1
|
Mahdavi P, Panahipoor Javaherdehi A, Khanjanpoor P, Aminian H, Zakeri M, Zafarani A, Razizadeh MH. The role of c-Myc in Epstein-Barr virus-associated cancers: Mechanistic insights and therapeutic implications. Microb Pathog 2024; 197:107025. [PMID: 39426639 DOI: 10.1016/j.micpath.2024.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
c-Myc is an important proto-oncogene belonging to the MYC family. In normal conditions, c-Myc regulates different aspects of cellular function. However, its dysregulation can result in the development of cancer due to various mechanisms. Epstein-Barr virus is a ubiquitous viral pathogen that infects a huge proportion of the global population. This virus is linked to various cancers, such as different types of lymphoma, nasopharyngeal, and gastric cancers. It can manipulate host cells, and many cellular and viral genes are important in the Epstein-Barr virus carcinogenesis. This review explores the complex relationship between c-Myc and Epstein-Barr virus in the context of cancer development. Also, potential therapeutic strategies targeting c-Myc to treat EBV-related cancers are discussed.
Collapse
Affiliation(s)
- Pooya Mahdavi
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | | | - Parinaz Khanjanpoor
- Department of Health and Science, University of Piedmont Orientale (UPO), Novara, Italy
| | - Hesam Aminian
- Department of Health and Science, University of Piedmont Orientale (UPO), Novara, Italy
| | - Mehrasa Zakeri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Zafarani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Choi UY, Lee SH. Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus. J Microbiol Biotechnol 2024; 34:2143-2152. [PMID: 39403716 PMCID: PMC11637867 DOI: 10.4014/jmb.2407.07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/29/2024]
Abstract
Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| |
Collapse
|
3
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Schaal DL, Amucheazi AA, Jones SC, Nkadi EH, Scott RS. Epstein-Barr virus replication within differentiated epithelia requires pRb sequestration of activator E2F transcription factors. J Virol 2024; 98:e0099524. [PMID: 39291960 PMCID: PMC11494884 DOI: 10.1128/jvi.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.
Collapse
Affiliation(s)
- Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Akajiugo A. Amucheazi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Sarah C. Jones
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
5
|
Portet Sulla V, Kadi A, Mouna L, Fenaux H, Cechura H, Rafek R, Di Ciccone JL, Warnakulasuriya F, Vauloup-Fellous C. Investigation of atypical serological profiles for Epstein-Barr virus (EBV). J Virol Methods 2024; 329:115002. [PMID: 39067186 DOI: 10.1016/j.jviromet.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Commercial immunoassays that detect IgG and IgM directed toward VCA and IgG EBNA are used in combination to assess EBV immune status. However, this strategy does not always confirm/exclude recent/past EBV infection or absence of immunity. OBJECTIVES The aim of our study was to perform complementary investigations on samples with atypical EBV serological profiles, in order to identify the clinical situation they correspond to. STUDY DESIGN EBV serology was performed using EBV VCA IgM/IgG and EBNA IgG LXL® DiaSorin assay. Complementary investigations included ELISA IgM VCA, immunoblots, CMV IgM/IgG and CMV IgG avidity, and EBV PCR. RESULTS In our study, 12810 EBV serological results were analyzed, and 3580 atypical profiles were detected (28 %). Among these latter, isolated VCA IgG represented 42.9 %, the three positive markers accounted for 29.1 %, isolated EBNA IgG represented 18.5 %, isolated VCA IgM accounted for 6.4 % and positive VCA IgM & positive EBNA IgG represented 3.1 %. VCA IgG detected alone were specific in 100 % cases and EBNA IgG detected alone were specific in 91.7 % cases. VCA IgM detected alone were false positive or due to a cross reaction with CMV in 52.8 % cases. The pattern positive VCA IgM and positive EBNA IgG correspond to a false positive in VCA IgM, EBNA IgG or both in 83.4 % cases. Positive EBV VCA IgM/IgG and EBNA IgG were unreliable to detect active EBV infection in 66.7 % cases. DISCUSSION Atypical EBV serological profiles may correspond to several clinical situations and complementary investigations allow to determine the immune status in more than 98.5 % cases.
Collapse
Affiliation(s)
- Vincent Portet Sulla
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France; Paris Saclay University, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France.
| | - Amina Kadi
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Lina Mouna
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Honorine Fenaux
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Hugo Cechura
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Rana Rafek
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Julia Lubrano Di Ciccone
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Fairly Warnakulasuriya
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Christelle Vauloup-Fellous
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France; Paris Saclay University, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Ma Z, Chen G, Li H, Yang S, Xu Y, Pan B, Lai W, Chen G, Liao W, Zhang X. B7-H3 promotes nasopharyngeal carcinoma progression by regulating CD8+ T cell exhaustion. Immun Inflamm Dis 2024; 12:e70005. [PMID: 39267471 PMCID: PMC11393430 DOI: 10.1002/iid3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/26/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND B7-H3 protein is an important regulator of the adaptive immune response in human tumorigenesis. 4-1BB is a co-stimulatory receptor expressed on activated CD8+ T cells, and regulates T cell immunity. Here, we investigated the role of B7-H3 in the growth and invasion of nasopharyngeal carcinoma (NPC) and the effect of its interaction with 4-1BB on tumor immunity. METHODS Short hairpin (sh) RNA was designed to knock down B7-H3 expression in NPC cells. NPC cells with stable knockdown of B7-H3 were established and injected into nude mice. The effects of B7-H3 on cell proliferation, apoptosis, and epithelial-to-mesenchymal transition (EMT) were detected by the CCK8 assay, flow cytometry, TUNEL assay, and western blot analysis. The migration and invasion abilities were determined using the Transwell assay and scratch assay. Co-immunoprecipitation (Co-IP) assays were performed to study the interaction between B7-H3 and 4-1BB. Anti-4-1BB antibody was used in a co-culture system and xenograft mice to study the effect of 4-1BB on NPC development. RESULTS NPC cells transfected with sh-B7-H3 showed a higher rate of apoptosis, slower growth rate, impaired migration, and less EMT in vitro. Xenograft mice with stable knockout of B7-H3 had lower tumor burdens, and the stripped tumors had lower rates of cell proliferation, higher rates of apoptosis, and less EMT in vivo. Additionally, decreased B7-H3 expression was positively correlated with interferon-γ, tumor necrosis factor-α, and 4-1BB+CD8+ tumor-infiltrating lymphocytes. Co-IP studies showed that B7-H3 interacts with 4-1BB. Also, the inhibitory effects of sh-B7-H3 on NPC tumor growth, invasion, and tumor immunity could be alleviated by the anti-4-1BB antibody both in vivo and in vitro. CONCLUSION Our findings suggest that B7-H3 may accelerate tumor growth, tumor cell invasion, and EMT, and interact with 4-1BB to produce CD8+ T cell exhaustion that inhibits tumor immunity. B7-H3 might serve as a novel target for treating NPC.
Collapse
Affiliation(s)
- Zhaoen Ma
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gui Chen
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Saixuan Yang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yali Xu
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bolin Pan
- Guangzhou Medical University, Guangzhou, China
| | - Wuping Lai
- Guangzhou Medical University, Guangzhou, China
| | - Guangui Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Liao
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
8
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
9
|
Hu J, Xin F, Liu W, Gong Z, Zhang Y, Liu S. Downregulation of KLF5 by EBER1 via the ERK signaling pathway in EBV-positive nasopharyngeal carcinoma cells: implications for latent EBV infection. J Gen Virol 2024; 105. [PMID: 38747699 DOI: 10.1099/jgv.0.001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) carcinogenesis and malignant transformation are intimately associated with Epstein-Barr virus (EBV) infection. A zinc-fingered transcription factor known as Krüppel-like factor 5 (KLF5) has been shown to be aberrantly expressed in a number of cancer types. However, little is known about the regulatory pathways and roles of KLF5 in EBV-positive NPC. Our study found that KLF5 expression was significantly lower in EBV-positive NPC than in EBV-negative NPC. Further investigation revealed that EBER1, which is encoded by EBV, down-regulates KLF5 via the extracellular signal-regulated kinase (ERK) signalling pathway. This down-regulation of KLF5 by EBER1 contributes to maintaining latent EBV infection in NPC. Furthermore, we uncovered the biological roles of KLF5 in NPC cells. Specifically, KLF5 may influence the cell cycle, prevent apoptosis, and encourage cell migration and proliferation - all of which have a generally pro-cancer impact. In conclusion, these findings offer novel strategies for EBV-positive NPC patients' antitumour treatment.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| | - Fangjie Xin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, PR China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| |
Collapse
|
10
|
Incrocci R, Monroy Del Toro R, Devitt G, Salimian M, Braich K, Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) Enhances ATP Production in B Cell Tumors through mTOR and HIF-1α. Int J Mol Sci 2024; 25:3944. [PMID: 38612754 PMCID: PMC11012313 DOI: 10.3390/ijms25073944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Epstein-Barr Virus (EBV) exists in a latent state in 90% of the world's population and is linked to numerous cancers, such as Burkitt's Lymphoma, Hodgkin's, and non-Hodgkin's Lymphoma. One EBV latency protein, latency membrane protein 2A (LMP2A), is expressed in multiple latency phenotypes. LMP2A signaling has been extensively studied and one target of LMP2A is the mammalian target of rapamycin (mTOR). Since mTOR has been linked to reprogramming tumor metabolism and increasing levels of hypoxia-inducible factor 1 α (HIF-1α), we hypothesized that LMP2A would increase HIF-1α levels to enhance ATP generation in B lymphoma cell lines. Our data indicate that LMP2A increases ATP generation in multiple Burkitt lymphoma cell lines that were dependent on HIF-1α. Subsequent studies indicate that the addition of the mTOR inhibitor, rapamycin, blocked the LMP2A-dependent increase in HIF-1α. Further studies demonstrate that LMP2A does not increase HIF-1α levels by increasing HIF-1α RNA or STAT3 activation. In contrast, LMP2A and mTOR-dependent increase in HIF-1α required mTOR-dependent phosphorylation of p70 S6 Kinase and 4E-BP1. These findings implicate the importance of LMP2A in promoting B cell lymphoma survival by increasing ATP generation and identifying potential pharmaceutical targets to treat EBV-associated tumors.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Rosalinda Monroy Del Toro
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Grace Devitt
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Melody Salimian
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Kamaljit Braich
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| |
Collapse
|
11
|
Bristol JA, Nelson SE, Ohashi M, Casco A, Hayes M, Ranheim EA, Pawelski AS, Singh DR, Hodson DJ, Johannsen EC, Kenney SC. Latent Epstein-Barr virus infection collaborates with Myc over-expression in normal human B cells to induce Burkitt-like Lymphomas in mice. PLoS Pathog 2024; 20:e1012132. [PMID: 38620028 PMCID: PMC11045125 DOI: 10.1371/journal.ppat.1012132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/25/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.
Collapse
Affiliation(s)
- Jillian A. Bristol
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Deo R. Singh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Eric C. Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, Tu YJ. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med 2024; 24:2-13. [PMID: 36411555 PMCID: PMC10825793 DOI: 10.2174/1566524023666221118122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.
Collapse
Affiliation(s)
- Wei-ting Wang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yun Yang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yang Zhang
- Information Center of Science and Technology, Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-ning Le
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai (200433), China
| | - Yu-lin Wu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-yi Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai (200032), China
| | - Yan-jie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| |
Collapse
|
13
|
Musukuma-Chifulo K, Ghebremichael M, Chilyabanyama ON, Bates M, Munsaka S, Simuyandi M, Chisenga C, Tembo J, Sinkala E, Koralnik IJ, Dang X, Chilengi R, Siddiqi OK. Characterizing Epstein-Barr virus infection of the central nervous system in Zambian adults living with HIV. J Neurovirol 2023; 29:706-712. [PMID: 37902948 DOI: 10.1007/s13365-023-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
The significance of Epstein-Barr virus (EBV) detection in the cerebrospinal spinal fluid (CSF) in people living with HIV (PLWH) is not entirely understood. The detection of EBV DNA may represent active central nervous system (CNS) infection, reactivation in the setting of another CNS pathogen or due to impaired immunity, or detection of quiescent virus. We screened 470 adult PLWH in Zambia with neurological symptoms for the presence of EBV DNA in the CSF. We performed quantitative EBV PCR on the CSF and blood. We then performed quantitative EBV DNA PCR on the blood of controls with documented HIV viral suppression without CNS symptoms. The prevalence of EBV DNA in the CSF of patients with CNS symptoms was 28.9% (136/470). EBV DNA positivity was associated with younger age, shorter duration of HIV diagnosis, lower CSF glucose levels, higher CSF protein and white blood cell levels, and a positive CSF Mycobacterium tuberculosis result. The median EBV DNA load was 8000 cps/mL in both the CSF and blood with a range of 2000-2,753,000 cps/mL in the CSF and 1000 to 1,871,000 cps/mL in the blood. Molecular screening of CSF for other possible causes of infection identified Mycobacterium tuberculosis in 30.1% and cytomegalovirus (CMV) in 10.5% of samples. EBV DNA load in the blood and CSF was not associated with mortality. Our results suggest that even though EBV DNA was commonly detected in the CSF of our population, it appears to have limited clinical significance regardless of EBV DNA load.
Collapse
Affiliation(s)
- Kalo Musukuma-Chifulo
- Department of Biomedical Sciences, School of Health Sciences, The University of Zambia, Lusaka, Zambia.
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia.
| | - Musie Ghebremichael
- Harvard Medical School and Ragon Institute of Mass General, MIT and Harvard, Boston, MA, USA
| | | | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
- School of Life & Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, The University of Zambia, Lusaka, Zambia
| | | | | | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | - Edford Sinkala
- Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Igor J Koralnik
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xin Dang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, 10101, Lusaka, Zambia
| | - Omar K Siddiqi
- Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
- Global Neurology Program, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Center for Vaccines and Virology Research, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
14
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
15
|
Leung NYT, Wang LW. Targeting Metabolic Vulnerabilities in Epstein-Barr Virus-Driven Proliferative Diseases. Cancers (Basel) 2023; 15:3412. [PMID: 37444521 DOI: 10.3390/cancers15133412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The metabolism of cancer cells and Epstein-Barr virus (EBV) infected cells have remarkable similarities. Cancer cells frequently reprogram metabolic pathways to augment their ability to support abnormal rates of proliferation and promote intra-organismal spread through metastatic invasion. On the other hand, EBV is also capable of manipulating host cell metabolism to enable sustained growth and division during latency as well as intra- and inter-individual transmission during lytic replication. It comes as no surprise that EBV, the first oncogenic virus to be described in humans, is a key driver for a significant fraction of human malignancies in the world (~1% of all cancers), both in terms of new diagnoses and attributable deaths each year. Understanding the contributions of metabolic pathways that underpin transformation and virus replication will be important for delineating new therapeutic targets and designing nutritional interventions to reduce disease burden. In this review, we summarise research hitherto conducted on the means and impact of various metabolic changes induced by EBV and discuss existing and potential treatment options targeting metabolic vulnerabilities in EBV-associated diseases.
Collapse
Affiliation(s)
- Nicole Yong Ting Leung
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore 138648, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore 138648, Singapore
| |
Collapse
|
16
|
Singh DR, Nelson SE, Pawelski AS, Kansra AS, Fogarty SA, Bristol JA, Ohashi M, Johannsen EC, Kenney SC. Epstein-Barr virus LMP1 protein promotes proliferation and inhibits differentiation of epithelial cells via activation of YAP and TAZ. Proc Natl Acad Sci U S A 2023; 120:e2219755120. [PMID: 37155846 PMCID: PMC10193989 DOI: 10.1073/pnas.2219755120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Scott E. Nelson
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Abigail S. Pawelski
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Alisha S. Kansra
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Stuart A. Fogarty
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Jillian A. Bristol
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| |
Collapse
|
17
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
18
|
Dorothea M, Xie J, Yiu SPT, Chiang AKS. Contribution of Epstein–Barr Virus Lytic Proteins to Cancer Hallmarks and Implications from Other Oncoviruses. Cancers (Basel) 2023; 15:cancers15072120. [PMID: 37046781 PMCID: PMC10093119 DOI: 10.3390/cancers15072120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Epstein–Barr virus (EBV) is a prevalent human gamma-herpesvirus that infects the majority of the adult population worldwide and is associated with several lymphoid and epithelial malignancies. EBV displays a biphasic life cycle, namely, latent and lytic replication cycles, expressing a diversity of viral proteins. Among the EBV proteins being expressed during both latent and lytic cycles, the oncogenic roles of EBV lytic proteins are largely uncharacterized. In this review, the established contributions of EBV lytic proteins in tumorigenesis are summarized according to the cancer hallmarks displayed. We further postulate the oncogenic properties of several EBV lytic proteins by comparing the evolutionary conserved oncogenic mechanisms in other herpesviruses and oncoviruses.
Collapse
Affiliation(s)
- Mike Dorothea
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia Xie
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Bose D, Lin X, Gao L, Wei Z, Pei Y, Robertson ES. Attenuation of IFN signaling due to m 6A modification of the host epitranscriptome promotes EBV lytic reactivation. J Biomed Sci 2023; 30:18. [PMID: 36918845 PMCID: PMC10012557 DOI: 10.1186/s12929-023-00911-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Reactivation of Epstein Barr virus (EBV) leads to modulation of the viral and cellular epitranscriptome. N6-methyladenosine (m6A) modification is a type of RNA modification that regulates metabolism of mRNAs. Previous reports demonstrated that m6A modification affects the stability and metabolism of EBV encoded mRNAs. However, the effect of reactivation on reprograming of the cellular mRNAs, and how this contributes to successful induction of lytic reactivation is not known. METHODS Methylated RNA immunoprecipitation sequencing (MeRIP-seq), transcriptomic RNA sequencing (RNA-seq) and RNA pull-down PCR were used to screen and validate differentially methylated targets. Western blotting, quantitative real-time PCR (RT-qPCR) and immunocytochemistry were used to investigate the expression and localization of different proteins. RNA stability and polysome analysis assays were used to detect the half-lives and translation efficiencies of downstream genes. Insertion of point mutation to disrupt the m6A methylation sites was used to verify the effect of m6A methylation on its stability and expression levels. RESULTS We report that during EBV reactivation the m6A eraser ALKBH5 is significantly downregulated leading to enhanced methylation of the cellular transcripts DTX4 and TYK2, that results in degradation of TYK2 mRNAs and higher efficiency of translation of DTX4 mRNAs. This resulted in attenuation of IFN signaling that promoted progression of viral lytic replication. Furthermore, inhibition of m6A methylation of these transcripts led to increased production of IFN, and a substantial reduction in viral copy number, which suggests abrogation of lytic viral replication. CONCLUSION Our findings illuminate the significance of m6A modification in overcoming the innate immune response during EBV reactivation. We now report that during lytic reactivation EBV targets the RNA methylation system of the host to attenuate the innate immune response by suppressing the interferon signaling which facilitates successful lytic replication of the virus.
Collapse
Affiliation(s)
- Dipayan Bose
- Department of Otorhinolaryngology-Head and Neck Surgery, and Tumor Virology Program, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Xiang Lin
- Department of Computer Science, New Jersey Institute of Technology, 07102, New Jersey, United States of America
| | - Le Gao
- Department of Computer Science, New Jersey Institute of Technology, 07102, New Jersey, United States of America
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, 07102, New Jersey, United States of America
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and Tumor Virology Program, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023; 11:biomedicines11020358. [PMID: 36830895 PMCID: PMC9953236 DOI: 10.3390/biomedicines11020358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
21
|
Agwati EO, Oduor CI, Ayieko C, Ong’echa JM, Moormann AM, Bailey JA. Profiling genome-wide recombination in Epstein Barr virus reveals type-specific patterns and associations with endemic-Burkitt lymphoma. Virol J 2022; 19:208. [PMID: 36482473 PMCID: PMC9733152 DOI: 10.1186/s12985-022-01942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is potentiated through the interplay of Epstein Barr virus (EBV) and holoendemic Plasmodium falciparum malaria. To better understand EBV's biology and role in eBL, we characterized genome-wide recombination sites and patterns as a source of genetic diversity in EBV genomes in our well-defined population of eBL cases and controls from Western Kenya. METHODS EBV genomes representing 54 eBL cases and 32 healthy children from the same geographic region in Western Kenya that we previously sequenced were analyzed. Whole-genome multiple sequence alignment, recombination analyses, and phylogenetic inference were made using multiple alignment with fast Fourier transform, recombination detection program 4, and molecular evolutionary genetics analysis. RESULTS We identified 28 different recombination events and 71 (82.6%) of the 86 EBV genomes analyzed contained evidence of one or more recombinant segments. Associated recombination breakpoints were found to occur in a total of 42 different genes, with only 7 (16.67%) being latent genes. Recombination events were major drivers of clustering within genome-wide phylogenetic trees. The occurrence of recombination segments was comparable between genomes from male and female participants and across age groups. More recombinant segments were found in EBV type 1 genomes (p = 6.4e - 06) and the genomes from the eBLs (p = 0.037). Two recombination events were enriched in the eBLs; event 47 (OR = 4.07, p = 0.038) and event 50 (OR = 14.24, p = 0.012). CONCLUSIONS EBV genomes have extensive evidence of recombination likely acquired progressively and cumulatively over time. Recombination patterns display a heterogeneous occurrence rate across the genome with enrichment in lytic genes. Overall, recombination appears to be a major evolutionary force impacting EBV diversity and genome structure with evidence of the association of specific recombinants with eBL.
Collapse
Affiliation(s)
- Eddy O. Agwati
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Maseno, Kenya ,grid.33058.3d0000 0001 0155 5938Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Cliff I. Oduor
- grid.40263.330000 0004 1936 9094Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903 USA
| | - Cyrus Ayieko
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Maseno, Kenya
| | - John Michael Ong’echa
- grid.33058.3d0000 0001 0155 5938Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Ann M. Moormann
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Jeffrey A. Bailey
- grid.40263.330000 0004 1936 9094Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903 USA
| |
Collapse
|
22
|
Shechter O, Sausen DG, Gallo ES, Dahari H, Borenstein R. Epstein-Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. Int J Mol Sci 2022; 23:14389. [PMID: 36430864 PMCID: PMC9699474 DOI: 10.3390/ijms232214389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of eight known herpesviruses with the potential to infect humans. Globally, it is estimated that between 90-95% of the population has been infected with EBV. EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer. Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and establish which treatments and therapies are most recommended for each cancer associated with EBV.
Collapse
Affiliation(s)
- Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Elisa S. Gallo
- Tel-Aviv Sourasky Medical Center, Division of Dermatology, Tel-Aviv 6423906, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Atri-Schuller A, Abushukair H, Cavalcante L, Hentzen S, Saeed A, Saeed A. Tumor Molecular and Microenvironment Characteristics in EBV-Associated Malignancies as Potential Therapeutic Targets: Focus on Gastric Cancer. Curr Issues Mol Biol 2022; 44:5756-5767. [PMID: 36421674 PMCID: PMC9689242 DOI: 10.3390/cimb44110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 09/30/2023] Open
Abstract
Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the EBV, host, and tumor environment interact to promote malignant transformation. This paper focuses on some of the mechanisms that EBV uses to transform the tumor microenvironment (TME) of EBV-associated gastric cancer (EBVaGC) for its benefit, including overexpression of Indoleamine 2,3-Dioxygenase 1 (IDO1), synergism between H. pylori and EBV co-infection, and M1 to M2 switch. In this review, we expand on different modalities and combinatorial approaches to therapeutically target this mechanism.
Collapse
Affiliation(s)
- Aviva Atri-Schuller
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ludimila Cavalcante
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Stijn Hentzen
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy, Kansas City, KS 66205, USA
| |
Collapse
|
24
|
Sugrue JA, Posseme C, Tan Z, Pou C, Charbit B, Bondet V, Bourke NM, Brodin P, Duffy D, O'Farrelly C. Enhanced TLR3 responsiveness in hepatitis C virus resistant women from the Irish anti-D cohort. Cell Rep Med 2022; 3:100804. [PMID: 36334594 PMCID: PMC9729829 DOI: 10.1016/j.xcrm.2022.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Natural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort.
Collapse
Affiliation(s)
- Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris, France; Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Chen J, Song J, Dai L, Post SR, Qin Z. SARS-CoV-2 infection and lytic reactivation of herpesviruses: A potential threat in the postpandemic era? J Med Virol 2022; 94:5103-5111. [PMID: 35819034 PMCID: PMC9350099 DOI: 10.1002/jmv.27994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative pathogen for the coronavirus disease 2019 (COVID-19) pandemic, has greatly stressed our healthcare system. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal disease outcomes, including chronic viral infections. Increasing cases of lytic reactivation of human herpesviruses in COVID-19 patients and vaccinated people have been reported recently. SARS-CoV2 coinfection, COVID-19 treatments, and vaccination may aggravate those herpesvirus-associated diseases by reactivating the viruses in latently infected host cells. In this review, we summarize recent clinical findings and limited mechanistic studies regarding the relationship between SARS-CoV-2 and different human herpesviruses that suggest an ongoing potential threat to human health in the postpandemic era.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jiao Song
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Steven R. Post
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
26
|
Madayag K, Incrocci R, Swanson‐Mungerson M. The impact of Epstein-Barr virus latent membrane protein 2A on the production of B cell activating factor of the tumor necrosis factor family (BAFF), APRIL and their receptors. Immun Inflamm Dis 2022; 10:e729. [PMID: 36301035 PMCID: PMC9597489 DOI: 10.1002/iid3.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Epstein-Barr virus (EBV) establishes a lifelong infection in human B cells where the virus consistently expresses Latent Membrane Protein 2A (LMP2A) to promote B cell survival. A prior study indicates that LMP2A may increase the production of the pro-survival factor, B cell Activating Factor of the tumor necrosis factor family (BAFF), which could also indirectly increase B cell survival. The current study sought to extend these findings and determine if LMP2A increased BAFF production and/or the responsiveness of LMP2A-expressing cells to this cytokine. METHODS Four independently derived LMP2A-negative and -positive B cell lymphoma cell lines were analyzed for BAFF and APRIL levels by both ELISA and Western Blot analysis. Additionally, flow cytometric analysis measured any LMP2A-dependent changes in the receptors for BAFF and APRIL (BAFF-R, transmembrane activator and calcium-modulator and cyclophilin ligand interactor [TACI], B cell maturation antigen [BCMA]) in both LMP2A-negative and -positive B cell lymphoma cell lines. RESULTS In contrast to previous reports, our data indicate that LMP2A does not increase the expression of BAFF or APRIL by Western blot analysis or ELISA. Additionally, flow cytometric analysis indicates that LMP2A does not influence the expression of the receptors for BAFF and APRIL: TACI, BAFF-R, and BCMA. CONCLUSION Therefore, these data suggest that while EBV utilizes other latency proteins to regulate BAFF production, EBV does not appear to use LMP2A to enhance BAFF-or APRIL-dependent survival to promote EBV latency.
Collapse
Affiliation(s)
- Kevin Madayag
- Department of Biomedical SciencesCollege of Graduate StudiesDowners GroveIllinoisUSA
| | - Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Michelle Swanson‐Mungerson
- Department of Microbiology and Immunology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
27
|
Liang Y, Dong T, Li M, Zhang P, Wei X, Chen H, Wang Y, Gao X. Clinical diagnosis and etiology of patients with Chlamydia psittaci pneumonia based on metagenomic next-generation sequencing. Front Cell Infect Microbiol 2022; 12:1006117. [PMID: 36310873 PMCID: PMC9606567 DOI: 10.3389/fcimb.2022.1006117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/14/2022] Open
Abstract
The incidence of severe Chlamydia psittaci (C. psittaci) pneumonia and coinfections is increasing. Early detection of this condition is needed to prevent negative outcomes, along with detailed descriptions of its associated clinical characteristics. Our study contributes by undertaking etiological analysis of patients with C. psittaci pneumonia based on metagenomic next-generation sequencing (mNGS). A retrospective analysis of 30 patients with C. psittaci pneumonia was undertaken and confirmed by mNGS or polymerase chain reaction (PCR). Clinical manifestations of the severe and non-severe C. psittaci pneumonia groups were compared for clinical reference. Etiological analyses were also performed to comprehensively understand pathogeny and coinfection with other respiratory pathogens in C. psittaci patients. The absolute value of lymphocytes (LYM) in the severe group was lower than in the non-severe group. At the same time, neutrophil-to-lymphocyte ratio (NLR), procalcitonin (PCT), alanine aminotransferase (ALT), D-II polymer, brain natriuretic peptide (BNP), myoglobin (MYO), and cardiac troponin I (cTnI) were significantly higher (P < 0.05) in the severe group. mNGS has a broader pathogen spectrum and can more sensitively detect C. psittaci and other low-abundance pathogens with a higher positive detection rate (100%, 13/13 vs. 46%, 6/13, P <0.05) than conventional culture methods. mNGS detected the following dominant species associated with C. psittaci in patients: bacteria (53.2%, 39% gram-positive, 61% gram-negative), fungi (12.9%), and viruses (33.9%). A total of 73.3% (11/15) of patients had suspected coinfections, with a coinfection rate of 91.7% (11/12) in the severe group. No coinfection or death occurred in the non-severe group. Prognosis in the severe group was poor, with a mortality rate of 27.3% (3/11) for patients with coinfection. Eight of 11 patients with coinfections (72.7%) recovered. In conclusion, the clinical symptoms of severe C. psittaci pneumonia manifested as abnormal inflammatory indicators, impaired liver function, myocardial injury, coagulation, and relatively low immune responses. The higher proportion of patients with coinfections in our study supports the use of mNGS for comprehensive early detection of respiratory infections in patients with C. psittaci pneumonia. Simultaneous early identification of coinfections would further improve the clinical treatment of these patients.
Collapse
Affiliation(s)
- Yueming Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Respiratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, China
| | - Tingyan Dong
- Integrated Diagnostic Centre for Infectious Diseases, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
- The School of Medicine, Nanjing University, Nanjing, China
| | - Minjing Li
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Foshan, Foshan, China
| | - Peifang Zhang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoqun Wei
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Foshan, Foshan, China
| | - Haitao Chen
- Integrated Diagnostic Centre for Infectious Diseases, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
| | - Yongsi Wang
- Integrated Diagnostic Centre for Infectious Diseases, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
| | - Xinglin Gao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Respiratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, China
- *Correspondence: Xinglin Gao,
| |
Collapse
|
28
|
Schönrich G, Abdelaziz MO, Raftery MJ. Epstein-Barr virus, interleukin-10 and multiple sclerosis: A ménage à trois. Front Immunol 2022; 13:1028972. [PMID: 36275700 PMCID: PMC9585213 DOI: 10.3389/fimmu.2022.1028972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease that is characterized by inflammation and demyelination of nerve cells. There is strong evidence that Epstein-Barr virus (EBV), a human herpesvirus infecting B cells, greatly increases the risk of subsequent MS. Intriguingly, EBV not only induces human interleukin-10 but also encodes a homologue of this molecule, which is a key anti-inflammatory cytokine of the immune system. Although EBV-encoded IL-10 (ebvIL-10) has a high amino acid identity with its cellular counterpart (cIL-10), it shows more restricted and partially weaker functionality. We propose that both EBV-induced cIL-10 and ebvIL-10 act in a temporally and functionally coordinated manner helping the pathogen to establish latency in B cells and, at the same time, to balance the function of antiviral T cells. As a result, the EBV load persisting in the immune system is kept at a constant but individually different level (set point). During this immunological tug of war between virus and host, however, MS can be induced as collateral damage if the set point is too high. Here, we discuss a possible role of ebvIL-10 and EBV-induced cIL-10 in EBV-driven pathogenesis of MS.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,*Correspondence: Günther Schönrich,
| | - Mohammed O. Abdelaziz
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Hematology, Oncology and Tumor Immunology (CCM), Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
29
|
Singh DR, Nelson SE, Pawelski AS, Cantres-Velez JA, Kansra AS, Pauly NP, Bristol JA, Hayes M, Ohashi M, Casco A, Lee D, Fogarty SA, Lambert PF, Johannsen EC, Kenney SC. Type 1 and Type 2 Epstein-Barr viruses induce proliferation, and inhibit differentiation, in infected telomerase-immortalized normal oral keratinocytes. PLoS Pathog 2022; 18:e1010868. [PMID: 36190982 PMCID: PMC9529132 DOI: 10.1371/journal.ppat.1010868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Juan A. Cantres-Velez
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Kanduc D. The Role of Codon Usage, tRNA Availability, and Cell Proliferation in EBV Latency and (Re)Activation. Glob Med Genet 2022; 9:219-225. [PMID: 36118264 PMCID: PMC9477563 DOI: 10.1055/s-0042-1751301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Epstein–Barr nuclear antigen 1 (EBNA1) protein synthesis is inhibited during Epstein–Barr virus (EBV) latency and is resumed in EBV (re)activation. In analyzing the molecular mechanisms underpinning the translation of
EBNA1
in the human host, this article deals with two orders of data. First, it shows that the heavily biased codon usage of the
EBNA1
open reading frame cannot be translated due to its noncompliance with the human codon usage pattern and the corresponding tRNA pool. The
EBNA1
codon bias resides in the sequence composed exclusively of glycine and alanine, i.e., the Gly-Ala repeat (GAR). Removal of the nucleotide sequence coding for GAR results in an
EBNA1
codon usage pattern with a lower codon bias, thus conferring translatability to EBNA1. Second, the data bring cell proliferation to the fore as a conditio sine qua non for qualitatively and quantitatively modifying the host's tRNA pool as required by the translational needs of EBNA1, thus enabling viral reactivation. Taken together, the present work provides a biochemical mechanism for the pathogen's shift from latency to (re)activation and confirms the role of human codon usage as a first-line tool of innate immunity in inhibiting pathogens' expression. Immunologically, this study cautions against using codon optimization and proliferation-inducing substances such as glucocorticoids and adjuvants, which can (re)activate the otherwise quiescent, asymptomatic, and innocuous EBV infection. Lastly, the data pose the question whether the causal pathogenic role attributed to EBV should instead be ascribed to the carcinogenesis-associated cellular proliferation.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
31
|
Penzhorn IH, Schneider JW, Sher-Locketz C. The Prevalence of Epstein-Barr Virus in Plasma Cell Neoplasms is Higher in HIV-Positive Individuals. Int J Surg Pathol 2022:10668969221113490. [PMID: 35912479 DOI: 10.1177/10668969221113490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIMS Epstein-Barr virus (EBV) is causally associated with many hematolymphoid malignancies. This laboratory-based study aimed to establish the prevalence of EBV in plasma cell neoplasms in a large South African cohort and to determine whether there is any correlation between EBV-positivity and human immunodeficiency virus (HIV) status in patients with plasma cell neoplasms, including plasma cell myeloma and plasmacytoma (solitary plasmacytoma of bone and extraosseous plasmacytoma). METHODS This single-institution retrospective study included all patients with a histopathologic diagnosis of plasma cell neoplasm between 2003 and 2020. EBV-expression in the plasma cell neoplasms was assessed by EBV-encoded RNA (EBER) in situ hybridization (ISH) and correlated with HIV status. HIV status was determined by retrieving prior serologic results. Formalin-fixed paraffin-embedded tissue from HIV-unknown patients underwent HIV-1 p24 antibody testing. RESULTS Sixteen of 89 plasma cell neoplasms (18%) were EBV-positive. There was a significant correlation between EBV and HIV infection in plasma cell neoplasms, with 6/10 tumors from HIV positive patients showing EBV-positivity in tumor cells. The EBV-positive cohort was significantly younger than the EBV-negative group. CONCLUSION EBV-positivity in plasma cell neoplasms in this study is higher than previously reported. The significant occurrence of EBV in plasma cell neoplasms from HIV-positive patients suggests a co-carcinogenic relationship between the two viruses.
Collapse
Affiliation(s)
- Ingrid H Penzhorn
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service, 98826University of Stellenbosch, Tygerberg Hospital, Cape Town, South Africa
| | - Johann W Schneider
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service, 98826University of Stellenbosch, Tygerberg Hospital, Cape Town, South Africa
| | - Candice Sher-Locketz
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service, 98826University of Stellenbosch, Tygerberg Hospital, Cape Town, South Africa.,Anatomical Pathology, 484973PathCare, Cape Town, South Africa
| |
Collapse
|
32
|
Rozman M, Korać P, Jambrosic K, Židovec Lepej S. Progress in Prophylactic and Therapeutic EBV Vaccine Development Based on Molecular Characteristics of EBV Target Antigens. Pathogens 2022; 11:pathogens11080864. [PMID: 36014985 PMCID: PMC9414479 DOI: 10.3390/pathogens11080864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was discovered in 1964 in the cell line of Burkitt lymphoma and became first known human oncogenic virus. EBV belongs to the Herpesviridae family, and is present worldwide as it infects 95% of people. Infection with EBV usually happens during childhood when it remains asymptomatic; however, in adults, it can cause an acute infection known as infectious mononucleosis. In addition, EBV can cause wide range of tumors with origins in B lymphocytes, T lymphocytes, and NK cells. Its oncogenicity and wide distribution indicated the need for vaccine development. Research on mice and cultured cells as well as human clinical trials have been in progress for a few decades for both prophylactic and therapeutic EBV vaccines. The main targets of the vaccines are EBV envelope glycoproteins such as gp350 and EBV latent genes. The long wait for the EBV vaccine is due to the complexity of the EBV replication cycle and the wide range of its host cells. Although some strategies such as the use of dendritic cells and recombinant Vaccinia viral vectors have shown success, ongoing clinical trials using mRNA-based vaccines as well as new delivery systems as nanoparticles are yet to show the best choice of vaccine target and its production strategy.
Collapse
Affiliation(s)
- Marija Rozman
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Zagreb, Zagreb 10000, Croatia;
| | - Petra Korać
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia;
| | - Karlo Jambrosic
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia;
| | - Snjezana Židovec Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Zagreb, Zagreb 10000, Croatia;
- Correspondence:
| |
Collapse
|
33
|
Paganelli R. Resurrecting Epstein–Barr Virus. Pathogens 2022; 11:pathogens11070772. [PMID: 35890017 PMCID: PMC9318925 DOI: 10.3390/pathogens11070772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Roberto Paganelli
- UniCamillus International Medical University, Via di Sant'Alessandro, 8, 00131 Rome, Italy
| |
Collapse
|
34
|
Huang Y, Liang J, Hu W, Liang Y, Xiao X, Zhao W, Zhong X, Yang Y, Pan X, Zhou X, Zhang Z, Cai Y. Integration Profiling Between Plasma Lipidomics, Epstein–Barr Virus and Clinical Phenomes in Nasopharyngeal Carcinoma Patients. Front Microbiol 2022; 13:919496. [PMID: 35847074 PMCID: PMC9281874 DOI: 10.3389/fmicb.2022.919496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Plasma lipidomics has been commonly used for biomarker discovery. Studies in cancer have suggested a significant alteration of circulating metabolite profiles which is correlated with cancer characteristics and treatment outcome. However, the lipidomics characteristics of nasopharyngeal carcinoma (NPC) have rarely been studied. We previously described the phenomenon of lipid droplet accumulation in NPC cells and showed that such accumulation could be regulated by latent infection of Epstein–Barr virus (EBV). Here, we compared the plasma lipidome of NPC patients to that of healthy controls by liquid chromatography-tandem mass spectrometry (LC–MS/MS). We found 19 lipids (e.g., phosphatidylinositols 18:0/20:4 and 18:0/18:2 and free fatty acid 22:6) to be remarkably decreased, whereas 2 lipids (i.e., diacylglycerols 16:0/16:1 and 16:0/20:3) to be increased, in the plasma of NPC patients, compared with controls. Different lipid profiles were also observed between patients with different titers of EBV antibodies (e.g., EA-IgA and VCA-IgA) as well as between patients with and without lymph node or distant organ metastasis. In conclusion, plasma lipidomics might help to differentiate NPC cases from controls, whereas EBV infection might influence the risk and prognosis of NPC through modulating lipid metabolism in both tumor cells and peripheral blood.
Collapse
Affiliation(s)
- Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjin Hu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- *Correspondence: Zhe Zhang,
| | - Yonglin Cai
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, China
- Yonglin Cai,
| |
Collapse
|
35
|
Venkataraman T, Valencia C, Mangino M, Morgenlander W, Clipman SJ, Liechti T, Valencia A, Christofidou P, Spector T, Roederer M, Duggal P, Larman HB. Analysis of antibody binding specificities in twin and SNP-genotyped cohorts reveals that antiviral antibody epitope selection is a heritable trait. Immunity 2022; 55:174-184.e5. [PMID: 35021055 PMCID: PMC8852220 DOI: 10.1016/j.immuni.2021.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 01/13/2023]
Abstract
Human immune responses to viral infections are highly variable, but the genetic factors that contribute to this variability are not well characterized. We used VirScan, a high-throughput epitope scanning technology, to analyze pan-viral antibody reactivity profiles of twins and SNP-genotyped individuals. Using these data, we determined the heritability and genomic loci associated with antibody epitope selection, response breadth, and control of Epstein-Barr virus (EBV) viral load. 107 EBV peptide reactivities were heritable and at least two Epstein-Barr nuclear antigen 2 (EBNA-2) reactivities were associated with variants in the MHC class II locus. We identified an EBV serosignature that predicted viral load in peripheral blood mononuclear cells and was associated with variants in the MHC class I locus. Our study illustrates the utility of epitope profiling to investigate the genetics of pathogen immunity, reports heritable features of the antibody response to viruses, and identifies specific HLA loci important for EBV epitope selection.
Collapse
Affiliation(s)
- Thiagarajan Venkataraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian Valencia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK,NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| | - William Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Steven J. Clipman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ana Valencia
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Paraskevi Christofidou
- Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK
| | - Tim Spector
- Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA,Lead contact,Correspondence: (H.B.L)
| |
Collapse
|
36
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
37
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
39
|
Köppert S, Wolf C, Becza N, Sautto GA, Franke F, Kuerten S, Ross TM, Lehmann PV, Kirchenbaum GA. Affinity Tag Coating Enables Reliable Detection of Antigen-Specific B Cells in Immunospot Assays. Cells 2021; 10:cells10081843. [PMID: 34440612 PMCID: PMC8394687 DOI: 10.3390/cells10081843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibodies in the serum. Rarely does immune monitoring entail assessment of the memory B-cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their relative abundance, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally suited for antigen-specific B-cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen-coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high-affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen-coating approach streamlines characterization of the memory B-cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune-monitoring efforts of large donor cohorts in general.
Collapse
Affiliation(s)
- Sebastian Köppert
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Carla Wolf
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (G.A.S.); (T.M.R.)
| | - Fridolin Franke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (G.A.S.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Paul V. Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Greg A. Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
40
|
Münz C. Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Front Microbiol 2021; 12:657387. [PMID: 34234755 PMCID: PMC8257079 DOI: 10.3389/fmicb.2021.657387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens of humans, persistently colonizing more than 95% of the adult human population. At the same time EBV encodes oncogenes that can readily transform human B cells in culture and threaten healthy virus carriers with lymphomagenesis. Cytotoxic lymphocytes have been identified in experimental models and by primary immunodeficiencies as the main protective immune compartments controlling EBV. EBV has reached a stalemate with these cytotoxic T and innate lymphocytes to ensure persistence in most infected humans. Recent evidence suggests that the non-coding RNAs of the virus contribute to viral immune escape to prevent immune eradication. This knowledge might be used in the future to attenuate EBV for vaccine development against this human tumor virus that was discovered more than 55 years ago.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Chabay P. Advances in the Pathogenesis of EBV-Associated Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:2717. [PMID: 34072731 PMCID: PMC8199155 DOI: 10.3390/cancers13112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma (NHL) in adults. Epstein-Barr virus (EBV) positive DLBCL of the elderly was defined by the World Health Organization (WHO) in 2008, it was restricted only to patients older than 50 years old, and it was attributed to immunesenescence associated with physiological aging. After the description of EBV-associated DLBCL in children and young adults, the WHO redefined the definition, leading to the substitution of the modifier "elderly" with "not otherwise specified" (EBV + DLBCL, NOS) in the updated classification, and it is no more considered provisional. The incidence of EBV + DLBCL, NOS varies around the world, in particular influenced by the percentage of EBV+ cells used as cut-off to define a case as EBV-associated. EBV has effect on the genetic composition of tumor cells, on survival, and at the recruitment of immune cells at the microenvironment. In this review, the role of EBV in the pathogenesis of DLBCL is discussed.
Collapse
Affiliation(s)
- Paola Chabay
- Laboratory of Molecular Biology, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP-CONICET-GCBA), Ricardo Gutiérrez Children's Hospital, Gallo 1330, Buenos Aires C1425EFD, Argentina
| |
Collapse
|
42
|
Li W, Yi W, Yang D, Li G. Epstein -Barr virus -encoded microRNAs involve in tumorigenesis and development. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:300-308. [PMID: 33927078 PMCID: PMC10929937 DOI: 10.11817/j.issn.1672-7347.2021.190744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/03/2022]
Abstract
Epstein-Barr virus (EBV), a definite tumorigenic virus, is closely related to the development of nasopharyngeal cancer, gastric cancer, lymphoma and other tumors. EBV encodes a total of 44 mature microRNAs, which can regulate the expression of virus and host genes. EBV-encoded microRNAs and their regulated target molecules participate in the biological functions of tumor apoptosis, proliferation, invasion, and metastasis during tumorigenesis and development, and play an important role in the development of tumor.
Collapse
Affiliation(s)
- Weiming Li
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Guangdong 518000.
- Institute of Cancer Research, Central South University, Changsha 410078, China.
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Guangdong 518000
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Guangdong 518000
| | - Guiyuan Li
- Institute of Cancer Research, Central South University, Changsha 410078, China.
| |
Collapse
|
43
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol 2021; 11:587380. [PMID: 33488588 PMCID: PMC7817975 DOI: 10.3389/fimmu.2020.587380] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an extremely successful human herpes virus, which infects essentially all human beings at some time during their life span. EBV infection and the associated immune response results in production of antibodies (seroconversion), which occurs mainly during the first years of life, but may also happen during adolescence or later in life. Infection of adolescents can result in infectious mononucleosis, an acute serious condition characterized by massive lymphocytosis. Transmission of EBV mainly occurs through saliva but can rarely be spread through semen or blood, e.g. through organ transplantations and blood transfusions. EBV transmission through oral secretions results in infection of epithelial cells of the oropharynx. From the epithelial cells EBV can infect B cells, which are the major reservoir for the virus, but other cell types may also become infected. As a result, EBV can shuttle between different cell types, mainly B cells and epithelial cells. Moreover, since the virus can switch between a latent and a lytic life cycle, EBV has the ability to cause chronic relapsing/reactivating infections. Chronic or recurrent EBV infection of epithelial cells has been linked to systemic lupus erythematosus and Sjögren’s syndrome, whereas chronic/recurrent infection of B cells has been associated with rheumatoid arthritis, multiple sclerosis and other diseases. Accordingly, since EBV can shuttle between epithelial cells and B cells, the systemic autoimmune diseases often occur as overlapping syndromes with symptoms and characteristic autoantibodies (e.g. antinuclear antibodies and rheumatoid factors) reflecting epithelial and/or B cell infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | |
Collapse
|
45
|
Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020; 11:587078. [PMID: 33391262 PMCID: PMC7773893 DOI: 10.3389/fimmu.2020.587078] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g., optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking, obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS described above can be explained by chronic/recurrent EBV infection and current models of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-transformed B cells to the CNS in connection with attacks, while PPMS may be caused by more chronic activity of EBV-transformed B cells in the CNS. In line with the model of EBV's role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus, these agents, which are now first line therapy in many patients, may be hypothesized to function by counteracting a chronic EBV infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Nkosi D, Sun L, Duke LC, Meckes DG. Epstein-Barr virus LMP1 manipulates the content and functions of extracellular vesicles to enhance metastatic potential of recipient cells. PLoS Pathog 2020; 16:e1009023. [PMID: 33382850 PMCID: PMC7774862 DOI: 10.1371/journal.ppat.1009023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) mediate intercellular communication events and alterations in normal vesicle content contribute to function and disease initiation or progression. The ability to package a variety of cargo and transmit molecular information between cells renders EVs important mediators of cell-to-cell crosstalk. Latent membrane protein 1 (LMP1) is a chief viral oncoprotein expressed in most Epstein-Barr virus (EBV)-associated cancers and is released from cells at high levels in EVs. LMP1 containing EVs have been demonstrated to promote cell growth, migration, differentiation, and regulate immune cell function. Despite these significant changes in recipient cells induced by LMP1 modified EVs, the mechanism how this viral oncogene modulates the recipient cells towards these phenotypes is not well understood. We hypothesize that LMP1 alters EV content and following uptake of the LMP1-modified EVs by the recipient cells results in the activation of cell signaling pathways and increased gene expression which modulates the biological properties of recipient cell towards a new phenotype. Our results show that LMP1 expression alters the EV protein and microRNA content packaged into EVs. The LMP1-modified EVs also enhance recipient cell adhesion, proliferation, migration, invasion concomitant with the activation of ERK, AKT, and NF-κB signaling pathways. The LMP1 containing EVs induced transcriptome reprogramming in the recipient cells by altering gene expression of different targets including cadherins, matrix metalloproteinases 9 (MMP9), MMP2 and integrin-α5 which contribute to extracellular matrix (ECM) remodeling. Altogether, our data demonstrate the mechanism in which LMP1-modified EVs reshape the tumor microenvironment by increasing gene expression of ECM interaction proteins.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Leanne C. Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
47
|
Epstein-Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers (Basel) 2020; 12:cancers12103037. [PMID: 33086505 PMCID: PMC7603164 DOI: 10.3390/cancers12103037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence, given the widespread infection to the human population. EBV adopts several mechanisms to replicate and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details the current insights of EBV interactions with the host epigenetic system, and it will be discussed the potential relationship between the EBV-induced chronic inflammation and the dysregulation of epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes. Abstract During the past decade, the rapid development of high-throughput next-generation sequencing technologies has significantly reinforced our understanding of the role of epigenetics in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV) is an endemic herpesvirus that is associated with several malignant tumours, including B-cell related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function. This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the dysregulated expression of several cellular genes, including tumour suppressor genes, which can drive lymphoma development. This review outlines the molecular mechanisms underlying the epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic interventions to target EBV-associated B-cell lymphomas.
Collapse
|
48
|
Wang W, Zhang Y, Liu W, Zhang X, Xiao H, Zhao M, Luo B. CXCR4 induces cell autophagy and maintains EBV latent infection in EBVaGC. Am J Cancer Res 2020; 10:11549-11561. [PMID: 33052232 PMCID: PMC7545993 DOI: 10.7150/thno.44251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Epstein-Barr virus (EBV) is found in ~7% of gastric carcinoma cases worldwide, and all tumour cells harbour the clonal EBV genome. EBV can regulate pathways and protein expression to induce gastric carcinoma; however, the molecular mechanism underlying EBV-associated gastric carcinoma (EBVaGC) remains elusive. Methods: GEO microarray and molecular experiments were performed to compare CXCR4 expression between EBV-positive and EBV-negative gastric carcinoma (EBVnGC). Transfections with LMP2A plasmid or siRNA were carried out to assess the role of LMP2A in CXCR4 expression. The effects and mechanisms of CXCR4 on cell autophagy were analysed in vitro using molecular biological and cellular approaches. Additionally, we also determined the regulatory role of CXCR4 in latent EBV infection. Results: CXCR4 expression was significantly upregulated in EBVaGC tissues and cell lines. LMP2A could induce AKT phosphorylation to increase NRF1 expression, thereby binding to the CXCR4 promoter to increase its transcriptional level. Moreover, CXCR4 promoted ZEB1 expression to upregulate ATG7 synthesis, which could then activate autophagy. Moreover, CXCR4 increased the number of cells entering the G2/M phase and inhibited cell apoptosis via the autophagy pathway. Finally, CXCR4 knockdown was associated with elevated BZLF1 expression, but this effect was not influenced by autophagy. Conclusions: Our data suggested new roles for CXCR4 in autophagy and EBV replication in EBVaGC, which further promoted cell survival and persistent latent infection. These new findings can lead to further CXCR4-based anticancer therapy.
Collapse
|
49
|
Xu S, Chen H, Zu X, Hao X, Feng R, Zhang S, Chen B, Zeng Z, Chen M, Ye Z, He Y. Epstein-Barr virus infection in ulcerative colitis: a clinicopathologic study from a Chinese area. Therap Adv Gastroenterol 2020; 13:1756284820930124. [PMID: 32913442 PMCID: PMC7444145 DOI: 10.1177/1756284820930124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Opportunistic Epstein-Barr virus (EBV) infection in patients with ulcerative colitis (UC) has attracted increasing attention. This study aimed to evaluate the clinicopathological characteristics and clinical outcomes of UC with intestinal EBV infection and to explore the predictive value of blood EBV DNA for the presence of EBV in the intestine. METHODS Both peripheral blood and intestinal biopsies from 92 consecutive UC inpatients were included in this study. Normal colonic mucosal tissues from 20 colon cancer patients were used as controls. EBV testing and assessment were performed by EBV-DNA polymerase chain reaction (PCR), EBV-encoded small RNA in situ hybridization (EBER-ISH) and immunohistochemistry. RESULTS A total of 36 patients (39.1%) had UC with superimposed EBV colitis [EBER greater than 2/high-power field (HPF)]. EBER counts and disease activity were significantly correlated (p < 0.05). The major endoscopic findings revealed more irregular and longitudinal ulcers in patients with superimposed EBV colitis (p = 0.016, p = 0.021, respectively). Age, steroid dependence, and irregular ulcerations were identified as possible risk factors. The best EBER cut-off point for outcome prediction was 2.5/HPF. At a cut-off value of 2035 copies/ml, the sensitivity and specificity of the blood EBV-DNA PCR analysis for predicting EBV presence in the intestine were 76.5% and 68.5%, respectively. EBV-infected cells in UC with high EBV concentrations mainly included B lymphocytes by clinicopathology, and the infection might have progressed from the latent to the lytic phase of the EBV life cycle. CONCLUSION The EBER count is positively correlated with disease activity. The best cut-off point for outcome prediction is 2.5/HPF. A high EBV viremia load may effectively predict EBV presence in the colonic mucosa.
Collapse
Affiliation(s)
| | | | - Xiaoman Zu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxue Hao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyin Ye
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, NO.58 Zhongshan Road II, Guangzhou 510080, Guangdong Province, P.R. China
| | | |
Collapse
|
50
|
Li C, Romero-Masters JC, Huebner S, Ohashi M, Hayes M, Bristol JA, Nelson SE, Eichelberg MR, Van Sciver N, Ranheim EA, Scott RS, Johannsen EC, Kenney SC. EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice. PLoS Pathog 2020; 16:e1008590. [PMID: 32542010 PMCID: PMC7316346 DOI: 10.1371/journal.ppat.1008590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/25/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022] Open
Abstract
EBV transforms B cells in vitro and causes human B-cell lymphomas including classical Hodgkin lymphoma (CHL), Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). The EBV latency protein, EBNA2, transcriptionally activates the promoters of all latent viral protein-coding genes expressed in type III EBV latency and is essential for EBV's ability to transform B cells in vitro. However, EBNA2 is not expressed in EBV-infected CHLs and BLs in humans. EBV-positive CHLs have type II latency and are largely driven by the EBV LMP1/LMP2A proteins, while EBV-positive BLs, which usually have type I latency are largely driven by c-Myc translocations, and only express the EBNA1 protein and viral non-coding RNAs. Approximately 15% of human BLs contain naturally occurring EBNA2-deleted viruses that support a form of viral latency known as Wp-restricted (expressing the EBNA-LP, EBNA3A/3B/3C, EBNA1 and BHRF1 proteins), but whether Wp-restricted latency and/or EBNA2-deleted EBV can induce lymphomas in humanized mice, or in the absence of c-Myc translocations, is unknown. Here we show that a naturally occurring EBNA2-deleted EBV strain (P3HR1) isolated from a human BL induces EBV-positive B-cell lymphomas in a subset of infected cord blood-humanized (CBH) mice. Furthermore, we find that P3HR1-infected lymphoma cells support two different viral latency types and phenotypes that are mutually exclusive: 1) Large (often multinucleated), CD30-positive, CD45-negative cells reminiscent of the Reed-Sternberg (RS) cells in CHL that express high levels of LMP1 but not EBNA-LP (consistent with type II viral latency); and 2) smaller monomorphic CD30-negative DLBCL-like cells that express EBNA-LP and EBNA3A but not LMP1 (consistent with Wp-restricted latency). These results reveal that EBNA2 is not absolutely required for EBV to form tumors in CBH mice and suggest that P3HR1 virus can be used to model EBV positive lymphomas with both Wp-restricted and type II latency in vivo.
Collapse
MESH Headings
- Animals
- Cell Line
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Deletion
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/virology
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Mice
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Latency
Collapse
Affiliation(s)
- Chunrong Li
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James C. Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shane Huebner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark R. Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rona S. Scott
- Center for Molecular and Tumor Virology, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|