1
|
Xin W, Zhong W, Shi Y, Shi Y, Jing J, Xu T, Guo J, Liu W, Li Y, Liang Z, Xin X, Cheng J, Hu W, Xu H, Liu Y. Low-Dimensional-Materials-Based Photodetectors for Next-Generation Polarized Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306772. [PMID: 37661841 DOI: 10.1002/adma.202306772] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yujie Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yimeng Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiawei Jing
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongzhu Liang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xing Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinluo Cheng
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
2
|
Wang H, Li Y, Gao P, Wang J, Meng X, Hu Y, Yang J, Huang Z, Gao W, Zheng Z, Wei Z, Li J, Huo N. Polarization- and Gate-Tunable Optoelectronic Reverse in 2D Semimetal/Semiconductor Photovoltaic Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309371. [PMID: 37769436 DOI: 10.1002/adma.202309371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Polarimetric photodetector can acquire higher resolution and more surface information of imaging targets in complex environments due to the identification of light polarization. To date, the existing technologies yet sustain the poor polarization sensitivity (<10), far from market application requirement. Here, the photovoltaic detectors with polarization- and gate-tunable optoelectronic reverse phenomenon are developed based on semimetal 1T'-MoTe2 and ambipolar WSe2 . The device exhibits gate-tunable reverse in rectifying and photovoltaic characters due to the directional inversion of energy band, yielding a wide range of current rectification ratio from 10-2 to 103 and a clear object imaging with 100 × 100 pixels. Acting as a polarimetric photodetector, the polarization ratio (PR) value can reach a steady state value of ≈30, which is compelling among the state-of-the-art 2D-based polarized detectors. The sign reversal of polarization-sensitive photocurrent by varying the light polarization angles is also observed, that can enable the PR value with a potential to cover possible numbers (1→+∞/-∞→-1). This work develops a photovoltaic detector with polarization- and gate-tunable optoelectronic reverse phenomenon, making a significant progress in polarimetric imaging and multifunction integration applications.
Collapse
Affiliation(s)
- Hanyu Wang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Yan Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Jina Wang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Xuefeng Meng
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Yin Hu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Nengjie Huo
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| |
Collapse
|
3
|
Zheng W, Wang X, Zhang X, Chen B, Suo H, Xing Z, Wang Y, Wei HL, Chen J, Guo Y, Wang F. Emerging Halide Perovskite Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205410. [PMID: 36517207 DOI: 10.1002/adma.202205410] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out.
Collapse
Affiliation(s)
- Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiucai Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhifeng Xing
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Han-Lin Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
4
|
Lu L, Weng W, Ma Y, Liu Y, Han S, Liu X, Xu H, Lin W, Sun Z, Luo J. Anisotropy in a 2D Perovskite Ferroelectric Drives Self‐Powered Polarization‐Sensitive Photoresponse for Ultraviolet Solar‐Blind Polarized‐Light Detection. Angew Chem Int Ed Engl 2022; 61:e202205030. [DOI: 10.1002/anie.202205030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Lu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
| | - Wen Weng
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shiguo Han
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Haojie Xu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenxiong Lin
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
5
|
Lu L, Weng W, Ma Y, Liu Y, Han S, Liu X, Xu H, Lin W, Sun Z, Luo J. Anisotropy in a 2D Perovskite Ferroelectric Drives Self‐Powered Polarization‐Sensitive Photoresponse for Ultraviolet Solar‐Blind Polarized‐Light Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Lu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
| | - Wen Weng
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shiguo Han
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Haojie Xu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenxiong Lin
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian, 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
6
|
Wu D, Xu M, Zeng L, Shi Z, Tian Y, Li XJ, Shan CX, Jie J. In Situ Fabrication of PdSe 2/GaN Schottky Junction for Polarization-Sensitive Ultraviolet Photodetection with High Dichroic Ratio. ACS NANO 2022; 16:5545-5555. [PMID: 35324154 DOI: 10.1021/acsnano.1c10181] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive ultraviolet (UV) photodetection is of great technological importance for both civilian and military applications. Two-dimensional (2D) group-10 transition-metal dichalcogenides (TMDs), especially palladium diselenide (PdSe2), are promising candidates for polarized photodetection due to their low-symmetric crystal structure. However, the lack of an efficient heterostructure severely restricts their applications in UV-polarized photodetection. Here, we develop a PdSe2/GaN Schottky junction by in situ van der Waals growth for highly polarization-sensitive UV photodetection. Owing to the high-quality junction, the device exhibits an appealing UV detection performance in terms of a large responsivity of 249.9 mA/W, a high specific detectivity, and a fast response speed. More importantly, thanks to the puckered structure of the PdSe2 layer, the device is highly sensitive to polarized UV light with a large dichroic ratio up to 4.5, which is among the highest for 2D TMD material-based UV polarization-sensitive photodetectors. These findings further enable the demonstration of the outstanding polarized UV imaging capability of the Schottky junction, as well as its utility as an optical receiver for secure UV optical communication. Our work offers a strategy to fabricate the PdSe2-based heterostructure for high-performance polarization-sensitive UV photodetection.
Collapse
Affiliation(s)
- Di Wu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Xu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Longhui Zeng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhifeng Shi
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongzhi Tian
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Jian Li
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chong-Xin Shan
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiansheng Jie
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Ji C, Dey D, Peng Y, Liu X, Li L, Luo J. Ferroelectricity‐Driven Self‐Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Two‐Dimensional Halide Hybrid Perovskite. Angew Chem Int Ed Engl 2020; 59:18933-18937. [DOI: 10.1002/anie.202005092] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/08/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Chengmin Ji
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Dhananjay Dey
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
8
|
Ji C, Dey D, Peng Y, Liu X, Li L, Luo J. Ferroelectricity‐Driven Self‐Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Two‐Dimensional Halide Hybrid Perovskite. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chengmin Ji
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Dhananjay Dey
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Chen Q, Zhang Y, Zheng T, Liu Z, Wu L, Wang Z, Li J. Polarization detection in deep-ultraviolet light with monoclinic gallium oxide nanobelts. NANOSCALE ADVANCES 2020; 2:2705-2712. [PMID: 36132414 PMCID: PMC9419289 DOI: 10.1039/d0na00364f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
Detection of polarization in deep-ultraviolet (DUV) wavelength is of great importance, especially in secure UV communication. In this paper, we report DUV polarization detectors based on ultra-wide bandgap β-Ga2O3 nanobelts, which belong to a monoclinic system with a strong anisotropic lattice structure. Single-crystalline β-Ga2O3 nanobelts are synthesized at high-temperature via chemical vapor deposition (CVD). Crystallographic investigation is performed to determine the crystal orientation of the nanobelts, by the combination of selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), crystal modeling and diffraction simulation. The photoresponse to unpolarized DUV light shows a high responsivity of 335 A W-1 and high sensitivity even to a low illumination power of pW. Strong anisotropy in responsivity and response speed, depending on incident light polarization, is observed. The underlying mechanism is attributed to the combination of internal dichroism and 1D morphology, as indicated by the DFT calculation and FDTD simulation. This work shows a way of DUV polarization detection using CVD grown Ga2O3 nanobelts, which could broaden the investigation of the Ga2O3 material and DUV photodetection.
Collapse
Affiliation(s)
- Quan Chen
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| | - Yonghui Zhang
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| | - Tao Zheng
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| | - Zhun Liu
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| | - Liangwei Wu
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| | - Zhaoxiong Wang
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University Guangzhou 510631 China
| |
Collapse
|
10
|
Review on III-V Semiconductor Single Nanowire-Based Room Temperature Infrared Photodetectors. MATERIALS 2020; 13:ma13061400. [PMID: 32204482 PMCID: PMC7142779 DOI: 10.3390/ma13061400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Recently, III-V semiconductor nanowires have been widely explored as promising candidates for high-performance photodetectors due to their one-dimensional morphology, direct and tunable bandgap, as well as unique optical and electrical properties. Here, the recent development of III-V semiconductor-based single nanowire photodetectors for infrared photodetection is reviewed and compared, including material synthesis, representative types (under different operation principles and novel concepts), and device performance, as well as their challenges and future perspectives.
Collapse
|
11
|
Meng L, Li G, Tian X, Bai S, Xu Q, Jia X, Cui X, Qin Y, Wu W. Ultrasensitive Fiber-Based ZnO Nanowire Network Ultraviolet Photodetector Enabled by the Synergism between Interface and Surface Gating Effects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1054-1060. [PMID: 31833754 DOI: 10.1021/acsami.9b18185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A flexible UV photodetector with a high on/off ratio is extremely important for environmental sensing, optical communication, and flexible optoelectronic devices. In this work, a flexible fiber-based UV photodetector with an ultrahigh on/off ratio is developed by utilizing the synergism between interface and surface gating effects on a ZnO nanowire network structure. The synergism between two gating effects is realized by the interplay between surface band bending and the Fermi level through the nanowire network structure, which is proved through the control experiments between the ZnO micro/nanowire photodetector and micro/nanowire junction photodetector, and the corresponding Kelvin probe force microscopy (KPFM) measurements. The on/off ratio of the fiber-based ZnO nanowire network UV photodetector reaches 1.98 × 108 when illuminated by 1.0 mW cm-2 UV light, which is 20 times larger than the largest reported result under the same UV illumination. This new UV sensor also has a high resolution to UV light intensity change in the nW cm-2 range. Furthermore, when the fiber-based photodetector is curved, it still shows excellent performance as above. This work gives a new effective route for the development of a high-performance UV photodetector or other optoelectronic detection devices.
Collapse
Affiliation(s)
| | | | | | | | - Qi Xu
- School of Advanced Materials and Nanotechnology , Xidian University , Xi'an 710071 , China
| | | | - Xin Cui
- College of Chemistry and Chemical Engineering , Guangxi University , Guangxi 530004 , China
| | | | | |
Collapse
|
12
|
Qiu T, Hu Y, Xu F, Yan Z, Bai F, Jia G, Zhang S. Recent advances in one-dimensional halide perovskites for optoelectronic applications. NANOSCALE 2018; 10:20963-20989. [PMID: 30418466 DOI: 10.1039/c8nr05862h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-halide perovskites have emerged as efficient, low-cost energy materials owing to their remarkable optoelectronic properties. In particular, the dimensionality and morphology of crystallites may have a striking influence on their chemical and physical properties and therefore affect their optoelectronic applications. One-dimensional halide perovskites have superior carrier transportation in one dimension, high crystalline quality, and consequently, high quantum efficiencies and long carrier diffusion lengths, which are important for the performance of perovskite-based nanoscale optoelectronic and photonic devices. In this review, we highlight recent advances in the synthesis of one-dimensional halide perovskites and their unique properties as well as their novel optoelectronic applications. This review aims to provide an overview of the achievements in synthesis techniques and nanoscale optoelectronic applications based on one-dimensional perovskite nanocrystals.
Collapse
Affiliation(s)
- Ting Qiu
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yanqiang Hu
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Feng Xu
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zhong Yan
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fan Bai
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Guohua Jia
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia
| | - Shufang Zhang
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Han ST, Peng H, Sun Q, Venkatesh S, Chung KS, Lau SC, Zhou Y, Roy VAL. An Overview of the Development of Flexible Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700375. [PMID: 28671711 DOI: 10.1002/adma.201700375] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/28/2017] [Indexed: 05/21/2023]
Abstract
Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field.
Collapse
Affiliation(s)
- Su-Ting Han
- College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qijun Sun
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Shishir Venkatesh
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Kam-Sing Chung
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Siu Chuen Lau
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - V A L Roy
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| |
Collapse
|
14
|
Park JH, Chatterjee U, Kang S, Um DY, Lee CR. The synthesis of hybrid nanostructure comprising star-shaped GaN nanowires and Si nanoworms. RSC Adv 2017. [DOI: 10.1039/c7ra03119j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we demonstrated a novel hybrid nanostructure comprising star-shaped GaN nanowires with Si nanoworms having drifting Au nanoparticles inside realized simultaneously.
Collapse
Affiliation(s)
- Ji-Hyeon Park
- Semiconductor Materials Process Laboratory
- School of Advanced Materials Engineering
- Engineering College
- Research Center for Advanced Materials Development (RCAMD)
- Chonbuk National University
| | - Uddipta Chatterjee
- Semiconductor Materials Process Laboratory
- School of Advanced Materials Engineering
- Engineering College
- Research Center for Advanced Materials Development (RCAMD)
- Chonbuk National University
| | - San Kang
- Semiconductor Materials Process Laboratory
- School of Advanced Materials Engineering
- Engineering College
- Research Center for Advanced Materials Development (RCAMD)
- Chonbuk National University
| | - Dae-Young Um
- Semiconductor Materials Process Laboratory
- School of Advanced Materials Engineering
- Engineering College
- Research Center for Advanced Materials Development (RCAMD)
- Chonbuk National University
| | - Cheul-Ro Lee
- Semiconductor Materials Process Laboratory
- School of Advanced Materials Engineering
- Engineering College
- Research Center for Advanced Materials Development (RCAMD)
- Chonbuk National University
| |
Collapse
|
15
|
Tang X, Zu Z, Shao H, Hu W, Zhou M, Deng M, Chen W, Zang Z, Zhu T, Xue J. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. NANOSCALE 2016; 8:15158-15161. [PMID: 27500438 DOI: 10.1039/c6nr01828a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Halide perovskites have attracted great attention in recent years as promising materials for optoelectronic devices, especially inorganic perovskites like CsPbX3 (X = I, Br, Cl). Herein, CsPb(Br/I)3 nanorods with a photoluminescence (PL) spectrum located at 610 nm have been obtained by a facile hot-injection method, and the UV-vis absorption spectrum further revealed that the bandgap absorption is around 1.98 eV. Furthermore, the photoelectric response of the CsPb(Br/I)3 nanorods showed a relatively short rise-time (0.68 s) and decay-time (0.66 s), and the on/off photocurrent ratio of the CsPb(Br/I)3 nanorod based photodetector was up to 10(3).
Collapse
Affiliation(s)
- Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Zhiqiang Zu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Haibing Shao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Wei Hu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Miao Zhou
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Ming Deng
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Weiwei Chen
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Tao Zhu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Junmin Xue
- Department of Materials Science & Engineering, National University of Singapore, Singapore
| |
Collapse
|
16
|
Pomogaeva AV, Timoshkin AY. The effect of terminal substituents on the electronic properties of rod-shaped [HGaNH]n oligomers. Phys Chem Chem Phys 2016; 18:19859-65. [PMID: 27389813 DOI: 10.1039/c6cp02576e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of electron-donating and electron-withdrawing terminal groups on the electronic structure of the rod-shaped X3[HGaNH]nY3 or needle-shaped XGa[HGaNH]nNY oligomers (X, Y = H, CH3, F, CF3; n = 9, 30 and 114) was computationally studied at the B3LYP/SVP level of density functional theory. While the needle-shaped oligomers exhibit moderate variability in the electronic structure upon changing the terminal substituents X and Y, the energy gap of long rod-shaped oligomers varies within 2 eV. For oligomers with n = 114, F3[HGaNH]n(CH3)3 exhibits the largest HOMO-LUMO gap of 2.91 eV, while (CH3)3[HGaNH]nF3 has the smallest gap of 0.94 eV.
Collapse
Affiliation(s)
- A V Pomogaeva
- Inorganic Chemistry Group, Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.
| | - A Y Timoshkin
- Inorganic Chemistry Group, Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.
| |
Collapse
|
17
|
Gadea G, Morata A, Santos JD, Dávila D, Calaza C, Salleras M, Fonseca L, Tarancón A. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor. NANOTECHNOLOGY 2015; 26:195302. [PMID: 25902702 DOI: 10.1088/0957-4484/26/19/195302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of 〈111〉 aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications.
Collapse
Affiliation(s)
- G Gadea
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià de Besòs, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hsu YM, Wang CY, Chang P, Yew TR. Non-stoichiometric W(18)O(49-x)S(x) nanowires for wide spectrum photosensors with high internal gain. NANOSCALE 2015; 7:901-907. [PMID: 25470451 DOI: 10.1039/c4nr05234j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study reports successful synthesis of non-stoichiometric single-crystal W18O49-xSx nanowires for photosensors with a high absorption rate (>83%) across a wide spectrum (300-2000 nm), a high internal gain (G = 10(6)-10(7)) and a relatively fast response time (approximately 1-3 s). In addition, the correlation between the photoconductivity gain (G) and the surface-to-volume ratio of non-stoichiometric single-crystal W18O49-xSx nanowires was studied. The surface-to-volume ratio and non-stoichiometric material of W18O49-xSx contributed to the photoconductivity gain; hence, the nanowires are favorable for photosensor devices. The wide spectrum obtained also suggests their extensive applications in numerous fields.
Collapse
Affiliation(s)
- Yu-Ming Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University 101, Sec. 2, Kuang-Fu Road Hsinchu, Taiwan 30013.
| | | | | | | |
Collapse
|
19
|
Lu F, Li R, Li Y, Huo N, Yang J, Li Y, Li B, Yang S, Wei Z, Li J. Improving the Field-Effect Performance of Bi2S3Single Nanowires by an Asymmetric Device Fabrication. Chemphyschem 2014; 16:99-103. [PMID: 25294685 DOI: 10.1002/cphc.201402594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/15/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Fangyuan Lu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing100083 (China)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang X, Aroonyadet N, Zhang Y, Mecklenburg M, Fang X, Chen H, Goo E, Zhou C. Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. NANO LETTERS 2014; 14:3014-22. [PMID: 24837617 DOI: 10.1021/nl404289z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 μm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 10(6), mobilities around 71.68 cm(2)/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Electrical Engineering, §Department of Chemical Engineering and Material Science, and ||Center for Electron Microscopy and Microanalysis, University of Southern California , Los Angeles, California 90089, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cansizoglu H, Cansizoglu MF, Watanabe F, Karabacak T. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8673-82. [PMID: 24824452 DOI: 10.1021/am501481w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.
Collapse
Affiliation(s)
- Hilal Cansizoglu
- Department of Applied Science, University of Arkansas at Little Rock , Little Rock, Arkansas 72204, United States
| | | | | | | |
Collapse
|
22
|
Roudsari AF, Saini SS, O N, Anantram MP. Junction-less phototransistor with nanowire channels, a modeling study. OPTICS EXPRESS 2014; 22:12573-12582. [PMID: 24921375 DOI: 10.1364/oe.22.012573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We propose a new nanowire based, junction-less phototransistor, that consists of a channel with both wide and narrow regions to ensure efficient light absorption and low dark current, respectively. While the light is absorbed in the wide region, the narrow region allows for ease of band engineering. We also find that a nanowire in the source can further boost the optical gain. The proposed device, which can potentially detect very low light intensities, does not rely on complicated doping profiles, but instead uses suitably designed gates. Our calculations show the detection of a photon flux as low as 35 per second.
Collapse
|
23
|
Campo EM, Poplawsky J, Meléndez A, Robles-García JL, Ramos I, Yates D, Fischer JE, Santiago-Avilés JJ. Disordered grain growth in polycrystalline GaN obtained by the polymer-derived-ceramic route. RSC Adv 2014. [DOI: 10.1039/c3ra44899a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
|
25
|
Liu Z, Chen G, Liang B, Yu G, Huang H, Chen D, Shen G. Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. OPTICS EXPRESS 2013; 21:7799-810. [PMID: 23546161 DOI: 10.1364/oe.21.007799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ZnTe is an important p-type semiconductor with great applications as field-effect transistors and photodetectors. In this paper, individual ZnTe nanowires based field-effect transistors was fabricated, showing evident p-type conductivity with an effect mobility of 11.3 cm(2)/Vs. Single ZnTe nanowire based photodetectors on rigid silicon substrate exhibited high sensitivity and excellent stability to visible incident light with responstivity and quantum efficiency as high as 1.87 × 10(5) A/W and 4.36 × 10(7)% respectively and are stable in a wide temperature range (25-250 °C). The polarization-sensitivity of the ZnTe nanowires was studied for the first time. The results revealed a periodic oscillation with the continuous variation of polarization angles. Besides, flexible photodetectors were also fabricated with the features of excellent flexibility, stability and sensitivity to visible incident light. Our work would enable application opportunities in using ZnTe nanowires for ultrahigh-performance photodetectors in scientific, commercial and industrial applications.
Collapse
Affiliation(s)
- Zhe Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu X, Long YZ, Liao L, Duan X, Fan Z. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS NANO 2012; 6:1888-900. [PMID: 22364279 DOI: 10.1021/nn204848r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-performance flexible electronics has attracted much attention in recent years due to potential applications in flexible displays, artificial skin, radio frequency identification, sensor tapes, etc. Various materials such as organic and inorganic semiconductor nanowires, carbon nanotubes, graphene, etc. have been explored as the active semiconductor components for flexible devices. Among them, inorganic semiconductor nanowires are considered as highly promising materials due to their relatively high carrier mobility, reliable control on geometry and electronic properties, and cost-effective synthesis processes. In this review, recent progress on the assembly of high-performance inorganic semiconductor nanowires and their applications for large-scale flexible electronics will be summarized. In particular, nanowire-based integrated circuitry and high-frequency electronics will be highlighted.
Collapse
Affiliation(s)
- Xi Liu
- Department of Electronic & Computer Engineering, Hong Kong University of Science & Technology, Hong Kong SAR, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Zi Y, Zhao Y, Candebat D, Appenzeller J, Yang C. Synthesis of Antimony-Based Nanowires Using the Simple Vapor Deposition Method. Chemphyschem 2012; 13:2585-8. [DOI: 10.1002/cphc.201101042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 11/12/2022]
|
28
|
Chandrasekar PV, Jung H, Kim CG, Kim D. GaN nanorods synthesis on single-wall carbon nanotube bundles via substrate confinement. CrystEngComm 2012. [DOI: 10.1039/c2ce06557f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Kung SC, Xing W, van der Veer WE, Yang F, Donavan KC, Cheng M, Hemminger JC, Penner RM. Tunable photoconduction sensitivity and bandwidth for lithographically patterned nanocrystalline cadmium selenide nanowires. ACS NANO 2011; 5:7627-39. [PMID: 21861535 DOI: 10.1021/nn202728f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanocrystalline cadmium selenide (nc-CdSe) nanowires were prepared using the lithographically patterned nanowire electrodeposition method. Arrays of 350 linear nc-CdSe nanowires with lateral dimensions of 60 nm (h) × 200 nm (w) were patterned at 5 μm pitch on glass. nc-CdSe nanowires electrodeposited from aqueous solutions at 25 °C had a mean grain diameter, d(ave), of 5 nm. A combination of three methods was used to increase d(ave) to 10, 20, and 100 nm: (1) The deposition bath was heated to 75 °C, (2) nanowires were thermally annealed at 300 °C, and (3) nanowires were exposed to methanolic CdCl(2) followed by thermal annealing at 300 °C. The morphology, chemical composition, grain diameter, and photoconductivity of the resulting nanowires were studied as a function of d(ave). As d(ave) was increased from 10 to 100 nm, the photoconductivity response of the nanowires was modified in two ways: First, the measured photoconductive gain, G, was elevated from G = 0.017 (d(ave) = 5 nm) to ∼4.9 (100 nm), a factor of 290. Second, the photocurrent rise time was increased from 8 μs for d(ave) = 10 nm to 8 s for 100 nm, corresponding to a decrease by a factor of 1 million of the photoconduction bandwidth from 44 kHz to 44 mHz.
Collapse
Affiliation(s)
- Sheng-Chin Kung
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang C, Soenen SJ, Rejman J, Lucas B, Braeckmans K, Demeester J, De Smedt SC. Stimuli-responsive electrospun fibers and their applications. Chem Soc Rev 2011; 40:2417-34. [PMID: 21390366 DOI: 10.1039/c0cs00181c] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Stimuli-responsive electrospun nanofibers are gaining considerable attention as highly versatile tools which offer great potential in the biomedical field. In this critical review, an overview is given on recent advances made in the development and application of stimuli-responsive fibers. The specific features of these electrospun fibers are highlighted and discussed in view of the properties required for the diverse applications. Furthermore, several novel biomedical applications are discussed and the respective advantages and shortcomings inherent to stimuli-responsive electrospun fibers are addressed (136 references).
Collapse
Affiliation(s)
- Chaobo Huang
- Ghent Research Group on Nanomedicines, Lab General Biochemistry & Physical Pharmacy, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, B9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
An X, Butler TW, Washington M, Nayak SK, Kar S. Optical and sensing properties of 1-pyrenecarboxylic Acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS NANO 2011; 5:1003-1011. [PMID: 21229968 DOI: 10.1021/nn102415c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present fabrication and characterization of macroscopic thin films of graphene flakes, which are functionalized with 1-pyrenecarboxylic acid (PCA) and are laminated onto flexible and transparent polydimethylsiloxane (PDMS) membranes. The noncovalently (π-stacked) functionalization of PCA allows us to obtain a number of unique optical and molecular sensing properties that are absent in pristine graphene films, without sacrificing the conducting nature of graphene. The flexible PCA-graphene-PDMS hybrid structure can block 70-95% of ultraviolet (UV) light, while allowing 65% or higher transmittance in the visible region, rendering them potentially useful for a number of flexible UV absorbing/filtering applications. In addition, the electrical resistance of these structures is found to be sensitive to the illumination of visible light, atmospheric pressure change, and the presence of different types of molecular analytes. Owing to their multifunctionality, these hybrid structures have immense potential for the development of versatile, low-cost, flexible, and portable electronic and optoelectronic devices for diverse applications.
Collapse
Affiliation(s)
- Xiaohong An
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
32
|
Bertness KA, Schlager JB, Sanford NA, Roshko A, Harvey TE, Davydov AV, Levin I, Vaudin MD, Barker JM, Blanchard PT, Robins LH. High Degree of Crystalline Perfection in Spontaneously Grown GaN Nanowires. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-0892-ff31-03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Liu S, Wei Z, Cao Y, Gan L, Wang Z, Xu W, Guo X, Zhu D. Ultrasensitive water-processed monolayer photodetectors. Chem Sci 2011. [DOI: 10.1039/c0sc00488j] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
|
35
|
Electrochemical Fabrication of Anodic Aluminum Oxide Films with Encapsulated Silver Nanoparticles as Plasmonic Photoconductors. ACTA ACUST UNITED AC 2011. [DOI: 10.1149/1.3555128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Rigutti L, Tchernycheva M, De Luna Bugallo A, Jacopin G, Julien FH, Zagonel LF, March K, Stephan O, Kociak M, Songmuang R. Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. NANO LETTERS 2010; 10:2939-2943. [PMID: 20617803 DOI: 10.1021/nl1010977] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report the demonstration of single-nanowire photodetectors relying on carrier generation in GaN/AlN QDiscs. Two nanowire samples containing QDiscs of different thicknesses are analyzed and compared to a reference binary n-i-n GaN nanowire sample. The responsivity of a single wire QDisc detector is as high as 2 x 10(3) A/W at lambda = 300 nm at room temperature. We show that the insertion of an axial heterostructure drastically reduces the dark current with respect to the binary nanowires and enhances the photosensitivity factor (i.e., the ratio between the photocurrent and the dark current) up to 5 x 10(2) for an incoming light intensity of 5 mW/cm(2). Photocurrent spectroscopy allows identification of the spectral contribution related to carriers generated within large QDiscs, which lies below the GaN band gap due to the quantum confined Stark effect.
Collapse
Affiliation(s)
- L Rigutti
- Institut d'Electronique Fondamentale, University of Paris Sud XI, UMR 8622 CNRS, 91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kung SC, van der Veer WE, Yang F, Donavan KC, Penner RM. 20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires. NANO LETTERS 2010; 10:1481-5. [PMID: 20334354 DOI: 10.1021/nl100483v] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lithographically patterned nanowire electrodeposition (LPNE) provides a method for patterning nanowires composed of nanocrystalline cadmium selenide (nc-CdSe) over wafer-scale areas. We assess the properties of (nc-CdSe) nanowires for detecting light as photoconductors. Structural characterization of these nanowires by X-ray diffraction and transmission electron microscopy reveals they are composed of stoichiometric, single phase, cubic CdSe with a mean grain diameter of 10 nm. For nc-CdSe nanowires with lengths of many millimeters, the width and height dimensions could be varied over the range from 60 to 350 nm (w) and 20 to 80 nm (h). Optical absorption and photoluminescence spectra for nc-CdSe nanowires were both dominated by band-edge transitions. The photoconductivity properties of nc-CdSe nanowire arrays containing approximately 350 nanowires were evaluated by electrically isolating 5 microm nanowire lengths using evaporated gold electrodes. Photocurrents, i(photo), of 10-100 x (i(dark)) were observed with a spectral response characterized by an onset at 1.75 eV. i(photo) response and recovery times were virtually identical and in the range from 20 to 40 micros for 60 x 200 nm nanowires.
Collapse
Affiliation(s)
- Sheng-Chin Kung
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | | | | | |
Collapse
|
38
|
Zhai T, Fang X, Liao M, Xu X, Li L, Liu B, Koide Y, Ma Y, Yao J, Bando Y, Golberg D. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS NANO 2010; 4:1596-1602. [PMID: 20146437 DOI: 10.1021/nn9012466] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The synthesis of high-quality In2Se3 nanowire arrays via thermal evaporation method and the photoconductive characteristics of In2Se3 individual nanowires are first investigated. The electrical characterization of a single In2Se3 nanowire verifies an intrinsic n-type semiconductor behavior. These single-crystalline In2Se3 nanowires are then assembled in visible-light sensors which demonstrate a fast, reversible, and stable response. The high photosensitivity and quick photoresponse are attributed to the superior single-crystal quality and large surface-to-volume ratio resulting in fewer recombination barriers in nanostructures. These excellent performances clearly demonstrate the possibility of using In2Se3 nanowires in next-generation sensors and detectors for commercial, military, and space applications.
Collapse
Affiliation(s)
- Tianyou Zhai
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Giblin J, Protasenko V, Kuno M. Wavelength Sensitivity of Single Nanowire Excitation Polarization Anisotropies Explained through a Generalized Treatment of Their Linear Absorption. ACS NANO 2009; 3:1979-1987. [PMID: 19548642 DOI: 10.1021/nn900380h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigate the excitation polarization anisotropy of individual semiconductor nanowires (NWs) by monitoring their band edge emission above 680 nm in order to clarify the origin of their strong polarization response. Samples studied include both CdSe and CdSe/CdS core/shell nanowires grown using solution chemistry as well as analogous wires made via chemical-vapor-deposition (CVD). In the limit of optically thick wires, with radii above ∼25 nm, we find NW optical responses consistent with the interaction between strong dielectric contrast influences and the onset of bulk-like behavior. Namely, a sizable wavelength dependence of the excitation polarization anisotropy (ρ(exc)) exists when NW diameters become comparable to the wavelength of light inside the wire. As a consequence, pronounced ρ(exc) rolloffs occur at short wavelengths. By contrast, thinner wires do not exhibit such wavelength dependencies, in agreement with earlier studies. We quantitatively explain observed wavelength sensitivities by modeling the NW as an absorbing dielectric cylinder under plane wave excitation. A comparison of predicted ρ(exc)-values to experimental numbers shows good agreement and confirms the existence of wavelength-dependent ρ(exc)-values in optically thick wires. Additional results of the model include generalized expressions for NW linear absorption cross-sections under parallel, perpendicular, and circularly polarized excitation. This study therefore adds to a growing body of knowledge about NW polarization anisotropies, specifically, their response in a size regime where dielectric contrast effects compete with the onset of bulk-like behavior.
Collapse
Affiliation(s)
- Jay Giblin
- University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556
| | | | | |
Collapse
|
40
|
|
41
|
Nakanishi H, Bishop KJM, Kowalczyk B, Nitzan A, Weiss EA, Tretiakov KV, Apodaca MM, Klajn R, Stoddart JF, Grzybowski BA. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 2009; 460:371-5. [DOI: 10.1038/nature08131] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 05/11/2009] [Indexed: 11/09/2022]
|
42
|
|
43
|
Jacobs BW, Ayres VM, Crimp MA, McElroy K. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires. NANOTECHNOLOGY 2008; 19:405706. [PMID: 21832635 DOI: 10.1088/0957-4484/19/40/405706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a focused ion beam system. A coherent interface between the zinc-blende and wurtzite phases is identified. A mechanism for catalyst-free vapor-solid multiphase nanowire nucleation and growth is proposed.
Collapse
Affiliation(s)
- B W Jacobs
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
44
|
Jie JS, Zhang WJ, Jiang Y, Meng XM, Li YQ, Lee ST. Photoconductive characteristics of single-crystal CdS nanoribbons. NANO LETTERS 2006; 6:1887-92. [PMID: 16967996 DOI: 10.1021/nl060867g] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The photoconductive characteristics of CdS single nanoribbons were investigated. The device characteristics, including spectral response, light intensity response, and time response, were studied systematically. It is found that CdS nanoribbon has the response speed substantively faster than those ever reported for conventional film and bulk CdS materials and the size of nanoribbons has a significant influence on the response speed with smaller CdS nanoribbons showing higher response speed. The high photosensitivity and high photoresponse speed are attributable to the large surface-to-volume ratio and high single-crystal quality of CdS nanoribbons and the reduction of recombination barrier in nanostructures. Measurements in a different atmosphere demonstrate that the absorption of ambient gas (mainly oxygen) can significantly change the photosensitivity of CdS nanoribbons through trapping electrons from the nanoribbons.
Collapse
Affiliation(s)
- J S Jie
- Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | |
Collapse
|
45
|
Wang Q, Sun Q, Jena P. Ferromagnetism in Mn-doped GaN nanowires. PHYSICAL REVIEW LETTERS 2005; 95:167202. [PMID: 16241837 DOI: 10.1103/physrevlett.95.167202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Indexed: 05/05/2023]
Abstract
Using density functional theory we show that the magnetic coupling of Mn atoms in the nanowires, unlike that in the thin film, is ferromagnetic. This ferromagnetic coupling, brought about due to the confinement of electrons in the radial direction and the curvature of the Mn-doped GaN nanowires' surface, is mediated by N as is evidenced from the overlap between Mn 3d and N 2p states. Calculations of the anisotropic energy further show that the magnetic moment orients preferably along the [1010] direction while the wire axis points along the [0001] direction.
Collapse
Affiliation(s)
- Q Wang
- Physics Department, Virginia Commonwealth University, Richmond, 23284, USA
| | | | | |
Collapse
|
46
|
Choi HJ, Kim DH, Kim TG, Sung YM. The role of GaN/AlN double buffer layer in the crystal growth and photoluminescence of GaN nanowires. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Li Q, Penner RM. Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. NANO LETTERS 2005; 5:1720-5. [PMID: 16159212 DOI: 10.1021/nl050994x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the synthesis and characterization of hemicylindrical shell nanowires (HSNWs) composed of nanocrystalline cadmium sulfide (CdS). CdS HSNWs were synthesized by first electrodepositing microcrystalline cadmium (Cd) nanowires by electrochemical step-edge decoration on graphite electrode surfaces and then converting these Cd nanowires into CdS by exposure to H2S at elevated temperature. These nanowires had a hemicylindrical shell morphology that was produced by the Kirkendall effect, involving disparate rates for diffusion of Cd and S atoms within the nascent CdS layer during the conversion from Cd to CdS. The outer diameter of the CdS HSNWs was 1.6-2.4 times that of Cd precursor nanowires and was adjustable over the range from 116 to 550 nm. CdS HSNWs showed strong, band-edge photoluminescence at 2.45 eV and a fast, reversible, and stable photoconductivity response in air characterized by "on" and "off" times of less than 15 ms.
Collapse
Affiliation(s)
- Qiguang Li
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | |
Collapse
|
48
|
|
49
|
Ahn Y, Dunning J, Park J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. NANO LETTERS 2005; 5:1367-70. [PMID: 16178240 DOI: 10.1021/nl050631x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report optical scanning measurements on photocurrent in individual Si nanowire field effect transistors (SiNW FETs). We observe increases in the conductance of more than 2 orders of magnitude and a large conductance polarization anisotropy of 0.8, making our SiNW FETs a polarization-sensitive, high-resolution light detector. In addition, scanning images of photocurrent at various biases reveal the local energy-band profile especially near the electrode contacts. The magnitude and polarity of the photocurrent vary depending on the gate bias, a behavior that can be explained using band flattening and a Schottky-barrier-type change. This technique is a powerful tool for studying photosensitive nanoscale devices.
Collapse
Affiliation(s)
- Yeonghwan Ahn
- The Rowland Institute at Harvard, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
50
|
Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, V D Hart A, Stoica T, Lüth H. Size-dependent photoconductivity in MBE-grown GaN-nanowires. NANO LETTERS 2005; 5:981-4. [PMID: 15884906 DOI: 10.1021/nl0500306] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on electrical transport in the dark and under ultraviolet (UV) illumination through GaN nanowhiskers grown by molecular beam epitaxy (MBE), which is sensitively dependent on the column diameter. This new effect is quantitatively described by a size dependent surface recombination mechanism. The essential ingredient for the interpretation of this effect is a diameter dependent recombination barrier, which arises from the interplay between column diameter and space charge layer extension at the column surface.
Collapse
Affiliation(s)
- Raffaella Calarco
- Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|