunised organism from birth, and they do not include anti-Gal antibodies and/or anti-Gal natural antibodies, which are developed as a result of the effect of the α-Gal epitope and physiological flora. Natural antibodies are the first line of the organism’s defence before the formation of the immunity created via the stimulation of elements that determine specific and non-specific immunity. This is especially important in the case of infants. Despite the fact that natural antibodies differ in their function from adaptive antibodies, they are polyreactive and they detect autoantigens and new antigenic determinants. Natural antibodies are formed from the subpopulation of B lymphocytes, mainly B1 lymphocytes and B lymphocytes of the marginal zone. This phenomenon is supported by the fact that when the quantity of these cells in the organism decreases, which happens with age, the level of natural antibodies also decreases and the risk of illnesses of old age becomes higher. During ontogenesis, these antibodies participate in many physiological processes, including the “support” of the immune system and homeostasis, the prevention of inflammation, infections and other pathological states, such as autoimmune and cardiovascular diseases, or the process of carcinogenesis. The best known natural antibody is IgM, but the role of IgGs and IgAs is also considered important. Nowadays, many researchers also mention intravenous immunoglobulins, which are used in the treatment of numerous illnesses, and there are discussions on the possibility of increasing their potential if they were based on natural antibodies.
Collapse
|
16
|
Mathew S, Al Thani AA, Yassine HM. Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors. PLoS One 2018; 13:e0203148. [PMID: 30180218 PMCID: PMC6122827 DOI: 10.1371/journal.pone.0203148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persistent need for the development of broader and more effective vaccines and therapeutics. Identification of broadly neutralizing antibodies (bNAbs) that recognize relatively invariant structures on influenza haemagglutinin (HA) stem has invigorated efforts to develop universal influenza vaccines. Aim The current computational study is designed to identify potential flavonoid inhibitors that bind to the contact epitopes of HA stem that are targeted by broadly neutralizing antibodies (bNAb). Method In this study, we utilized the three-dimensional crystallographic structure of different HA subtypes (H1, H2, H5, H3, and H7) in complex with bNAb to screen for potential broadly reactive influenza inhibitors. We performed Quantitative Structure-Activity and Relationship (QSAR) for 100 natural compounds known for their antiviral activity and performed molecular docking using AutoDock 4.2 suite. Furthermore, we conducted virtual screening of 1413 bioassay hit compounds by using virtual lab bench CLC Drug Discovery. Results The results showed 18 lead flavonoids with strong binding abilities to bNAb epitopes of various HA subtypes. These 18 broadly reactive compounds exhibited significant interactions with an average of seven Hbonds, docking energy of -22.43 kcal·mol−1, and minimum interaction energy of -4.65 kcal·mol−1, with functional contact residues. Procyanidin depicted strong interactions with group 1 HAs, whereas both sorbitol and procyanidin exhibited significant interactions with group 2 HAs. Conclusion Using in silico docking analysis, we identified 18 bioactive flavonoids with potential strong binding cababilities to influenza HA-stems of various subtypes, which are the target for bNAb. The virtual screened bioassay hit compounds depicted a high number of Hbonds but low interaction and docking values compared to antiviral flavonoids. Using structure-based design and nanotechnology-based approaches, identified molecules could be modified to generate next generation anti-influenza drugs.
Collapse
Affiliation(s)
- Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
- * E-mail:
| |
Collapse
|
17
|
Structural Basis for the Broad, Antibody-Mediated Neutralization of H5N1 Influenza Virus. J Virol 2018; 92:JVI.00547-18. [PMID: 29925655 DOI: 10.1128/jvi.00547-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.
Collapse
|
18
|
Charleston B, Graham SP. Recent advances in veterinary applications of structural vaccinology. Curr Opin Virol 2018; 29:33-38. [PMID: 29550741 PMCID: PMC5954236 DOI: 10.1016/j.coviro.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
The deployment of effective veterinary vaccines has had a major impact on improving food security and consequently human health. Effective vaccines were essential for the global eradication of Rinderpest and the control and eradication of foot-and-mouth disease in some regions of the world. Effective vaccines also underpin the development of modern intensive food production systems such as poultry and aquaculture. However, for some high consequence diseases there are still significant challenges to develop effective vaccines. There is a strong track record in veterinary medicine of early adoption of new technologies to produce vaccines. Here we provide examples of new technologies to interrogate B cell responses and using structural biology to improve antigens.
Collapse
Affiliation(s)
- Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Guildford GU24 0NF, Surrey, United Kingdom.
| | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Guildford GU24 0NF, Surrey, United Kingdom
| |
Collapse
|
19
|
High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries. Sci Rep 2017; 7:14455. [PMID: 29089574 PMCID: PMC5663709 DOI: 10.1038/s41598-017-14823-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Pandemic and epidemic outbreaks of influenza A virus (IAV) infection pose severe challenges to human society. Passive immunotherapy with recombinant neutralizing antibodies can potentially mitigate the threats of IAV infection. With a high throughput neutralizing antibody discovery platform, we produced artificial anti-hemagglutinin (HA) IAV-neutralizing IgGs from phage-displayed synthetic scFv libraries without necessitating prior memory of antibody-antigen interactions or relying on affinity maturation essential for in vivo immune systems to generate highly specific neutralizing antibodies. At least two thirds of the epitope groups of the artificial anti-HA antibodies resemble those of natural protective anti-HA antibodies, providing alternatives to neutralizing antibodies from natural antibody repertoires. With continuing advancement in designing and constructing synthetic scFv libraries, this technological platform is useful in mitigating not only the threats of IAV pandemics but also those from other newly emerging viral infections.
Collapse
|
20
|
Shen C, Chen J, Li R, Zhang M, Wang G, Stegalkina S, Zhang L, Chen J, Cao J, Bi X, Anderson SF, Alefantis T, Zhang M, Cai X, Yang K, Zheng Q, Fang M, Yu H, Luo W, Zheng Z, Yuan Q, Zhang J, Wai-Kuo Shih J, Kleanthous H, Chen H, Chen Y, Xia N. A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Sci Transl Med 2017; 9:9/412/eaam5752. [DOI: 10.1126/scitranslmed.aam5752] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 11/02/2022]
|
21
|
Wilson JR, Belser JA, DaSilva J, Guo Z, Sun X, Gansebom S, Bai Y, Stark TJ, Chang J, Carney P, Levine MZ, Barnes J, Stevens J, Maines TR, Tumpey TM, York IA. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody protects mice from morbidity without interfering with the development of protective immunity to subsequent homologous challenge. Virology 2017; 511:214-221. [PMID: 28888111 DOI: 10.1016/j.virol.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
The emergence of A(H7N9) virus strains with resistance to neuraminidase (NA) inhibitors highlights a critical need to discover new countermeasures for treatment of A(H7N9) virus-infected patients. We previously described an anti-NA mAb (3c10-3) that has prophylactic and therapeutic efficacy in mice lethally challenged with A(H7N9) virus when delivered intraperitoneally (i.p.). Here we show that intrananasal (i.n.) administration of 3c10-3 protects 100% of mice from mortality when treated 24h post-challenge and further characterize the protective efficacy of 3c10-3 using a nonlethal A(H7N9) challenge model. Administration of 3c10-3 i.p. 24h prior to challenge resulted in a significant decrease in viral lung titers and deep sequencing analysis indicated that treatment did not consistently select for viral variants in NA. Furthermore, prophylactic administration of 3c10-3 did not inhibit the development of protective immunity to subsequent homologous virus re-challenge. Taken together, 3c10-3 highlights the potential use of anti-NA mAb to mitigate influenza virus infection.
Collapse
Affiliation(s)
- Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; CNI Advantage, LLC, Norman, OK, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Juliana DaSilva
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Atlanta Research&Education Foundation, Atlanta, GA, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; CNI Advantage, LLC, Norman, OK, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas J Stark
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessie Chang
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Barnes
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
22
|
Born WK, Huang Y, Zeng W, Torres RM, O'Brien RL. A Special Connection between γδ T Cells and Natural Antibodies? Arch Immunol Ther Exp (Warsz) 2016; 64:455-462. [PMID: 27235134 PMCID: PMC5507014 DOI: 10.1007/s00005-016-0403-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Natural antibodies (NAbs) play an important role in early host defense, autophagy and tissue remodeling, and in immune regulation. They arise spontaneously (without specific immunization), and are already present at birth. NAbs are produced by B1 B cells, MZ B cells and other B cell types. They include all major Ig subclasses but IgM antibodies are prevalent, especially early in development. NAbs may be poly-specific, recognize particular auto-antigens, or detect neo-determinants such as those exposed during apoptosis or generated by oxidation. NAbs do not require cognate T cell help but depend on soluble mediators produced by T cells. Our recent studies suggest that γδ T cells may have a special relationship with NAbs, and play a prominent role in their regulation, in part through the fine-tuning of IL-4 levels. The spontaneously activated state of these cells likely enables their cytokine production and other functions in the absence of external stimulation. Ontogenetically, the earlier arising γδ T cells are better positioned than αβ T cells to shape the developing repertoire of NAbs. Intriguingly, ligand specificities of NAbs and γδ T cell receptors appear to be overlapping, perhaps allowing γδ cognate help for certain NAb specificities. Via NAbs, γδ T cells could exert a regulatory influence on numerous processes in health and disease.
Collapse
Affiliation(s)
- Willi K Born
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Str., Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA.
| | - Yafei Huang
- Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Str., Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA
| |
Collapse
|
23
|
Using Clinical Trial Simulators to Analyse the Sources of Variance in Clinical Trials of Novel Therapies for Acute Viral Infections. PLoS One 2016; 11:e0156622. [PMID: 27332704 PMCID: PMC4917234 DOI: 10.1371/journal.pone.0156622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND About 90% of drugs fail in clinical development. The question is whether trials fail because of insufficient efficacy of the new treatment, or rather because of poor trial design that is unable to detect the true efficacy. The variance of the measured endpoints is a major, largely underestimated source of uncertainty in clinical trial design, particularly in acute viral infections. We use a clinical trial simulator to demonstrate how a thorough consideration of the variability inherent in clinical trials of novel therapies for acute viral infections can improve trial design. METHODS AND FINDINGS We developed a clinical trial simulator to analyse the impact of three different types of variation on the outcome of a challenge study of influenza treatments for infected patients, including individual patient variability in the response to the drug, the variance of the measurement procedure, and the variance of the lower limit of quantification of endpoint measurements. In addition, we investigated the impact of protocol variation on clinical trial outcome. We found that the greatest source of variance was inter-individual variability in the natural course of infection. Running a larger phase II study can save up to $38 million, if an unlikely to succeed phase III trial is avoided. In addition, low-sensitivity viral load assays can lead to falsely negative trial outcomes. CONCLUSIONS Due to high inter-individual variability in natural infection, the most important variable in clinical trial design for challenge studies of potential novel influenza treatments is the number of participants. 100 participants are preferable over 50. Using more sensitive viral load assays increases the probability of a positive trial outcome, but may in some circumstances lead to false positive outcomes. Clinical trial simulations are powerful tools to identify the most important sources of variance in clinical trials and thereby help improve trial design.
Collapse
|
24
|
Cho A, Wrammert J. Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr Opin Virol 2016; 17:110-115. [PMID: 27031684 DOI: 10.1016/j.coviro.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 11/24/2022]
Abstract
Serum antibodies are the major correlate of influenza vaccine efficacy, providing short-term protection against infection. Recent efforts have been focused on studying antibody responses at a monoclonal level to understand their role in protection against influenza, and to ultimately improve vaccine strategies to provide broader, long-term immunity against influenza virus. These studies have shown that broadly neutralizing antibodies specific for the conserved stem domain of the hemagglutinin protein can target multiple strains of influenza. These antibodies show great promise both from a therapeutic perspective as well as for guiding vaccine design efforts. In this review, we will summarize past and recent findings about broadly neutralizing antibodies against influenza, and discuss how these findings may guide development of universal vaccine strategies.
Collapse
Affiliation(s)
- Alice Cho
- Department of Pediatrics, HSRB E480, Emory University, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, HSRB E480, Emory University, Atlanta, GA, USA.
| |
Collapse
|
25
|
Wang W, Alvarado-Facundo E, Chen Q, Anderson CM, Scott D, Vassell R, Weiss CD. Serum Samples From Middle-aged Adults Vaccinated Annually with Seasonal Influenza Vaccines Cross-neutralize Some Potential Pandemic Influenza Viruses. J Infect Dis 2015; 213:403-6. [PMID: 26243315 PMCID: PMC7313900 DOI: 10.1093/infdis/jiv407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022] Open
Abstract
We examined serum samples from adults ages 48–64 who received multiple seasonal influenza vaccines from 2004 to 2009 for cross-neutralizing antibodies to potential pandemic strains. Using pseudoviruses bearing various hemagglutinins (HA-pseudoviruses), we found serum neutralization titers (≥160) in 100% against A/Japan/305/1957 (H2N2), 53% against A/Hong Kong/1073/99 (H9N2), 56% against the H3N2 variant A/Indiana/08/11 (H3N2v), 11% against A/Hong Kong/G9/97 (H9N2), and 36% A/chicken/Hong Kong/SF4/01 (H6N1). None had titers >160 to A/Shanghai/2/13 (H7N9) or A/Netherlands/219/03 (H7N7). Thirty-six percent to 0% had neutralization titers to various H5N1 strains. Titers to H9, H6, and H5 HA-pseudoviruses correlated with each other, but not with H3N2v, suggesting group-specific cross-neutralization.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products
| | | | - Qiong Chen
- Laboratory of Immunoregulation, Division of Viral Products
| | - Christine M Anderson
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Dorothy Scott
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Carol D Weiss
- Laboratory of Immunoregulation, Division of Viral Products
| |
Collapse
|
26
|
Wheatley AK, Kent SJ. Prospects for antibody-based universal influenza vaccines in the context of widespread pre-existing immunity. Expert Rev Vaccines 2015; 14:1227-39. [DOI: 10.1586/14760584.2015.1068125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adam Kenneth Wheatley
- 1 Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- 2 The University of Melbourne, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Stephen John Kent
- 1 Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- 2 The University of Melbourne, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
- 3 Melbourne Sexual Health Centre, Central Clinical School, Monash University, Carlton, Victoria, Australia
| |
Collapse
|