1
|
Cojocariu I, Perilli D, Feyer V, Jugovac M. Graphene-Molecule Hybridization at a Ferromagnetic Interface. Chemistry 2024; 30:e202400857. [PMID: 38842468 DOI: 10.1002/chem.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The introduction of a graphene (Gr) buffer layer between a ferromagnetic substrate and a metallorganic molecule is known to mediate the magnetic coupling between them, an effect attributed to a weak hybridization between graphene and molecule. In this paper, we present experimental evidence of this effect through a detailed investigation of the frontier electronic properties of iron phthalocyanine deposited on cobalt-supported graphene. Despite being physisorbed, the molecular adsorption on Gr/Co induces a sizeable charge transfer from graphene to the molecular macrocycle leading to the partial occupation of the LUMO and the appearance of an energetically localized hybrid state, which can be attributed to the overlap between the graphene pz state and the molecular macrocycle. Graphene is not inert either; the adsorption of the molecule induces doping and alters the Fermi velocity of both the hybrid minicone state and the Dirac cone. Similar effects are observed when the molecular periphery is decorated with fluorine atoms, known for their electron-withdrawing properties, with minimal changes in the energy alignment.
Collapse
Affiliation(s)
- Iulia Cojocariu
- Dipartimento di Fisica, Università degli Studi di Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza S.S. 14, Km 163.5, 34149, Trieste, Italy
| | - Daniele Perilli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Matteo Jugovac
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza S.S. 14, Km 163.5, 34149, Trieste, Italy
| |
Collapse
|
2
|
Tacconi L, Leiszner SS, Briganti M, Cucinotta G, Otero E, Mannini M, Perfetti M. Temperature Induced Reversible Switching of the Magnetic Anisotropy in a Neodymium Complex Adsorbed on Graphite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401627. [PMID: 38773906 DOI: 10.1002/smll.202401627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Controlling the magnetic anisotropy of molecular layers assembled on a surface is one of the challenges that needs to be addressed to create the next-generation spintronic devices. Recently, metal complexes that show a reversible solid-state switch of their magnetic anisotropy in response to physical stimuli, such as temperature and magnetic field, have been discovered. The complex Nd(trensal) (H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine) is predicted to exhibit such property. An ultra-thin film of Nd(trensal) is deposited on highly ordered pyrolytic graphite as a proof-of-concept system to show that this property can be retained at the nanoscale on a layered material. By combining single crystal magnetometric measurements and synchrotron X-ray-based absorption techniques, supported by multiplet ligand field simulations based on the trigonal crystal field surrounding the lanthanide centre, it is demonstrated that changing the temperature reverses the magnetic anisotropy of an ordered film of Nd(trensal), thus opening significant perspectives for the realization of a novel family of temperature-controlled molecular spintronic devices.
Collapse
Affiliation(s)
- Leonardo Tacconi
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Sofie S Leiszner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | - Matteo Briganti
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Giuseppe Cucinotta
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Edwige Otero
- Synchrotron, SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Matteo Mannini
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", Università degli Studi di Firenze & INSTM RU of Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
3
|
Curti L, Prado Y, Michel A, Talbot D, Baptiste B, Otero E, Ohresser P, Journaux Y, Cartier-Dit-Moulin C, Dupuis V, Fleury B, Sainctavit P, Arrio MA, Fresnais J, Lisnard L. Room-temperature-persistent magnetic interaction between coordination complexes and nanoparticles in maghemite-based nanohybrids. NANOSCALE 2024; 16:10607-10617. [PMID: 38758111 DOI: 10.1039/d4nr01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Maghemite nanoparticles functionalised with Co(II) coordination complexes at their surface show a significant increase of their magnetic anisotropy, leading to a doubling of the blocking temperature and a sixfold increase of the coercive field. Magnetometric studies suggest an enhancement that is not related to surface disordering, and point to a molecular effect involving magnetic exchange interactions mediated by the oxygen atoms at the interface as its source. Field- and temperature-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) studies show that the magnetic anisotropy enhancement is not limited to surface atoms and involves the core of the nanoparticle. These studies also point to a mechanism driven by anisotropic exchange and confirm the strength of the magnetic exchange interactions. The coupling between the complex and the nanoparticle persists at room temperature. Simulations based on the XMCD data give an effective exchange field value through the oxido coordination bridge between the Co(II) complex and the nanoparticle that is comparable to the exchange field between iron ions in bulk maghemite. Further evidence of the effectiveness of the oxido coordination bridge in mediating the magnetic interaction at the interface is given with the Ni(II) analog to the Co(II) surface-functionalised nanoparticles. A substrate-induced magnetic response is observed for the Ni(II) complexes, up to room temperature.
Collapse
Affiliation(s)
- Leonardo Curti
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | - Yoann Prado
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Aude Michel
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Delphine Talbot
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Benoît Baptiste
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Yves Journaux
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | | | - Vincent Dupuis
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Benoit Fleury
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | - Philippe Sainctavit
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Marie-Anne Arrio
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Laurent Lisnard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| |
Collapse
|
4
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Buimaga-Iarinca L, Morari C. The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:706-717. [PMID: 30931212 PMCID: PMC6423576 DOI: 10.3762/bjnano.10.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
The characteristics of interaction between six transition-metal porphyrines and the Ag(111) surface are detailed here as resulted from DFT calculations. Van der Waals interactions as well as the strong correlation in 3d orbitals of transition metals were taken into account in all calculations, including the structural relaxation. For each system we investigate four relative positions of the metallic atom on top the surface. We show that the interaction between the transition metal and silver is the result of a combination between the dispersion interaction, charge transfer and weak chemical interaction. The detailed analysis of the physical properties, such as dipolar and magnetic moments and the molecule-surface charge transfer, analyzed for different geometric configurations allows us to propose qualitative models, relevant for the understanding of the self-assembly processes and related phenomena.
Collapse
Affiliation(s)
- Luiza Buimaga-Iarinca
- National Institute for Research and Development of Isotopic and Molecular Technologies,67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cristian Morari
- National Institute for Research and Development of Isotopic and Molecular Technologies,67-103 Donat, 400293 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Jo J, Byun J, Oh I, Park J, Jin MJ, Min BC, Lee J, Yoo JW. Molecular Tunability of Magnetic Exchange Bias and Asymmetrical Magnetotransport in Metalloporphyrin/Co Hybrid Bilayers. ACS NANO 2019; 13:894-903. [PMID: 30557507 DOI: 10.1021/acsnano.8b08689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Individual molecular spins are promising quantum states for emerging computation technologies. The "on surface" configuration of molecules in proximity to a magnetic film allows control over the orientations of molecular spins and coupling between them. The stacking of planar molecular spins could favor antiferromagnetic interlayer couplings and lead to pinning of the magnetic underlayer via the exchange bias, which is extensively utilized in ultrafast and high-density spintronics. However, fundamental understanding of the molecular exchange bias and its operating features on a device has not been unveiled. Here, we showed tunable molecular exchange bias and its asymmetrical magnetotransport characteristics on a device by using the metalloporphyrin/cobalt hybrid films. A series of the distinctive molecular layers showcased a wide range of the interfacial exchange coupling and bias. The transport behaviors of the hybrid bilayer films revealed the molecular exchange bias effect on a fabricated device, representing asymmetric characteristics on anisotropic and angle-dependent magnetoresistances. Theoretical simulations demonstrated close correlations among the interfacial distance, magnetic interaction, and exchange bias. This study of the hybrid interfacial coupling and its impact on magnetic and magnetotransport behaviors will extend functionalities of molecular spinterfaces for emerging information technologies.
Collapse
Affiliation(s)
- Junhyeon Jo
- School of Materials Science and Engineering/Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| | - Jinho Byun
- Department of Physics , Pusan National University , Busan 46241 , Korea
| | - Inseon Oh
- School of Materials Science and Engineering/Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| | - Jungmin Park
- School of Materials Science and Engineering/Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| | - Mi-Jin Jin
- School of Materials Science and Engineering/Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| | - Byoung-Chul Min
- Center for Spintronics , Korea Institute of Science and Technology , Seoul 02792 , Korea
| | - Jaekwang Lee
- Department of Physics , Pusan National University , Busan 46241 , Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering/Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| |
Collapse
|
7
|
Interfacial Spin Manipulation of Nickel-Quinonoid Complex Adsorbed on Co(001) Substrate. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry5010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the structural, electronic, and magnetic properties of a recently synthesized Ni(II)-quinonoid complex upon adsorption on a magnetic Co(001) substrate. Our density functional theory + U (DFT+U) calculations predict that the molecule undergoes a spin-state switching from low-spin S = 0 in the gas phase to high-spin S ≈ 1 when adsorbed on the Co(001) surface. A strong covalent interaction of the quinonoid rings and surface atoms leads to an increase of the Ni–O(N) bond lengths in the chemisorbed molecule that support the spin-state switching. Our DFT+U calculations show that the molecule is ferromagnetically coupled to the substrate. The Co surface–Ni center exchange mechanism was carefully investigated. We identified an indirect exchange interaction via the quinonoid ligands that stabilizes the molecule’s spin moment in ferromagnetic alignment with the Co surface magnetization.
Collapse
|
8
|
Boukari S, Jabbar H, Schleicher F, Gruber M, Avedissian G, Arabski J, Da Costa V, Schmerber G, Rengasamy P, Vileno B, Weber W, Bowen M, Beaurepaire E. Disentangling Magnetic Hardening and Molecular Spin Chain Contributions to Exchange Bias in Ferromagnet/Molecule Bilayers. NANO LETTERS 2018; 18:4659-4663. [PMID: 29991266 DOI: 10.1021/acs.nanolett.8b00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We performed ferromagnetic resonance and magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer in ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect and spinterface-stabilized molecular spin chains. To disentangle these effects, we tuned the metal phthalocyanine molecule central site's magnetic moment to enhance or suppress the formation of spin chains in the molecular film. We find that both effects are distinct, and additive. In the process, we extend the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, experimentally confirm the predicted increase in anisotropy upon molecular adsorption, and show that spin chains within the molecular film can enhance magnetic exchange. Our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments.
Collapse
Affiliation(s)
- Samy Boukari
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Hashim Jabbar
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Filip Schleicher
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Manuel Gruber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Garen Avedissian
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Jacek Arabski
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Victor Da Costa
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Guy Schmerber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Prashanth Rengasamy
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Bertrand Vileno
- Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS UMR7177 , 4 rue Blaise Pascal , F-67081 Strasbourg Cedex , France
- French EPR Federation of Research (REseau NAtional de Rpe interDisciplinaire (RENARD), Fédération IR-RPE CNRS 3443) , 59655 Villeneuve d'Ascq Cedex , France
| | - Wolfgang Weber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Martin Bowen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| | - Eric Beaurepaire
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43 , F-67034 Strasbourg Cedex 2 , France
| |
Collapse
|
9
|
Corradini V, Candini A, Klar D, Biagi R, De Renzi V, Lodi Rizzini A, Cavani N, Del Pennino U, Klyatskaya S, Ruben M, Velez-Fort E, Kummer K, Brookes NB, Gargiani P, Wende H, Affronte M. Probing magnetic coupling between LnPc 2 (Ln = Tb, Er) molecules and the graphene/Ni (111) substrate with and without Au-intercalation: role of the dipolar field. NANOSCALE 2017; 10:277-283. [PMID: 29210429 DOI: 10.1039/c7nr06610d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lanthanides (Ln) bis-phthalocyanine (Pc), the so-called LnPc2double decker, are a promising class of molecules with a well-defined magnetic anisotropy. In this work, we investigate the magnetic properties of LnPc2 molecules UHV-deposited on a graphene/Ni(111) substrate and how they modify when an Au layer is intercalated between Ni and graphene. X-ray absorption spectroscopy (XAS), and linear and magnetic circular dichroism (XLD and XMCD) were used to characterize the systems and probe the magnetic coupling between LnPc2 molecules and the Ni substrate through graphene, both gold-intercalated and not. Two types of LnPc2 molecules (Ln = Tb, Er) with a different magnetic anisotropy (easy-axis for Tb, easy-plane for Er) were considered. XMCD shows an antiferromagnetic coupling between Ln and Ni(111) even in the presence of the graphene interlayer. Au intercalation causes the vanishing of the interaction between Tb and Ni(111). In contrast, in the case of ErPc2, we found that the gold intercalation does not perturb the magnetic coupling. These results, combined with the magnetic anisotropy of the systems, suggest the possible importance of the magnetic dipolar field contribution for determining the magnetic behaviour.
Collapse
Affiliation(s)
- V Corradini
- Centro S3, Istituto Nanoscienze - CNR, via G. Campi 213/A, 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leuenberger D, Zabka WD, Shah OFR, Schnidrig S, Probst B, Alberto R, Osterwalder J. Atomically Resolved Band Bending Effects in a p-n Heterojunction of Cu 2O and a Cobalt Macrocycle. NANO LETTERS 2017; 17:6620-6625. [PMID: 28972377 DOI: 10.1021/acs.nanolett.7b02486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a hetero junction based on macrocyclic hydrogen evolution catalysts (HEC) physisorbed on a single crystalline Cu2O(111) surface. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) provides the spatial resolution of the band bending within the first nanometer of the subsurface region. Oxygen vacancies on the Cu2O(111) surface cause a downward band bending which is conserved upon adsorption of HEC layers of various thicknesses. This allows photoexcited electrons to be directed toward the surface where they can be made available for the reduction of protons by the HEC. Furthermore, Poisson's equation relates more subtle changes in the measured ARXPS spectra to the local charge density profile within the first 7 Å away from the surface and with atomic resolution. All observations are consistent with a polarization of the molecular layer in response to the electrical field at the oxide surface, which should be a general phenomenon at such organic-oxide heterointerfaces.
Collapse
Affiliation(s)
- Dominik Leuenberger
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Wolf-D Zabka
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Oliver-F R Shah
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Stephan Schnidrig
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Benjamin Probst
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roger Alberto
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jürg Osterwalder
- Physics Institute, ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
11
|
Wang Y, Li X, Zheng X, Yang J. Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption. J Chem Phys 2017; 147:134701. [PMID: 28987089 DOI: 10.1063/1.4996970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Smykalla L, Mende C, Fronk M, Siles PF, Hietschold M, Salvan G, Zahn DRT, Schmidt OG, Rüffer T, Lang H. (Metallo)porphyrins for potential materials science applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1786-1800. [PMID: 28904840 PMCID: PMC5588670 DOI: 10.3762/bjnano.8.180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.
Collapse
Affiliation(s)
- Lars Smykalla
- Solid Surfaces Analysis Group, Institute of Physics, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Carola Mende
- Inorganic Chemistry, Institute of Chemistry, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Michael Fronk
- Semiconductor Physics, Institute of Physics, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Pablo F Siles
- Material Systems for Nanoelectronics, TU Chemnitz, D-09107 Chemnitz, Germany
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Michael Hietschold
- Solid Surfaces Analysis Group, Institute of Physics, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Georgeta Salvan
- Semiconductor Physics, Institute of Physics, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Institute of Physics, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Oliver G Schmidt
- Material Systems for Nanoelectronics, TU Chemnitz, D-09107 Chemnitz, Germany
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Tobias Rüffer
- Inorganic Chemistry, Institute of Chemistry, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| | - Heinrich Lang
- Inorganic Chemistry, Institute of Chemistry, Faculty of Natural Sciences, TU Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|
13
|
Kuch W, Bernien M. Controlling the magnetism of adsorbed metal-organic molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:023001. [PMID: 27841987 DOI: 10.1088/0953-8984/29/2/023001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule's magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.
Collapse
Affiliation(s)
- Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | |
Collapse
|
14
|
Muntwiler M, Zhang J, Stania R, Matsui F, Oberta P, Flechsig U, Patthey L, Quitmann C, Glatzel T, Widmer R, Meyer E, Jung TA, Aebi P, Fasel R, Greber T. Surface science at the PEARL beamline of the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:354-366. [PMID: 28009578 PMCID: PMC5182030 DOI: 10.1107/s1600577516018646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/21/2016] [Indexed: 05/19/2023]
Abstract
The Photo-Emission and Atomic Resolution Laboratory (PEARL) is a new soft X-ray beamline and surface science laboratory at the Swiss Light Source. PEARL is dedicated to the structural characterization of local bonding geometry at surfaces and interfaces of novel materials, in particular of molecular adsorbates, nanostructured surfaces, and surfaces of complex materials. The main experimental techniques are soft X-ray photoelectron spectroscopy, photoelectron diffraction, and scanning tunneling microscopy (STM). Photoelectron diffraction in angle-scanned mode measures bonding angles of atoms near the emitter atom, and thus allows the orientation of small molecules on a substrate to be determined. In energy scanned mode it measures the distance between the emitter and neighboring atoms; for example, between adsorbate and substrate. STM provides complementary, real-space information, and is particularly useful for comparing the sample quality with reference measurements. In this article, the key features and measured performance data of the beamline and the experimental station are presented. As scientific examples, the adsorbate-substrate distance in hexagonal boron nitride on Ni(111), surface quantum well states in a metal-organic network of dicyano-anthracene on Cu(111), and circular dichroism in the photoelectron diffraction of Cu(111) are discussed.
Collapse
Affiliation(s)
| | - Jun Zhang
- Paul Scherrer Institut, Villigen, Switzerland
| | - Roland Stania
- Paul Scherrer Institut, Villigen, Switzerland
- Universität Zürich, Zürich, Switzerland
| | - Fumihiko Matsui
- Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Peter Oberta
- Paul Scherrer Institut, Villigen, Switzerland
- Institute of Physics, Academy of Sciences of the Czech Republic, Praha Czech Republic
| | | | - Luc Patthey
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Quitmann
- Paul Scherrer Institut, Villigen, Switzerland
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | - Roland Widmer
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | | | - Thomas A. Jung
- Paul Scherrer Institut, Villigen, Switzerland
- Universität Basel, Basel, Switzerland
| | | | - Roman Fasel
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | | |
Collapse
|
15
|
Campbell VE, Tonelli M, Cimatti I, Moussy JB, Tortech L, Dappe YJ, Rivière E, Guillot R, Delprat S, Mattana R, Seneor P, Ohresser P, Choueikani F, Otero E, Koprowiak F, Chilkuri VG, Suaud N, Guihéry N, Galtayries A, Miserque F, Arrio MA, Sainctavit P, Mallah T. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices. Nat Commun 2016; 7:13646. [PMID: 27929089 PMCID: PMC5476799 DOI: 10.1038/ncomms13646] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/14/2016] [Indexed: 11/26/2022] Open
Abstract
A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface.
Controlling the magnetic response of a molecular device is important for spintronic applications. Here the authors report the self-assembly, magnetic coupling, and anisotropy of two transition metal complexes bound to a ferrimagnetic surface, and probe the role of the nature of the transition metal ion.
Collapse
Affiliation(s)
- Victoria E Campbell
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Monica Tonelli
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Irene Cimatti
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Jean-Baptiste Moussy
- SPEC, CEA, CNRS, Univesité Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Ludovic Tortech
- IPCM, UMR CNRS 7201, UPMC, Université Pierre et Marie Curie, F-75005 Paris, France
| | - Yannick J Dappe
- SPEC, CEA, CNRS, Univesité Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Sophie Delprat
- Unité Mixte de Physique CNRS/Thales, 1 Avenue Auguste Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - Richard Mattana
- Unité Mixte de Physique CNRS/Thales, 1 Avenue Auguste Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - Pierre Seneor
- Unité Mixte de Physique CNRS/Thales, 1 Avenue Auguste Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin-BP 48, 91192 Gif-sur-Yvette, France
| | - Fadi Choueikani
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin-BP 48, 91192 Gif-sur-Yvette, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin-BP 48, 91192 Gif-sur-Yvette, France
| | - Florian Koprowiak
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse III, 118, route de Narbonne, 31062 Toulouse, France
| | - Vijay Gopal Chilkuri
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse III, 118, route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse III, 118, route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse III, 118, route de Narbonne, 31062 Toulouse, France
| | - Anouk Galtayries
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, F-75005 Paris, France
| | - Frederic Miserque
- CEA/DEN/DANS/DPC/SCCME, Laboratoire d'Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette, France
| | - Marie-Anne Arrio
- IMPMC-CNRS, Université Pierre et Marie Curie, F-75005 Paris, France
| | - Philippe Sainctavit
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin-BP 48, 91192 Gif-sur-Yvette, France.,IMPMC-CNRS, Université Pierre et Marie Curie, F-75005 Paris, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
16
|
Droghetti A, Thielen P, Rungger I, Haag N, Großmann N, Stöckl J, Stadtmüller B, Aeschlimann M, Sanvito S, Cinchetti M. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat Commun 2016; 7:12668. [PMID: 27578395 PMCID: PMC5013676 DOI: 10.1038/ncomms12668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022] Open
Abstract
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Collapse
Affiliation(s)
- Andrea Droghetti
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland.,Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del Pais Vasco CFM, CSIC-UPV/EHU-MPC &DIPC, Avenue Tolosa 72, 20018 San Sebastian, Spain
| | - Philip Thielen
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany.,Graduate School of Excellence Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany
| | - Ivan Rungger
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland.,National Physical Laboratory, Teddington TW11 0LW, UK
| | - Norman Haag
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany
| | - Nicolas Großmann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany
| | - Johannes Stöckl
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany
| | - Benjamin Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany.,Graduate School of Excellence Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany
| | - Martin Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Mirko Cinchetti
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern, Germany
| |
Collapse
|
17
|
Verdini A, Shinde P, Montanari GL, Suran-Brunelli ST, Caputo M, Di Santo G, Pignedoli CA, Floreano L, Passerone D, Goldoni A. Water Formation for the Metalation of Porphyrin Molecules on Oxidized Cu(111). Chemistry 2016; 22:14672-7. [DOI: 10.1002/chem.201602105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Verdini
- Istituto Officina dei Materiali-CNR; Laboratorio TASC; s.s. 14 km 163.5 34149 Trieste Italy
| | - Prashant Shinde
- Empa; Swiss Federal Laboratories for Materials Science and Technology; Nanotech@surfaces Laboratory; Ueberlandstrasse 129 8600 Dübendorf Switzerland
| | - Gian Luca Montanari
- Dipartimento di Fisica; Università di Trieste; via A. Valerio 2 34100 Trieste Italy
| | | | - Marco Caputo
- Laboratoire de Physique des Solides; CNRS-UMR 8502; Universitè Paris-Sud; 91405 Orsay France
| | - Giovanni Di Santo
- Elettra Sincrotrone Trieste; s.s. 14 km 163.5 in Area Science Park, 34149 Trieste Italy
| | - Carlo A. Pignedoli
- Empa; Swiss Federal Laboratories for Materials Science and Technology; Nanotech@surfaces Laboratory; Ueberlandstrasse 129 8600 Dübendorf Switzerland
| | - Luca Floreano
- Istituto Officina dei Materiali-CNR; Laboratorio TASC; s.s. 14 km 163.5 34149 Trieste Italy
| | - Daniele Passerone
- Empa; Swiss Federal Laboratories for Materials Science and Technology; Nanotech@surfaces Laboratory; Ueberlandstrasse 129 8600 Dübendorf Switzerland
| | - Andrea Goldoni
- Elettra Sincrotrone Trieste; s.s. 14 km 163.5 in Area Science Park, 34149 Trieste Italy
| |
Collapse
|
18
|
Djeghloul F, Gruber M, Urbain E, Xenioti D, Joly L, Boukari S, Arabski J, Bulou H, Scheurer F, Bertran F, Le Fèvre P, Taleb-Ibrahimi A, Wulfhekel W, Garreau G, Hajjar-Garreau S, Wetzel P, Alouani M, Beaurepaire E, Bowen M, Weber W. High Spin Polarization at Ferromagnetic Metal-Organic Interfaces: A Generic Property. J Phys Chem Lett 2016; 7:2310-2315. [PMID: 27266579 DOI: 10.1021/acs.jpclett.6b01112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A high spin polarization of states around the Fermi level, EF, at room temperature has been measured in the past at the interface between a few molecular candidates and the ferromagnetic metal Co. Is this promising property for spintronics limited to these candidates? Previous reports suggested that certain conditions, such as strong ferromagnetism, i.e., a fully occupied spin-up d band of the ferromagnet, or the presence of π bonds on the molecule, i.e., molecular conjugation, needed to be met. What rules govern the presence of this property? We have performed spin-resolved photoemission spectroscopy measurements on a variety of such interfaces. We find that this property is robust against changes to the molecule and ferromagnetic metal's electronic properties, including the aforementioned conditions. This affirms the generality of highly spin-polarized states at the interface between a ferromagnetic metal and a molecule and augurs bright prospects toward integrating these interfaces within organic spintronic devices.
Collapse
Affiliation(s)
- Fatima Djeghloul
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Manuel Gruber
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Etienne Urbain
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Dimitra Xenioti
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Loic Joly
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Samy Boukari
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Jacek Arabski
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Hervé Bulou
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Fabrice Scheurer
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - François Bertran
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Patrick Le Fèvre
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Amina Taleb-Ibrahimi
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Wulf Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | - Guillaume Garreau
- Institut de Science des Matériaux de Mulhouse, CNRS-UMR 7361, Université de Haute-Alsace , 68057 Mulhouse, France
| | - Samar Hajjar-Garreau
- Institut de Science des Matériaux de Mulhouse, CNRS-UMR 7361, Université de Haute-Alsace , 68057 Mulhouse, France
| | - Patrick Wetzel
- Institut de Science des Matériaux de Mulhouse, CNRS-UMR 7361, Université de Haute-Alsace , 68057 Mulhouse, France
| | - Mebarek Alouani
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Eric Beaurepaire
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Martin Bowen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Wolfgang Weber
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| |
Collapse
|
19
|
Salazar C, Lach J, Rückerl F, Baumann D, Schimmel S, Knupfer M, Kersting B, Büchner B, Hess C. STM Study of Au(111) Surface-Grafted Paramagnetic Macrocyclic Complexes [Ni2L(Hmba)](+) via Ambidentate Coligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4464-4471. [PMID: 27093097 DOI: 10.1021/acs.langmuir.6b00772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular anchoring and electronic properties of macrocyclic complexes fixed on gold surfaces have been investigated mainly by using scanning tunnelling microscopy (STM) and complemented with X-ray photoelectron spectroscopy (XPS). Exchange-coupled macrocyclic complexes [Ni2L(Hmba)](+) were deposited via 4-mercaptobenzoate ligands on the surface of a Au(111) single crystal from a mM solution of the perchlorate salt [Ni2L(Hmba)]ClO4 in dichloromethane. The combined results from STM and XPS show the formation of large monolayers anchored via Au-S bonds with a height of about 1.5 nm. Two apparent granular structures are visible: one related to the dinickel molecular complexes (cationic structures) and a second one related to the counterions ClO4(-) which stabilize the monolayer. No type of short and long-range order is observed. STM tip-interaction with the monolayer reveals higher degradation after 8 h of measurement. Spectroscopy measurements suggest a gap of about 2.5 eV between HOMO and LUMO of the cationic structures and smaller gap in the areas related to the anionic structures.
Collapse
Affiliation(s)
- Christian Salazar
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
| | - Jochen Lach
- Institut für Anorganische Chemie, Universität Leipzig , 04103 Leipzig, Germany
| | - Florian Rückerl
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
| | - Danny Baumann
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
| | - Martin Knupfer
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie, Universität Leipzig , 04103 Leipzig, Germany
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
- Center for Transport and Devices, Technische Universität Dresden , 01069 Dresden, Germany
| | - Christian Hess
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden) , Helmholtzstrasse 20, 01171 Dresden, Germany
- Center for Transport and Devices, Technische Universität Dresden , 01069 Dresden, Germany
| |
Collapse
|
20
|
Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R, Osterwalder J. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111). NANOSCALE 2016; 8:7958-7968. [PMID: 27006307 DOI: 10.1039/c5nr08953k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.
Collapse
Affiliation(s)
- Gerson Mette
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| | - Denys Sutter
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| | - Yeliz Gurdal
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Stephan Schnidrig
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Benjamin Probst
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Hutter
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Roger Alberto
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Osterwalder
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
21
|
Gueddida S, Gruber M, Miyamachi T, Beaurepaire E, Wulfhekel W, Alouani M. Exchange Coupling of Spin-Crossover Molecules to Ferromagnetic Co Islands. J Phys Chem Lett 2016; 7:900-904. [PMID: 26895075 DOI: 10.1021/acs.jpclett.6b00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The properties of Fe(1,10-phenanthroline)2(NCS)2 (Fe-phen) molecules deposited on Co/Cu(111) are studied with scanning tunneling microscopy (STM) operated in ultrahigh vacuum at low temperature (4 K) and ab initio calculations. Both the experimental and theoretical results are used to identify the high-spin (HS) state of Fe-phen. Additionally, the calculations reveal a strong spin-polarization of the density of states (DOS) and is validated experimentally using the spin sensitivity of spin-polarized STM. Finally, it is shown that the magnetic moment of the Fe-ion within HS Fe-phen is strongly magnetically coupled to the underlying magnetic Co through the NCS groups. These findings enable promising spintronic perspectives.
Collapse
Affiliation(s)
- Saber Gueddida
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Manuel Gruber
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Toshio Miyamachi
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Eric Beaurepaire
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Wulf Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | - Mebarek Alouani
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Heinemann T, Antlanger M, Mazars M, Klapp SHL, Kahl G. Equilibrium structures of anisometric, quadrupolar particles confined to a monolayer. J Chem Phys 2016; 144:074504. [PMID: 26896992 DOI: 10.1063/1.4941585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the structural properties of a two-dimensional system of ellipsoidal particles carrying a linear quadrupole moment in their center. These particles represent a simple model for a variety of uncharged, non-polar conjugated organic molecules. Using optimization tools based on ideas of evolutionary algorithms, we first examine the ground state structures as we vary the aspect ratio of the particles and the pressure. Interestingly, we find, besides the intuitively expected T-like configurations, a variety of complex structures, characterized with up to three different particle orientations. In an effort to explore the impact of thermal fluctuations, we perform constant-pressure molecular dynamics simulations within a range of rather low temperatures. We observe that ground state structures formed by particles with a large aspect ratio are in particular suited to withstand fluctuations up to rather high temperatures. Our comprehensive investigations allow for a deeper understanding of molecular or colloidal monolayer arrangements under the influence of a typical electrostatic interaction on a coarse-grained level.
Collapse
Affiliation(s)
- Thomas Heinemann
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Moritz Antlanger
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Martial Mazars
- Laboratoire de Physique Théorique (UMR 8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| |
Collapse
|
23
|
Gruber M, Ibrahim F, Boukari S, Joly L, Da Costa V, Studniarek M, Peter M, Isshiki H, Jabbar H, Davesne V, Arabski J, Otero E, Choueikani F, Chen K, Ohresser P, Wulfhekel W, Scheurer F, Beaurepaire E, Alouani M, Weber W, Bowen M. Spin-Dependent Hybridization between Molecule and Metal at Room Temperature through Interlayer Exchange Coupling. NANO LETTERS 2015; 15:7921-7926. [PMID: 26575946 DOI: 10.1021/acs.nanolett.5b02961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We experimentally and theoretically show that the magnetic coupling at room temperature between paramagnetic Mn within manganese phthalocyanine molecules and a Co layer persists when separated by a Cu spacer. The molecule's magnetization amplitude and direction can be tuned by varying the Cu-spacer thickness and evolves according to an interlayer exchange coupling mechanism. Ab initio calculations predict a highly spin-polarized density of states at the Fermi level of this metal-molecule interface, thereby strengthening prospective spintronics applications.
Collapse
Affiliation(s)
- Manuel Gruber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Fatima Ibrahim
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Samy Boukari
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Loïc Joly
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Victor Da Costa
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Michał Studniarek
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
- Synchrotron SOLEIL , L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Moritz Peter
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Hironari Isshiki
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Hashim Jabbar
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Vincent Davesne
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
- Physikalisches Institut, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Jacek Arabski
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Edwige Otero
- Synchrotron SOLEIL , L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Fadi Choueikani
- Synchrotron SOLEIL , L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Kai Chen
- Synchrotron SOLEIL , L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Philippe Ohresser
- Synchrotron SOLEIL , L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Wulf Wulfhekel
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
- Institute of Nanotechnology, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | - Fabrice Scheurer
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Eric Beaurepaire
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Mebarek Alouani
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Wolfgang Weber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| | - Martin Bowen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 , 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
| |
Collapse
|
24
|
Gruber M, Ibrahim F, Boukari S, Isshiki H, Joly L, Peter M, Studniarek M, Da Costa V, Jabbar H, Davesne V, Halisdemir U, Chen J, Arabski J, Otero E, Choueikani F, Chen K, Ohresser P, Wulfhekel W, Scheurer F, Weber W, Alouani M, Beaurepaire E, Bowen M. Exchange bias and room-temperature magnetic order in molecular layers. NATURE MATERIALS 2015; 14:981-984. [PMID: 26191660 DOI: 10.1038/nmat4361] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
Molecular semiconductors may exhibit antiferromagnetic correlations well below room temperature. Although inorganic antiferromagnetic layers may exchange bias single-molecule magnets, the reciprocal effect of an antiferromagnetic molecular layer magnetically pinning an inorganic ferromagnetic layer through exchange bias has so far not been observed. We report on the magnetic interplay, extending beyond the interface, between a cobalt ferromagnetic layer and a paramagnetic organic manganese phthalocyanine (MnPc) layer. These ferromagnetic/organic interfaces are called spinterfaces because spin polarization arises on them. The robust magnetism of the Co/MnPc spinterface stabilizes antiferromagnetic ordering at room temperature within subsequent MnPc monolayers away from the interface. The inferred magnetic coupling strength is much larger than that found in similar bulk, thin or ultrathin systems. In addition, at lower temperature, the antiferromagnetic MnPc layer induces an exchange bias on the Co film, which is magnetically pinned. These findings create new routes towards designing organic spintronic devices.
Collapse
Affiliation(s)
- Manuel Gruber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1 76131 Karlsruhe, Germany
| | - Fatima Ibrahim
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Samy Boukari
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Hironari Isshiki
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1 76131 Karlsruhe, Germany
| | - Loïc Joly
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Moritz Peter
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1 76131 Karlsruhe, Germany
| | - Michał Studniarek
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France
| | - Victor Da Costa
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Hashim Jabbar
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Vincent Davesne
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1 76131 Karlsruhe, Germany
| | - Ufuk Halisdemir
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Jinjie Chen
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1 76131 Karlsruhe, Germany
| | - Jacek Arabski
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France
| | - Fadi Choueikani
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France
| | - Kai Chen
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France
| | - Wulf Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Fabrice Scheurer
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Wolfgang Weber
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Mebarek Alouani
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Eric Beaurepaire
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| | - Martin Bowen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43 F-67034 Strasbourg Cedex 2, France
| |
Collapse
|
25
|
Glaser M, Peisert H, Adler H, Aygül U, Ivanovic M, Nagel P, Merz M, Schuppler S, Chassé T. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films. J Chem Phys 2015; 142:101918. [PMID: 25770507 DOI: 10.1063/1.4907899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.
Collapse
Affiliation(s)
- Mathias Glaser
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Heiko Peisert
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hilmar Adler
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Umut Aygül
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Milutin Ivanovic
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Peter Nagel
- Karlsruher Institut für Technologie, Institut für Festkörperphysik, 76021 Karlsruhe, Germany
| | - Michael Merz
- Karlsruher Institut für Technologie, Institut für Festkörperphysik, 76021 Karlsruhe, Germany
| | - Stefan Schuppler
- Karlsruher Institut für Technologie, Institut für Festkörperphysik, 76021 Karlsruhe, Germany
| | - Thomas Chassé
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Vijayaraghavan S, Auwärter W, Ecija D, Seufert K, Rusponi S, Houwaart T, Sautet P, Bocquet ML, Thakur P, Stepanow S, Schlickum U, Etzkorn M, Brune H, Barth JV. Restoring the Co magnetic moments at interfacial Co-porphyrin arrays by site-selective uptake of iron. ACS NANO 2015; 9:3605-3616. [PMID: 25856066 DOI: 10.1021/nn507346x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetochemistry recently emerged as a promising approach to control addressable spin arrays on surfaces. Here we report on the binding, spatial ordering, and magnetic properties of Fe on a highly regular Co-tetraphenylporphyrin (Co-TPP) template and highlight how the Fe controls the magnetism of the Co centers. As evidenced by scanning tunneling microscopy (STM) single Fe atoms attach to the saddle-shape conformers site-selectively in a unique coordination environment offered through a heptamer defined by the Co-N-C-C-C-N cyclic subunit. While the magnetic moment of Co is quenched for bare Co-TPP/Ag(111), the Fe presence revives it. Our X-ray magnetic circular dichroism (XMCD) experiments, complemented by density functional theory (DFT) calculations, evidence a ferromagnetic coupling between the Fe and the Co center concomitant with a complex charge redistribution involving the porphyrin ligand. Thus, we demonstrate an unusual metalloporphyrin coordination geometry that opens pathways to spatially order and engineer magnetic moments in surface-based nanostructures.
Collapse
Affiliation(s)
| | - Willi Auwärter
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - David Ecija
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Knud Seufert
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Stefano Rusponi
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Torsten Houwaart
- §Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, F-69364 Cedex 07 Lyon, France
| | - Philippe Sautet
- §Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, F-69364 Cedex 07 Lyon, France
| | - Marie-Laure Bocquet
- §Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, F-69364 Cedex 07 Lyon, France
| | - Pardeep Thakur
- ⊥European Synchrotron Radiation Facility (ESRF), B.P. 220, Grenoble Cedex F-38043, France
| | - Sebastian Stepanow
- ∥Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Uta Schlickum
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- #Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Markus Etzkorn
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- #Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Harald Brune
- ‡Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Johannes V Barth
- †Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
27
|
Abstract
Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.
Collapse
|
28
|
Wäckerlin C, Donati F, Singha A, Baltic R, Uldry AC, Delley B, Rusponi S, Dreiser J. Strong antiferromagnetic exchange between manganese phthalocyanine and ferromagnetic europium oxide. Chem Commun (Camb) 2015; 51:12958-61. [DOI: 10.1039/c5cc01823d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A record strong antiferromagnetic exchange interaction between an organic magnetic semiconductor and an insulating ferromagnetic oxide is observed.
Collapse
Affiliation(s)
- Christian Wäckerlin
- Institute of Condensed Matter Physics
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Fabio Donati
- Institute of Condensed Matter Physics
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Aparajita Singha
- Institute of Condensed Matter Physics
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Romana Baltic
- Institute of Condensed Matter Physics
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | | | - Bernard Delley
- Condensed Matter Theory
- Paul Scherrer Institut
- CH-5232 Villigen
- Switzerland
| | - Stefano Rusponi
- Institute of Condensed Matter Physics
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Jan Dreiser
- Institute of Condensed Matter Physics
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
- Swiss Light Source
| |
Collapse
|
29
|
Girovsky J, Buzzi M, Wäckerlin C, Siewert D, Nowakowski J, Oppeneer PM, Nolting F, Jung TA, Kleibert A, Ballav N. Investigating magneto-chemical interactions at molecule-substrate interfaces by X-ray photo-emission electron microscopy. Chem Commun (Camb) 2014; 50:5190-2. [PMID: 24418897 DOI: 10.1039/c3cc47726f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magneto-chemical interaction of spin-bearing molecules with substrates is interesting from a coordination chemistry point of view and relevant for spintronics. Unprecedented insight is provided by X-ray photo-emission electron microscopy combined with X-ray magnetic circular dichroism spectroscopy. Here the coupling of a Mn-porphyrin ad-layer to the ferromagnetic Co substrate through suitably modified interfaces is analyzed with this technique.
Collapse
Affiliation(s)
- Jan Girovsky
- Laboratory for Micro and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Klar D, Candini A, Joly L, Klyatskaya S, Krumme B, Ohresser P, Kappler JP, Ruben M, Wende H. Hysteretic behaviour in a vacuum deposited submonolayer of single ion magnets. Dalton Trans 2014; 43:10686-9. [DOI: 10.1039/c4dt01005a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Hermanns CF, Bernien M, Krüger A, Schmidt C, Waßerroth ST, Ahmadi G, Heinrich BW, Schneider M, Brouwer PW, Franke KJ, Weschke E, Kuch W. Magnetic coupling of Gd3N@C80 endohedral fullerenes to a substrate. PHYSICAL REVIEW LETTERS 2013; 111:167203. [PMID: 24182296 DOI: 10.1103/physrevlett.111.167203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Using magnetic endohedral fullerenes for molecular spintronics requires control over their encapsulated magnetic moments. We show by field-dependent x-ray magnetic circular dichroism measurements of Gd3N@C80 endohedral fullerenes adsorbed on a Cu surface that the magnetic moments of the encapsulated Gd atoms lie in a 4f7 ground state and couple ferromagnetically to each other. When the molecules are in contact with a ferromagnetic Ni substrate, we detect two different Gd species. The more abundant one couples antiferromagnetically to the Ni, whereas the other one exhibits a stronger and ferromagnetic coupling to the substrate. Both of these couplings to the substrate can be explained by an indirect exchange mechanism mediated by the carbon cage. The origin of the distinctly different behavior may be attributed to different orientations and thus electronic coupling of the carbon cage to the substrate, as revealed by scanning tunneling microscopy of the fullerenes on Cu.
Collapse
Affiliation(s)
- Christian F Hermanns
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hermanns CF, Tarafder K, Bernien M, Krüger A, Chang YM, Oppeneer PM, Kuch W. Magnetic coupling of porphyrin molecules through graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3473-3477. [PMID: 23695989 DOI: 10.1002/adma.201205275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Indexed: 06/02/2023]
Abstract
X-ray magnetic circular dichroism (XMCD) measurements and density functional theory (DFT)+U calculations reveal an unexpected antiferromagnetic coupling between physisorbed paramagnetic Co-porphyrin molecules and a Ni surface, separated by a graphene layer. A positive magnetization at the Ni substrate atoms is mediated by graphene and induces a negative one at the Co site, despite only a very small overlap between macrocyclic π and graphene pz -orbitals.
Collapse
Affiliation(s)
- Christian F Hermanns
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Golecki M, Lach J, Jeremies A, Lungwitz F, Fronk M, Salvan G, Zahn DRT, Park J, Krupskaya Y, Kataev V, Klingeler R, Büchner B, Mahns B, Knupfer M, Siles PF, Grimm D, Schmidt OG, Reis A, Thiel WR, Breite D, Abel B, Kersting B. Chemisorption of exchange-coupled [Ni2L(dppba)]+ complexes on gold by using ambidentate 4-(diphenylphosphino)benzoate co-ligands. Chemistry 2013; 19:7787-801. [PMID: 23595564 DOI: 10.1002/chem.201300496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Indexed: 11/09/2022]
Abstract
A new strategy for the fixation of redox-active dinickel(II) complexes with high-spin ground states to gold surfaces was developed. The dinickel(II) complex [Ni2L(Cl)]ClO4 (1ClO4), in which L(2-) represents a 24-membered macrocyclic hexaaza-dithiophenolate ligand, reacts with ambidentate 4-(diphenylphosphino)benzoate (dppba) to form the carboxylato-bridged complex [Ni2L(dppba)](+), which can be isolated as an air-stable perchlorate [Ni2L(dppba)]ClO4 (2ClO4) or tetraphenylborate [Ni2L(dppba)]BPh4 (2BPh4) salt. The auration of 2ClO4 was probed on a molecular level, by reaction with AuCl, which leads to the monoaurated Ni(II)2Au(I) complex [Ni(II)2L(dppba)Au(I)Cl]ClO4 (3ClO4). Metathesis of 3ClO4 with NaBPh4 produces [Ni(II)2L(dppba)Au(I)Ph]BPh4 (4BPh4), in which the Cl(-) is replaced by a Ph(-) group. The complexes were fully characterized by ESI mass spectrometry, IR and UV/Vis spectroscopy, X-ray crystallography (2BPh4 and 4BPh4), cyclic voltammetry, SQUID magnetometry and HF-ESR spectroscopy. Temperature-dependent magnetic susceptibility measurements reveal a ferromagnetic coupling J = +15.9 and +17.9 cm(-1) between the two Ni(II) ions in 2ClO4 and 4BPh4 (H = -2 JS1S2). HF-ESR measurements yield a negative axial magnetic anisotropy (D<0), which implies a bistable (easy axis) magnetic ground state. The binding of the [Ni2L(dppba)]ClO4 complex to gold was ascertained by four complementary surface analytical methods: contact angle measurements, atomic-force microscopy, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry. The results indicate that the complexes are attached to the Au surface through coordinative Au-P bonds in a monolayer.
Collapse
Affiliation(s)
- Matthias Golecki
- Institut für Anorganische Chemie, Universität Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wäckerlin C, Nowakowski J, Liu SX, Jaggi M, Siewert D, Girovsky J, Shchyrba A, Hählen T, Kleibert A, Oppeneer PM, Nolting F, Decurtins S, Jung TA, Ballav N. Two-dimensional supramolecular electron spin arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2404-2408. [PMID: 23340977 DOI: 10.1002/adma.201204274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/04/2012] [Indexed: 06/01/2023]
Abstract
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3).
Collapse
Affiliation(s)
- Christian Wäckerlin
- Laboratory for Micro and Nanotechnology, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Klanke J, Rentschler E, Medjanik K, Kutnyakhov D, Schönhense G, Krasnikov S, Shvets IV, Schuppler S, Nagel P, Merz M, Elmers HJ. Beyond the Heisenberg model: anisotropic exchange interaction between a Cu-tetraazaporphyrin monolayer and Fe3O4(100). PHYSICAL REVIEW LETTERS 2013; 110:137202. [PMID: 23581364 DOI: 10.1103/physrevlett.110.137202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Indexed: 06/02/2023]
Abstract
The exchange coupling of a single spin localized at the central ion of Cu-tetraazaporphyrin on a magnetite(100) surface has been studied using x-ray magnetic circular dichroism (XMCD). Sum rule analysis of the XMCD spectra results in Cu spin and orbital magnetic moments as a function of the applied external field at low temperatures (20 K). The exchange coupling is positive for magnetization direction perpendicular to the surface (ferromagnetic) while it is negative for in-plane magnetization direction (antiferromagnetic). We attribute the anisotropy of the Heisenberg exchange coupling to an orbitally dependent exchange Hamiltonian.
Collapse
Affiliation(s)
- J Klanke
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wäckerlin C, Tarafder K, Girovsky J, Nowakowski J, Hählen T, Shchyrba A, Siewert D, Kleibert A, Nolting F, Oppeneer PM, Jung TA, Ballav N. Ammonia Coordination Introducing a Magnetic Moment in an On-Surface Low-Spin Porphyrin. Angew Chem Int Ed Engl 2013; 52:4568-71. [DOI: 10.1002/anie.201208028] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/07/2013] [Indexed: 11/05/2022]
|
37
|
Wäckerlin C, Tarafder K, Girovsky J, Nowakowski J, Hählen T, Shchyrba A, Siewert D, Kleibert A, Nolting F, Oppeneer PM, Jung TA, Ballav N. Ammonia Coordination Introducing a Magnetic Moment in an On-Surface Low-Spin Porphyrin. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Abdurakhmanova N, Tseng TC, Langner A, Kley CS, Sessi V, Stepanow S, Kern K. Superexchange-mediated ferromagnetic coupling in two-dimensional Ni-TCNQ networks on metal surfaces. PHYSICAL REVIEW LETTERS 2013; 110:027202. [PMID: 23383936 DOI: 10.1103/physrevlett.110.027202] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Indexed: 06/01/2023]
Abstract
We investigate the magnetic coupling of Ni centers embedded in two-dimensional metal-coordination networks self-assembled from 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on Ag(100) and Au(111) surfaces. X-ray magnetic circular dichroism measurements show that single Ni adatom impurities assume a spin-quenched configuration on both surfaces, while Ni atoms coordinating to TCNQ ligands recover their magnetic moment and exhibit ferromagnetic coupling. The valence state and the ferromagnetic coupling strength of the Ni coordination centers depend crucially on the underlying substrate due to the different charge state of the TCNQ ligands on the two surfaces. The results suggest a superexchange coupling mechanism via the TCNQ ligands.
Collapse
Affiliation(s)
- N Abdurakhmanova
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Wäckerlin C, Maldonado P, Arnold L, Shchyrba A, Girovsky J, Nowakowski J, Ali ME, Hählen T, Baljozovic M, Siewert D, Kleibert A, Müllen K, Oppeneer PM, Jung TA, Ballav N. Magnetic exchange coupling of a synthetic Co(ii)-complex to a ferromagnetic Ni substrate. Chem Commun (Camb) 2013; 49:10736-8. [DOI: 10.1039/c3cc45401k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Klar D, Klyatskaya S, Candini A, Krumme B, Kummer K, Ohresser P, Corradini V, de Renzi V, Biagi R, Joly L, Kappler JP, del Pennino U, Affronte M, Wende H, Ruben M. Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2013; 4:320-4. [PMID: 23766956 PMCID: PMC3678430 DOI: 10.3762/bjnano.4.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/30/2013] [Indexed: 05/11/2023]
Abstract
The magnetic and electronic properties of single-molecule magnets are studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We study the magnetic coupling of ultrathin Co and Ni films that are epitaxially grown onto a Cu(100) substrate, to an in situ deposited submonolayer of TbPc2 molecules. Because of the element specificity of the X-ray absorption spectroscopy we are able to individually determine the field dependence of the magnetization of the Tb ions and the Ni or Co film. On both substrates the TbPc2 molecules couple antiferromagnetically to the ferromagnetic films, which is possibly due to a superexchange interaction via the phthalocyanine ligand that contacts the magnetic surface.
Collapse
Affiliation(s)
- David Klar
- Faculty of Physics and CENIDE, University Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Candini
- Centro S3, Istituto Nanoscienze - CNR, via Campi 213/a, I-41125 Modena, Italy
| | - Bernhard Krumme
- Faculty of Physics and CENIDE, University Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
| | - Kurt Kummer
- ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L′Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France
| | - Valdis Corradini
- Centro S3, Istituto Nanoscienze - CNR, via Campi 213/a, I-41125 Modena, Italy
| | - Valentina de Renzi
- Centro S3, Istituto Nanoscienze - CNR, via Campi 213/a, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena, Italy
| | - Roberto Biagi
- Centro S3, Istituto Nanoscienze - CNR, via Campi 213/a, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena, Italy
| | - Loic Joly
- Universite de Strasbourg, Institut de Physique et de Chimie des Materiaux de Strasbourg, CNRS UMP 7504, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Jean-Paul Kappler
- Universite de Strasbourg, Institut de Physique et de Chimie des Materiaux de Strasbourg, CNRS UMP 7504, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Umberto del Pennino
- Centro S3, Istituto Nanoscienze - CNR, via Campi 213/a, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena, Italy
| | - Marco Affronte
- Centro S3, Istituto Nanoscienze - CNR, via Campi 213/a, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena, Italy
| | - Heiko Wende
- Faculty of Physics and CENIDE, University Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Universite de Strasbourg, Institut de Physique et de Chimie des Materiaux de Strasbourg, CNRS UMP 7504, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
41
|
Goldoni A, Pignedoli CA, Di Santo G, Castellarin-Cudia C, Magnano E, Bondino F, Verdini A, Passerone D. Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms. ACS NANO 2012; 6:10800-10807. [PMID: 23148688 DOI: 10.1021/nn304134q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here, it is demonstrated, using high-resolution X-ray spectroscopy and density functional theory calculations, that 2H-tetraphenyl porphyrins metalate at room temperature by incorporating a surface metal atom when a (sub)monolayer is deposited on 3d magnetic substrates, such as Fe(110) and Ni(111). The calculations demonstrate that the redox metalation reaction would be exothermic when occurring on a Ni(111) substrate with an energy gain of 0.89 eV upon embedding a Ni adatom in the macrocycle. This is a novel way to form, via chemical modification and supramolecular engineering, 3d-metal-organic networks on magnetic substrates with an intimate bond between the macrocycle molecular metal ion and the substrate atoms. The achievement of a complete metalation by Fe and Ni can be regarded as a test case for successful preparation of spintronic devices by means of molecular-based magnets and inorganic magnetic substrates.
Collapse
Affiliation(s)
- Andrea Goldoni
- ST-INSTM Laboratory, Sincrotrone Trieste S.C.p.A. s.s.14 km. 163.5, 34149 Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Guo CS, Sun L, Hermann K, Hermanns CF, Bernien M, Kuch W. X-ray absorption from large molecules at metal surfaces: theoretical and experimental results for Co-OEP on Ni(100). J Chem Phys 2012. [PMID: 23181328 DOI: 10.1063/1.4765373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metal octaethylporphyrins (M-OEP), M-N(4)C(20)H(4)(C(2)H(5))(8), adsorbed at a metallic substrate are promising candidates to provide spin dependent electric transport. Despite these systems having been studied extensively by experiment, details of the adsorbate geometry and surface binding are still unclear. We have carried out density functional theory calculations for cobalt octaethyl porphyrin (Co-OEP) adsorbate at clean and oxygen-covered Ni(100) surfaces as well as for the free Co-OEP molecule where equilibrium structures were obtained by corresponding energy optimizations. These geometries were then used in calculations of Co-OEP carbon and nitrogen 1s core excitations yielding theoretical excitation spectra to be compared with corresponding K-edge x-ray absorption fine structure (NEXAFS) measurements. The experimental NEXAFS spectra near the carbon K-edge of Co-OEP bulk material show large intensity close to the ionization threshold and a triple-peak structure at lower energies, which can be reproduced by the calculations on free Co-OEP. The experimental nitrogen K-edge spectra of adsorbed Co-OEP layers exhibit always a double-peak structure below ionization threshold, independent of the layer thickness. The peaks are shifted slightly and their separation varies with adsorbate-substrate distance. This can be explained by hybridization of N 2p with corresponding 3d contributions of the Ni substrate in the excited final state orbitals as a result of adsorbate-substrate binding via N-Ni bond formation.
Collapse
Affiliation(s)
- C S Guo
- Inorganic Chemistry Department, Fritz-Haber-Institut der MPG, Faradayweg 4-6, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Lodi Rizzini A, Krull C, Balashov T, Mugarza A, Nistor C, Yakhou F, Sessi V, Klyatskaya S, Ruben M, Stepanow S, Gambardella P. Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers. NANO LETTERS 2012; 12:5703-7. [PMID: 23046484 DOI: 10.1021/nl302918d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigate the possibility to induce exchange bias between single molecule magnets (SMM) and metallic or oxide antiferromagnetic substrates. Element-resolved X-ray magnetic circular dichroism measurements reveal, respectively, the presence and absence of unidirectional exchange anisotropy for TbPc(2) SMM deposited on antiferromagnetic Mn and CoO layers. TbPc(2) deposited on Mn thin films present magnetic hysteresis and a negative horizontal shift of the Tb magnetization loop after field cooling, consistent with the observation of pinned spins in the Mn layer coupled parallel to the Tb magnetic moment. Conversely, molecules deposited on CoO substrates present paramagnetic magnetization loops with no indication of exchange bias. These experiments demonstrate the ability of SMM to polarize the pinned uncompensated spins of an antiferromagnet during field-cooling and realize metal-organic exchange-biased heterostructures using antiferromagnetic pinning layers.
Collapse
Affiliation(s)
- A Lodi Rizzini
- Catalan Institute of Nanotechnology (ICN), UAB Campus, E-08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hermanns CF, Bernien M, Krüger A, Miguel J, Kuch W. Switching the electronic properties of Co-octaethylporphyrin molecules on oxygen-covered Ni films by NO adsorption. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:394008. [PMID: 22964345 DOI: 10.1088/0953-8984/24/39/394008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using x-ray absorption spectroscopy, we demonstrate that the electronic properties of Co-octaethylporphyrin (CoOEP) molecules on oxygen-covered ultrathin Ni films can be reversibly manipulated by a chemical stimulus. This is achieved by adsorption of nitrogen monoxide (NO), leading to the formation of a NO-CoOEP nitrosyl complex, and subsequent thermal desorption of the NO from the Co ions. The integration of the absorption spectra of the Co L(2,3) edges reveals a partial oxidation of the Co ions after dosing with NO compared to the pristine sample, for which a valency of 2+ and a low-spin state of the Co ions can be deduced from the Co L(2,3) XAS line shape. By means of x-ray magnetic circular dichroism the magnetic moments of the Co ions were found to be coupled parallel to the magnetization of the Ni films across the intermediate layer of atomic oxygen, before and after NO uptake.
Collapse
Affiliation(s)
- C F Hermanns
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
45
|
Zhan Y, Fahlman M. The study of organic semiconductor/ferromagnet interfaces in organic spintronics: A short review of recent progress. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/polb.23157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Domingo N, Bellido E, Ruiz-Molina D. Advances on structuring, integration and magnetic characterization of molecular nanomagnets on surfaces and devices. Chem Soc Rev 2012; 41:258-302. [DOI: 10.1039/c1cs15096k] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Wäckerlin C, Tarafder K, Siewert D, Girovsky J, Hählen T, Iacovita C, Kleibert A, Nolting F, Jung TA, Oppeneer PM, Ballav N. On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands. Chem Sci 2012. [DOI: 10.1039/c2sc20828h] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Mugnol KCU, Martins MVA, Nascimento EC, Nascimento OR, Crespilho FN, Arantes JT, Nantes IL. Interaction of Fe3+meso-tetrakis (2,6-dichloro-3-sulfonatophenyl) porphyrin with cationic bilayers: magnetic switching of the porphyrin and magnetic induction at the interface. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1055-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Lodi Rizzini A, Krull C, Balashov T, Kavich JJ, Mugarza A, Miedema PS, Thakur PK, Sessi V, Klyatskaya S, Ruben M, Stepanow S, Gambardella P. Coupling single molecule magnets to ferromagnetic substrates. PHYSICAL REVIEW LETTERS 2011; 107:177205. [PMID: 22107576 DOI: 10.1103/physrevlett.107.177205] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 05/25/2023]
Abstract
We investigate the interaction of TbPc(2) single molecule magnets (SMMs) with ferromagnetic Ni substrates. Using element-resolved x-ray magnetic circular dichroism, we show that TbPc(2) couples antiferromagnetically to Ni films through ligand-mediated superexchange. This coupling is strongly anisotropic and can be manipulated by doping the interface with electron acceptor or donor atoms. We observe that the relative orientation of the substrate and molecule anisotropy axes critically affects the SMM magnetic behavior. TbPc(2) complexes deposited on perpendicularly magnetized Ni films exhibit enhanced magnetic remanence compared to SMMs in the bulk. Contrary to paramagnetic molecules pinned to a ferromagnetic support layer, we find that TbPc(2) can be magnetized parallel or antiparallel to the substrate, opening the possibility to exploit SMMs in spin valve devices.
Collapse
Affiliation(s)
- A Lodi Rizzini
- Catalan Institute of Nanotechnology (ICN-CIN2), UAB Campus, E-08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gryzia A, Predatsch H, Brechling A, Hoeke V, Krickemeyer E, Derks C, Neumann M, Glaser T, Heinzmann U. Preparation of monolayers of [MnIII6CrIII]3+ single-molecule magnets on HOPG, mica and silicon surfaces and characterization by means of non-contact AFM. NANOSCALE RESEARCH LETTERS 2011; 6:486. [PMID: 21824398 PMCID: PMC3212000 DOI: 10.1186/1556-276x-6-486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 08/08/2011] [Indexed: 05/31/2023]
Abstract
We report on the characterization of various salts of [MnIII6CrIII]3+ complexes prepared on substrates such as highly oriented pyrolytic graphite (HOPG), mica, SiO2, and Si3N4. [MnIII6CrIII]3+ is a single-molecule magnet, i.e., a superparamagnetic molecule, with a blocking temperature around 2 K. The three positive charges of [MnIII6CrIII]3+ were electrically neutralized by use of various anions such as tetraphenylborate (BPh4-), lactate (C3H5O3-), or perchlorate (ClO4-). The molecule was prepared on the substrates out of solution using the droplet technique. The main subject of investigation was how the anions and substrates influence the emerging surface topology during and after the preparation. Regarding HOPG and SiO2, flat island-like and hemispheric-shaped structures were created. We observed a strong correlation between the electronic properties of the substrate and the analyzed structures, especially in the case of mica where we observed a gradient in the analyzed structures across the surface.
Collapse
Affiliation(s)
- Aaron Gryzia
- Molecular and Surface Physics, Faculty of Physics, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Hans Predatsch
- Molecular and Surface Physics, Faculty of Physics, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Armin Brechling
- Molecular and Surface Physics, Faculty of Physics, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Veronika Hoeke
- Inorganic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Erich Krickemeyer
- Inorganic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Christine Derks
- Electron Spectroscopy, Faculty of Physics, Osnabrueck University, Barbarastrasse 7, 49069 Osnabrueck, Germany
| | - Manfred Neumann
- Electron Spectroscopy, Faculty of Physics, Osnabrueck University, Barbarastrasse 7, 49069 Osnabrueck, Germany
| | - Thorsten Glaser
- Inorganic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Ulrich Heinzmann
- Molecular and Surface Physics, Faculty of Physics, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|