1
|
Jiménez-Cabello L, Utrilla-Trigo S, Rodríguez-Sabando K, Carra-Valenzuela A, Illescas-Amo M, Calvo-Pinilla E, Ortego J. Vaccine candidates based on MVA viral vectors expressing VP2 or VP7 confer full protection against Epizootic hemorrhagic disease virus in IFNAR(-/-) mice. J Virol 2024; 98:e0168724. [PMID: 39508577 DOI: 10.1128/jvi.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the need for vaccine research against this viral disease. In this work, we report modified vaccinia virus Ankara (MVA)-vectored vaccines designed to express protein VP2 of EHDV-8 or protein VP7 of EHDV-2. Prime boost immunization of adult IFNAR(-/-) mice with the MVA-VP2 vaccine candidate induced high titers of EHDV-8-specific neutralizing antibodies (NAbs) and conferred full protection against homologous lethal challenge with EHDV-8. However, no heterologous protection was observed after lethal challenge with EHDV-6. In contrast, the MVA-VP7 vaccine candidate elicited strong cytotoxic CD8+ T-cell responses against VP7 and conferred complete protection against lethal challenge with either EHDV-8 or EHDV-6 in IFNAR(-/-) mice in the absence of NAbs, being the first multiserotype vaccine candidate against EHDV. Moreover, we expressed recombinant proteins VP2 and VP7 of EHDV in the baculovirus expression system, which were used to analyze the potential DIVA (differentiating infected from vaccinated animals) character of these vaccine candidates.IMPORTANCEEmergence and re-emergence of arthropod-borne viruses are major concerns for both human and animal health. The most recent example is the fast expansion of EHDV-8 through Europe. Besides, EHDV-8 relates with a high prevalence of pathologic cases in cattle populations. No vaccine is currently available in Europe, and vaccine research against this arboviral disease is negligible. In this work, we present novel DIVA vaccine candidates against EHDV, and most importantly, we identified the protein VP7 of EHDV as an antigen capable of inducing multiserotype protection, one of the major challenges in vaccine research against orbiviruses.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Karen Rodríguez-Sabando
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Carra-Valenzuela
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
2
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
3
|
Utrilla-Trigo S, Jiménez-Cabello L, Marín-López A, Illescas-Amo M, Andrés G, Calvo-Pinilla E, Lorenzo G, van Rijn PA, Ortego J, Nogales A. Engineering recombinant replication-competent bluetongue viruses expressing reporter genes for in vitro and non-invasive in vivo studies. Microbiol Spectr 2024; 12:e0249323. [PMID: 38353566 PMCID: PMC10923215 DOI: 10.1128/spectrum.02493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
Bluetongue virus (BTV) is the causative agent of the important livestock disease bluetongue (BT), which is transmitted via Culicoides bites. BT causes severe economic losses associated with its considerable impact on health and trade of animals. By reverse genetics, we have designed and rescued reporter-expressing recombinant (r)BTV expressing NanoLuc luciferase (NLuc) or Venus fluorescent protein. To generate these viruses, we custom synthesized a modified viral segment 5 encoding NS1 protein with the reporter genes located downstream and linked by the Porcine teschovirus-1 (PTV-1) 2A autoproteolytic cleavage site. Therefore, fluorescent signal or luciferase activity is only detected after virus replication and expression of non-structural proteins. Fluorescence or luminescence signals were detected in cells infected with rBTV/Venus or rBTV/NLuc, respectively. Moreover, the marking of NS2 protein confirmed that reporter genes were only expressed in BTV-infected cells. Growth kinetics of rBTV/NLuc and rBTV/Venus in Vero cells showed replication rates similar to those of wild-type and rBTV. Infectivity studies of these recombinant viruses in IFNAR(-/-) mice showed a higher lethal dose for rBTV/NLuc and rBTV/Venus than for rBTV indicating that viruses expressing the reporter genes are attenuated in vivo. Interestingly, luciferase activity was detected in the plasma of viraemic mice infected with rBTV/NLuc. Furthermore, luciferase activity quantitatively correlated with RNAemia levels of infected mice throughout the infection. In addition, we have investigated the in vivo replication and dissemination of BTV in IFNAR (-/-) mice using BTV/NLuc and non-invasive in vivo imaging systems.IMPORTANCEThe use of replication-competent viruses that encode a traceable fluorescent or luciferase reporter protein has significantly contributed to the in vitro and in vivo study of viral infections and the development of novel therapeutic approaches. In this work, we have generated rBTV that express fluorescent or luminescence proteins to track BTV infection both in vitro and in vivo. Despite the availability of vaccines, BTV and other related orbivirus are still associated with a significant impact on animal health and have important economic consequences worldwide. Our studies may contribute to the advance in orbivirus research and pave the way for the rapid development of new treatments, including vaccines.
Collapse
Affiliation(s)
- Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Germán Andrés
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
4
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
5
|
Yang D, Guo S, Feng Y, Wu D, Li Y, Peng Z, Zhou S. Recombinant Newcastle disease virus kills liver cancer in vitro and in vivo. Future Virol 2023. [DOI: 10.2217/fvl-2022-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Aim: To construct and rescue a recombinant Newcastle disease virus that can express IP10 protein and evaluate its targeted killing effect on liver cancer in vivo and in vitro. Materials & methods: Fluorescence quantitative PCR, western blot and ELISA were used to detect the expression and secretion of IP10 in cells. The H22 mouse liver cancer cells were used to establish subcutaneous tumor-bearing mice experimental animal tumor models, and the tumor growth of mice in each group was observed while receiving treatment with rLasota. Results: The recombinant Newcastle disease virus was successfully constructed and can kill tumor cells successfully. Conclusion: The rLasota-IP10-IRES-EGFP achieves antitumor effects by killing hepatocellular carcinoma cells, enhancing T-lymphocyte infiltration in tumor tissues and inhibiting neovascularization.
Collapse
Affiliation(s)
- Ding Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine Sciences, Guangxi Colleges & Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shunli Guo
- Department of Biochemistry & Molecular Biology, School of Basic Medicine Sciences, Guangxi Colleges & Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Yisen Feng
- National Center for International Research of Biological Targeting Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dandan Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine Sciences, Guangxi Colleges & Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Yapei Li
- Department of Health Management, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhouyangfan Peng
- Department of Health Management, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sufang Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine Sciences, Guangxi Colleges & Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
6
|
Bekker S, Potgieter CA, van Staden V, Theron J. Investigating the Role of African Horse Sickness Virus VP7 Protein Crystalline Particles on Virus Replication and Release. Viruses 2022; 14:2193. [PMID: 36298748 PMCID: PMC9608501 DOI: 10.3390/v14102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the Orbivirus genus. AHSV is transmitted by the biting midge, Culicoides, and therefore replicates in both insect and mammalian cell types. Structural protein VP7 is a highly conserved major core protein of orbiviruses. Unlike any other orbivirus VP7, AHSV VP7 is highly insoluble and forms flat hexagonal crystalline particles of unknown function in AHSV-infected cells and when expressed in mammalian or insect cells. To examine the role of AHSV VP7 in virus replication, a plasmid-based reverse genetics system was used to generate a recombinant AHSV that does not form crystalline particles. We characterised the role of VP7 crystalline particle formation in AHSV replication in vitro and found that soluble VP7 interacted with viral proteins VP2 and NS2 similarly to wild-type VP7 during infection. Interestingly, soluble VP7 was found to form uncharacteristic tubule-like structures in infected cells which were confirmed to be as a result of unique VP7-NS1 colocalisation. Furthermore, it was found that VP7 crystalline particles play a role in AHSV release and yield. This work provides insight into the role of VP7 aggregation in AHSV cellular pathogenesis and contributes toward the understanding of the possible effects of viral protein aggregation in other human virus-borne diseases.
Collapse
Affiliation(s)
- Shani Bekker
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| | - Christiaan A. Potgieter
- Deltamune (Pty) Ltd., 3 Bauhinia Street, Unit 34 Oxford Office Park, Highveld Techno Park, Centurion 0169, South Africa
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| |
Collapse
|
7
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
8
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
9
|
Wall GV, Wright IM, Barnardo C, Erasmus BJ, van Staden V, Potgieter AC. African horse sickness virus NS4 protein is an important virulence factor and interferes with JAK-STAT signaling during viral infection. Virus Res 2021; 298:198407. [PMID: 33812899 DOI: 10.1016/j.virusres.2021.198407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
African horse sickness virus (AHSV) non-structural protein NS4 is a nucleocytoplasmic protein that is expressed in the heart, lung, and spleen of infected horses, binds dsDNA, and colocalizes with promyelocytic leukemia nuclear bodies (PML-NBs). The aim of this study was to investigate the role of AHSV NS4 in viral replication, virulence and the host immune response. Using a reverse genetics-derived virulent strain of AHSV-5 and NS4 deletion mutants, we showed that knockdown of NS4 expression has no impact in cell culture, but results in virus attenuation in infected horses. RNA sequencing (RNA-seq) was used to investigate the transcriptional response in these horses, to see how the lack of NS4 mediates the transition of the virus from virulent to attenuated. The presence of NS4 was shown to result in a 24 hour (h) delay in the transcriptional activation of several immune system processes compared to when the protein was absent. Included in these processes were the RIG-I-like, Toll-like receptor, and JAK-STAT signaling pathways, which are key pathways involved in innate immunity and the antiviral response. Thus, it was shown that AHSV NS4 suppresses the host innate immune transcriptional response in the early stages of the infection cycle. We investigated whether AHSV NS4 affects the innate immune response by impacting the JAK-STAT signaling pathway specifically. Using confocal laser scanning microscopy (CLSM) we showed that AHSV NS4 disrupts JAK-STAT signaling by interfering with the phosphorylation and/or translocation of STAT1 and pSTAT1 into the nucleus. Overall, these results showed that AHSV NS4 is a key virulence factor in horses and allows AHSV to overcome host antiviral responses in order to promote viral replication and spread.
Collapse
Affiliation(s)
- Gayle V Wall
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Isabella M Wright
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Carin Barnardo
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Baltus J Erasmus
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - A Christiaan Potgieter
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa; Department of Biochemistry, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
10
|
Martinez-Sobrido L, Nogales A. Editorial overview: Virus reverse genetics approaches for the development of preventive and therapeutic vaccines. Curr Opin Virol 2020; 44:iii-iv. [PMID: 33349418 DOI: 10.1016/j.coviro.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), 28130 Madrid, Spain
| |
Collapse
|
11
|
Alonso C, Utrilla-Trigo S, Calvo-Pinilla E, Jiménez-Cabello L, Ortego J, Nogales A. Inhibition of Orbivirus Replication by Aurintricarboxylic Acid. Int J Mol Sci 2020; 21:ijms21197294. [PMID: 33023235 PMCID: PMC7582255 DOI: 10.3390/ijms21197294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.
Collapse
|