1
|
Tsai CN, Chang YC, Chao HC, Hsu YH, Wang YH, Chen SY. Emerging Norovirus GII.12 infection in 2010 in Northern Taiwan. J Formos Med Assoc 2024:S0929-6646(24)00344-9. [PMID: 39155177 DOI: 10.1016/j.jfma.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024] Open
Abstract
Norovirus (NoV) has been an emerging pathogen of enteric infections in the post-rotavirus vaccine era. GII.4 have played a major role in NoV infections while other genotypes were reported in sporadic outbreaks. In this study, we reported novel variant NoV GII.12 outbreaks in 2010, Taiwan with their genomic analysis and clinical manifestations compared to GII.4 infections. There were 30.5% (29 out of 95 cases) with NoV infection. The most common genotype was GII.4 (22, 75.9%) followed by GII.12 (5, 17.2%) and GII.3 (2, 6.9%). Phylogenetic analysis showed that our GII.12 sequences were closely aligned with reference genomes identified in the United Kingdom and the United States of America. When compared to patients infected by GII.4 NoV, those with GII.12 infection experienced a lower frequency and shorter duration of diarrhea. Continued research is essential to unravel the intricate relationship between NoV genotypes and clinical outcomes, guiding public health interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Yu-Chung Chang
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan.
| | - Hsun-Ching Chao
- Division of Pediatric Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
| | - Shih-Yen Chen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
3
|
Yi HW, Wang XM, Tan X, Ding CZ, Zhang CL, Wu JH, Li Q, Xin CQ, Fan W. Simultaneous detection of human norovirus GI, GII and SARS-CoV-2 by a quantitative one-step triplex RT-qPCR. Front Microbiol 2024; 14:1269275. [PMID: 38260899 PMCID: PMC10800780 DOI: 10.3389/fmicb.2023.1269275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Background There are many similarities in the clinical manifestations of human norovirus and SARS-CoV-2 infections, and nucleic acid detection is the gold standard for diagnosing both diseases. In order to expedite the identification of norovirus and SARS-CoV-2, a quantitative one-step triplex reverse transcription PCR (RT-qPCR) method was designed in this paper. Methods A one-step triplex RT-qPCR assay was developed for simultaneous detection and differentiation of human norovirus GI (NoV-GI), GII (NoV-GII) and SARS-CoV-2 from fecal specimens. Results The triplex RT-qPCR assay had high detection reproducibility (CV < 1%) and sensitivity. The lower limits of detection (LLOD95) of the triplex RT-qPCR assay for each target site were 128.5-172.8 copies/mL, and LLOD95 of the singleplex RT-qPCR assay were 110.3-142.0 copies/mL. Meanwhile, among the detection of clinical oropharyngeal swabs and fecal specimens, the results of the singleplex and triplex RT-qPCR assay showed high agreement. Conclusion The triplex RT-qPCR assay for simultaneous detection of NoV-GI, NoV-GII and SARS-CoV-2 from fecal specimens has high clinical application value.
Collapse
Affiliation(s)
- Hua-Wei Yi
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Xian-Mo Wang
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Xin Tan
- Health Science Center of Yangtze University, Jingzhou, Hubei, China
| | - Cai-Zhi Ding
- The People's Hospital of Songzi, Jingzhou, Hubei, China
| | - Chang-Li Zhang
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Jia-Hao Wu
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Qi Li
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Chen-Qi Xin
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Wen Fan
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Identification and Characterization of Human Norovirus NTPase Regions Required for Lipid Droplet Localization, Cellular Apoptosis, and Interaction with the Viral P22 Protein. Microbiol Spectr 2021; 9:e0042221. [PMID: 34431704 PMCID: PMC8552650 DOI: 10.1128/spectrum.00422-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human norovirus (HuNV)-encoded nucleoside-triphosphatase (NTPase) is a multifunctional protein critically involved in viral replication and pathogenesis. Previously, we have shown that the viral NTPase is capable of forming vesicle clusters in cells, interacting with other viral proteins such as P22, and promoting cellular apoptosis. Herein, we demonstrate that NTPase-associated vesicle clusters correspond to lipid droplets (LDs) wrapped by the viral protein and show that NTPase-induced apoptosis is mediated through both caspase-8- and caspase-9-dependent pathways. Deletion analysis revealed that the N-terminal 179-amino-acid (aa) region of NTPase encompasses two LD-targeting motifs (designated LTM-1 and LTM-2), two apoptosis-inducing motifs, and multiple regulatory regions. Interestingly, the identified LTM-1 and LTM-2, which are located from aa 1 to 50 and from aa 51 to 90, respectively, overlap with the two apoptosis-inducing motifs. Although there was no positive correlation between the extent of LD localization and the degree of cellular apoptosis for NTPase mutants, we noticed that mutant proteins defective in LD-targeting ability could not induce cellular apoptosis. In addition to LD targeting, the amphipathic LTM-1 and LTM-2 motifs could have the potential to direct fusion proteins to the endoplasmic reticulum (ER). Furthermore, we found that the LTM-1 motif is a P22-interacting motif. However, P22 functionally augmented the proapoptotic activity of the LTM-2 fusion protein but not the LTM-1 fusion protein. Overall, our findings propose that NTPase may participate in multiple cellular processes through binding to LDs or to the ER via its N-terminal amphipathic helix motifs. IMPORTANCE Human noroviruses (HuNVs) are the major agent of global gastroenteritis outbreaks. However, due to the lack of an efficient cell culture system for HuNV propagation, functions of the viral-encoded proteins in host cells are still poorly understood. In the current study, we present that the viral NTPase is a lipid droplet (LD)-associated protein, and we identify two LD-targeting motifs, LTM-1 and LTM-2, in its N-terminal domain. In particular, the identified LTM-1 and LTM-2 motifs, which contain a hydrophobic region and an amphipathic helix, are also capable of delivering the fusion protein to the endoplasmic reticulum (ER), promoting cellular apoptosis, and physically or functionally associating with another viral protein P22. Since LDs and the ER have been linked to several biological functions in cells, our study therefore proposes that the norovirus NTPase may utilize LDs or the ER as replication platforms to benefit viral replication and pathogenesis.
Collapse
|
5
|
Spano LC, Guerrieri CG, Volpini LPB, Schuenck RP, Goulart JP, Boina E, Recco CRN, Ribeiro-Rodrigues R, Dos Santos LF, Fumian TM. EHEC O111:H8 strain and norovirus GII.4 Sydney [P16] causing an outbreak in a daycare center, Brazil, 2019. BMC Microbiol 2021; 21:95. [PMID: 33781202 PMCID: PMC8008580 DOI: 10.1186/s12866-021-02161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background This study describes the investigation of an outbreak of diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) at a daycare center in southeastern Brazil, involving fourteen children, six staff members, six family members, and one nurse. All bacterial and viral pathogens detected were genetically characterized. Results Two isolates of a strain of enterohemorrhagic Escherichia coli (EHEC) serotype O111:H8 were recovered, one implicated in a case of HUS and the other in a case of uncomplicated diarrhea. These isolates had a clonal relationship of 94% and carried the stx2a and eae virulence genes and the OI-122 pathogenicity island. The EHEC strain was determined to be a single-locus variant of sequence type (ST) 327. EHEC isolates were resistant to ofloxacin, doxycycline, tetracycline, ampicillin, and trimethoprim-sulfamethoxazole and intermediately resistant to levofloxacin and ciprofloxacin. Rotavirus was not detected in any samples, and norovirus was detected in 46.7% (14/30) of the stool samples, three of which were from asymptomatic staff members. The noroviruses were classified as the recombinant GII.4 Sydney [P16] by gene sequencing. Conclusion In this outbreak, it was possible to identify an uncommon stx2a + EHEC O111:H8 strain, and the most recent pandemic norovirus strain GII.4 Sydney [P16]. Our findings reinforce the need for surveillance and diagnosis of multiple enteric pathogens by public health authorities, especially during outbreaks. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02161-x.
Collapse
Affiliation(s)
- Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.
| | | | - Lays Paula Bondi Volpini
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Elizabeth Boina
- State Health Secretariat, Central Public Health Laboratory, Vitoria, Espírito Santo, Brazil
| | | | - Rodrigo Ribeiro-Rodrigues
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,State Health Secretariat, Central Public Health Laboratory, Vitoria, Espírito Santo, Brazil
| | - Luís Fernando Dos Santos
- Adolfo Lutz Institute, Centre of Bacteriology, National Reference Laboratory for Escherichia coli Enteric Infections, São Paulo, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Hanajiri R, Sani GM, Saunders D, Hanley PJ, Chopra A, Mallal SA, Sosnovtsev SV, Cohen JI, Green KY, Bollard CM, Keller MD. Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. J Infect Dis 2020; 221:578-588. [PMID: 31562500 PMCID: PMC7325618 DOI: 10.1093/infdis/jiz491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.
Collapse
Affiliation(s)
- Ryo Hanajiri
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
| | - Gelina M Sani
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
- GW Cancer Center, George Washington University, Washington, District of Columbia, USA
- Division of Blood and Marrow Transplantation, Children’s National Health System, Washington, District of Columbia, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia
- Division of Infectious Diseases, Department of Medicine Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia
- Division of Infectious Diseases, Department of Medicine Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stanislav V Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
- GW Cancer Center, George Washington University, Washington, District of Columbia, USA
- Division of Blood and Marrow Transplantation, Children’s National Health System, Washington, District of Columbia, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
- GW Cancer Center, George Washington University, Washington, District of Columbia, USA
- Division of Allergy and Immunology, Children’s National Health System, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Emmott E, de Rougemont A, Hosmillo M, Lu J, Fitzmaurice T, Haas J, Goodfellow I. Polyprotein processing and intermolecular interactions within the viral replication complex spatially and temporally control norovirus protease activity. J Biol Chem 2019; 294:4259-4271. [PMID: 30647130 PMCID: PMC6422069 DOI: 10.1074/jbc.ra118.006780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
Norovirus infections are a major cause of acute viral gastroenteritis and a significant burden on global human health. A vital process for norovirus replication is the processing of the nonstructural polyprotein by a viral protease into the viral components required to form the viral replication complex. This cleavage occurs at different rates, resulting in the accumulation of stable precursor forms. Here, we characterized how precursor forms of the norovirus protease accumulate during infection. Using stable forms of the protease precursors, we demonstrated that all of them are proteolytically active in vitro, but that when expressed in cells, their activities are determined by both substrate and protease localization. Although all precursors could cleave a replication complex-associated substrate, only a subset of precursors lacking the NS4 protein were capable of efficiently cleaving a cytoplasmic substrate. By mapping the full range of protein-protein interactions among murine and human norovirus proteins with the LUMIER assay, we uncovered conserved interactions between replication complex members that modify the localization of a protease precursor subset. Finally, we demonstrate that fusion to the membrane-bound replication complex components permits efficient cleavage of a fused substrate when active polyprotein-derived protease is provided in trans These findings offer a model for how norovirus can regulate the timing of substrate cleavage throughout the replication cycle. Because the norovirus protease represents a key target in antiviral therapies, an improved understanding of its function and regulation, as well as identification of interactions among the other nonstructural proteins, offers new avenues for antiviral drug design.
Collapse
Affiliation(s)
- Edward Emmott
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom,
| | - Alexis de Rougemont
- the National Reference Centre for Gastroenteritis Viruses, Labology of Biology and Pathology, University Hospital Dijon Bourgogne, Dijon 21700, France
- the AgroSup Dijon, PAM UMR A 02.102 Bourgogne Franche-Comte University, Dijon 21000, France, and
| | - Myra Hosmillo
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jia Lu
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Timothy Fitzmaurice
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jürgen Haas
- the Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh EH16 4SB, United Kingdom
| | - Ian Goodfellow
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom,
| |
Collapse
|
8
|
Petronella N, Ronholm J, Suresh M, Harlow J, Mykytczuk O, Corneau N, Bidawid S, Nasheri N. Genetic characterization of norovirus GII.4 variants circulating in Canada using a metagenomic technique. BMC Infect Dis 2018; 18:521. [PMID: 30333011 PMCID: PMC6191920 DOI: 10.1186/s12879-018-3419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human norovirus is the leading cause of viral gastroenteritis globally, and the GII.4 has been the most predominant genotype for decades. This genotype has numerous variants that have caused repeated epidemics worldwide. However, the molecular evolutionary signatures among the GII.4 variants have not been elucidated throughout the viral genome. METHOD A metagenomic, next-generation sequencing method, based on Illumina RNA-Seq, was applied to determine norovirus sequences from clinical samples. RESULTS Herein, the obtained deep-sequencing data was employed to analyze full-genomic sequences from GII.4 variants prevailing in Canada from 2012 to 2016. Phylogenetic analysis demonstrated that the majority of these sequences belong to New Orleans 2009 and Sydney 2012 strains, and a recombinant sequence was also identified. Genome-wide similarity analyses implied that while the capsid gene is highly diverse among the isolates, the viral protease and polymerase genes remain relatively conserved. Numerous amino acid substitutions were observed at each putative antigenic epitope of the VP1 protein, whereas few amino acid changes were identified in the polymerase protein. Co-infection with other enteric RNA viruses was investigated and the astrovirus genome was identified in one of the samples. CONCLUSIONS Overall this study demonstrated the application of whole genome sequencing as an important tool in molecular characterization of noroviruses.
Collapse
Affiliation(s)
- Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.,Department of Animal Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Menka Suresh
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Oksana Mykytczuk
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
9
|
Imamura S, Kanezashi H, Goshima T, Suto A, Ueki Y, Sugawara N, Ito H, Zou B, Kawasaki C, Okada T, Uema M, Noda M, Akimoto K. Effect of High Pressure Processing on a Wide Variety of Human Noroviruses Naturally Present in Aqua-Cultured Japanese Oysters. Foodborne Pathog Dis 2018; 15:621-626. [DOI: 10.1089/fpd.2018.2444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Saiki Imamura
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Hiromi Kanezashi
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Tomoko Goshima
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | | | - You Ueki
- Miyagi Prefectural Institute of Public Health and Environment, Sendai-shi, Japan
| | - Naoko Sugawara
- Miyagi Prefectural Institute of Public Health and Environment, Sendai-shi, Japan
| | - Hiroshi Ito
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Japan
| | - Bizhen Zou
- Incorporated Foundation Tokyo Kenbikyo-in, Tokyo, Japan
| | | | | | - Masashi Uema
- National Institute of Health Sciences, Kawasaki City, Japan
| | - Mamoru Noda
- National Institute of Health Sciences, Kawasaki City, Japan
| | - Keiko Akimoto
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| |
Collapse
|
10
|
Subcellular Localization and Functional Characterization of GII.4 Norovirus-Encoded NTPase. J Virol 2018; 92:JVI.01824-17. [PMID: 29212938 PMCID: PMC5809722 DOI: 10.1128/jvi.01824-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
The genotype II.4 (GII.4) variants of human noroviruses (HuNVs) are recognized as the major agent of global gastroenteritis outbreaks. Due to the lack of an efficient cell culture system for HuNV propagation, the exact roles of HuNV-encoded nonstructural proteins (including Nterm, NTPase, P22, VPg, Pro, and RdRp) in viral replication or pathogenesis have not yet been fully understood. Here, we report the molecular characterization of the GII.4 HuNV-encoded NTPase (designated GII-NTPase). Results from our studies showed that GII-NTPase forms vesicular or nonvesicular textures in the cell cytoplasm, and the nonvesicular fraction of GII-NTPase significantly localizes to the endoplasmic reticulum (ER) or mitochondria. Deletion analysis revealed that the N-terminal 179-amino-acid (aa) region of GII-NTPase is required for vesicle formation and for ER colocalization, whereas the C-terminal region is involved in mitochondrial colocalization. In particular, two mitochondrion-targeting domains were identified in the C-terminal region of GII-NTPase which perfectly colocalized with mitochondria when the N-terminal region of GII-NTPase was deleted. However, the corresponding C-terminal portions of NTPase derived from the GI HuNV did not show mitochondrial colocalization. We also found that GII-NTPase physically interacts with itself as well as with Nterm and P22, but not VPg, Pro, and RdRp, in cells. The Nterm- and P22-interacting region was mapped to the N-terminal 179-aa region of GII-NTPase, whereas the self-assembly of GII-NTPase could be achieved via a head-to-head, tail-to-tail, or head-to-tail configuration. More importantly, we demonstrate that GII-NTPase possesses a proapoptotic activity, which can be further enhanced by coexpression with Nterm or P22. IMPORTANCE Despite the importance of human norovirus GII.4 variants in global gastroenteritis outbreaks, the basic biological functions of the viral nonstructural proteins in cells remain rarely investigated. In this report, we focus our studies on characteristics of the GII.4 norovirus-encoded NTPase (GII-NTPase). We unexpectedly find that GII-NTPase can perfectly colocalize with mitochondria after its N-terminal region is deleted. However, such a phenomenon is not observed for NTPase encoded by a GI strain. We further reveal that the N-terminal 179-aa region of GII-NTPase is sufficient to mediate (i) vesicle formation, (ii) ER colocalization, (iii) the interaction with two other nonstructural proteins, including Nterm and P22, (iv) the formation of homodimers or homo-oligomers, and (v) the induction of cell apoptosis. Taken together, our findings emphasize that the virus-encoded NTPase must have multiple activities during viral replication or pathogenesis; however, these activities may vary somewhat among different genogroups.
Collapse
|
11
|
Hakim MS, Nirwati H, Aman AT, Soenarto Y, Pan Q. Significance of continuous rotavirus and norovirus surveillance in Indonesia. World J Pediatr 2018; 14:4-12. [PMID: 29446040 DOI: 10.1007/s12519-018-0122-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diarrhea significantly contributes to the global burden of diseases, particularly in developing countries. Rotavirus and norovirus are the most dominant viral agents responsible for diarrheal disease globally. The aim of this review was to conduct a comprehensive assessment of rotavirus and norovirus study in Indonesia. DATA SOURCES Articles about rotavirus and norovirus surveillance in Indonesia were collected from databases, including PubMed and Google Scholar. Manual searching was performed to identify additional studies. Furthermore, relevant articles about norovirus diseases were included. RESULTS A national surveillance of rotavirus-associated gastroenteritis has been conducted for years, resulting in substantial evidence about the high burden of the diseases in Indonesia. In contrast, norovirus infection received relatively lower attention and very limited data are available about the incidence and circulating genotypes. Norovirus causes sporadic and epidemic gastroenteritis globally. It is also emerging as a health problem in immunocompromised individuals. During post-rotavirus vaccination era, norovirus potentially emerges as the most frequent cause of diarrheal diseases. CONCLUSIONS Our review identifies knowledge gaps in Indonesia about the burden of norovirus diseases and the circulating genotypes. Therefore, there is a pressing need to conduct national surveillance to raise awareness of the community and national health authority about the actual burden of norovirus disease in Indonesia. Continuing rotavirus surveillance is also important to assess vaccine effectiveness and to continue tracking any substantial changes of circulating rotavirus genotypes.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Room Na-1001, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands. .,Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abu Tholib Aman
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Room Na-1001, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Kim YW, You HJ, Lee S, Kim B, Kim DK, Choi JB, Kim JA, Lee HJ, Joo IS, Lee JS, Kang DH, Lee G, Ko GP, Lee SJ. Inactivation of Norovirus by Lemongrass Essential Oil Using a Norovirus Surrogate System. J Food Prot 2017; 80:1293-1302. [PMID: 28699786 DOI: 10.4315/0362-028x.jfp-16-162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the effect of lemongrass essential oil (LGEO) on the infectivity and viral replication of norovirus. Murine norovirus 1 (MNV-1), a surrogate of human norovirus, was preincubated with LGEO and then used to infect RAW 264.7 cells in a plaque reduction assay. LGEO exhibited a significant reduction in MNV-1 plaque formation in both time- and dose-dependent manners. The quantification of viral genome by quantitative real-time PCR showed similar results in line with those of the plaque reduction assay. It was revealed that citral, a single compound in LGEO, showed dramatic reduction in MNV-1 infectivity (-73.09% when using a treatment of 0.02%, v/v). The inhibitory activity of LGEO on viral replication was further investigated in HG23 cells that harbored a human norovirus replicon. LGEO treatment significantly reduced viral replication in HG23 cells, which suggests that LGEO may have dual inhibitory activities that inactivate viral coat proteins required for viral infection and suppress norovirus genome replication in host cells. In animal experiments, oral administration of murine norovirus preincubated with LGEO significantly suppressed virus infectivity in vivo. Collectively, these results suggest that LGEO, in particular the LGEO component citral, inactivates the norovirus and its subsequent replication in host cells. Thus, LGEO shows promise as a method of inhibiting norovirus within the food industry.
Collapse
Affiliation(s)
- Ye Won Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Ju You
- 2 Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soyoung Lee
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Bomi Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Do Kyung Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Joo-Bong Choi
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Ah Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Hee Jung Lee
- 3 Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea; and
| | - In Sun Joo
- 3 Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea; and
| | - Jeong Su Lee
- 3 Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea; and
| | - Dong Hyun Kang
- 4 Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Institute of GreenBio Science and Technology, Seoul National University, Seoul 136-713, Republic of Korea
| | - Giljae Lee
- 2 Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Gwang Pyo Ko
- 2 Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Joon Lee
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|