1
|
Silva-Holguín PN, Garibay-Alvarado JA, Reyes-López SY. Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1939. [PMID: 38730746 PMCID: PMC11084846 DOI: 10.3390/ma17091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Water pollution is a worldwide environmental and health problem that requires the development of sustainable, efficient, and accessible technologies. Nanotechnology is a very attractive alternative in environmental remediation processes due to the multiple properties that are conferred on a material when it is at the nanometric scale. This present review focuses on the understanding of the structure-physicochemical properties-performance relationships of silver nanoparticles, with the objective of guiding the selection of physicochemical properties that promote greater performance and are key factors in their use as antibacterial agents, surface modifiers, colorimetric sensors, signal amplifiers, and plasmonic photocatalysts. Silver nanoparticles with a size of less than 10 nm, morphology with a high percentage of reactive facets {111}, and positive surface charge improve the interaction of the nanoparticles with bacterial cells and induce a greater antibacterial effect. Adsorbent materials functionalized with an optimal concentration of silver nanoparticles increase their contact area and enhance adsorbent capacity. The use of stabilizing agents in silver nanoparticles promotes selective adsorption of contaminants by modifying the surface charge and type of active sites in an adsorbent material, in addition to inducing selective complexation and providing stability in their use as colorimetric sensors. Silver nanoparticles with complex morphologies allow the formation of hot spots or chemical or electromagnetic bonds between substrate and analyte, promoting a greater amplification factor. Controlled doping with nanoparticles in photocatalytic materials produces improvements in their electronic structural properties, promotes changes in charge transfer and bandgap, and improves and expands their photocatalytic properties. Silver nanoparticles have potential use as a tool in water remediation, where by selecting appropriate physicochemical properties for each application, their performance and efficiency are improved.
Collapse
Affiliation(s)
| | | | - Simón Yobanny Reyes-López
- Laboratorio de Materiales Híbridos Nanoestructurados, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32300, Mexico; (P.N.S.-H.)
| |
Collapse
|
2
|
Park S, Lee JI, Na CK, Kim D, Kim JJ, Kim DY. Evaluation of the adsorption performance and thermal treatment-associated regeneration of adsorbents for formaldehyde removal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:131-144. [PMID: 38059786 DOI: 10.1080/10962247.2023.2292205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Indoor air pollution remains a major concern, with formaldehyde (HCHO) a primary contributor due to its long emission period and associated health risks, including skin allergies, coughing, and bronchitis. This study evaluated the adsorption performance and economic efficiency of various adsorbents (biochar, activated carbon, zeolites A, X, and Y) selected for HCHO removal. The impact of thermal treatment on adsorbent regeneration was also assessed. The experimental apparatus featured an adsorption column and HCHO concentration meter with an electrochemical sensor designed for adsorption analysis. Zeolite X exhibited the highest adsorption performance, followed by zeolite A, zeolite Y, activated carbon, and biochar. All adsorbents displayed increased HCHO removal rates with an extended length/diameter (L/D) ratio of the adsorption column. Zeolite A demonstrated the highest economic efficiency, followed by zeolite X, activated carbon, zeolite Y, and biochar. Higher L/D ratios improved economic efficiency and prolonged the replacement cycle (the optimal timing for adsorbent replacement to maintain high adsorption performance). Sensitivity analysis of adsorbent regeneration under varying thermal treatment conditions (150, 120, and 80°C) and durations (60, 45, and 30 min) revealed minimal changes in adsorption efficiency (±3%). The results indicated the potential of adsorbent regeneration under energy-efficient thermal treatment conditions (80°C, 30 min). In conclusion, this study underscores the importance of a comprehensive assessment, considering factors such as adsorption performance, replacement cycle, economic efficiency, and regeneration performance for the selection of optimal adsorbents for HCHO adsorption and removal.Implications: This study underscores the importance of adsorption technology for the removal of formaldehyde and similar volatile organic compounds (VOCs), highlighting the potential of alternative adsorbents, such as environmentally friendly biochar, in addition to traditional strategies, such as activated carbon and zeolites. Our findings demonstrate the feasibility of adsorbent regeneration under energy-efficient thermal treatment conditions. These results hold promise for improving indoor air quality, reducing environmental pollutants, and enhancing responses to air contaminants like fine dust and VOCs.
Collapse
Affiliation(s)
- Seri Park
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
- Koenlife Inc, Gwangju, Republic of Korea
| | - Jeong-In Lee
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
| | - Choon-Ki Na
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
| | - Daegi Kim
- Department of Environmental Technology Engineering, Daegu University, Kyeongsan, Republic of Korea
| | - Jae-Jin Kim
- Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, Republic of Korea
| | - Do-Yong Kim
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
| |
Collapse
|
3
|
Unglaube N, Florent M, Otto T, Stötzer M, Grothe J, Kaskel S, Bandosz TJ. Doping of porous carbons with sulfur and nitrogen markedly enhances their surface activity for formaldehyde removal. J Colloid Interface Sci 2024; 653:594-605. [PMID: 37738932 DOI: 10.1016/j.jcis.2023.09.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The surfaces of phosphoric acid activated carbon, referred to as CG, and steam activated one, referred to as SX, were modified through an introduction of S- and N- groups originated from thiourea. The prepared samples were used for formaldehyde removal at room temperature. Heating at 450, 600 and 950 °C altered both surface chemistry and porosity. The extents of these modifications depended on the type of carbon. Using thiourea as the modifier resulted in an incorporation of significant amounts of nitrogen and sulfur to the carbon matrices. Their speciation depended on the heat treatment conditions. The activity of samples heated at 450 °C was governed by amine groups of thiourea retained on the surface. A further heat treatment converted gradually amine nitrogen into pyridines/pyrroles and quaternary nitrogen, shifting the adsorption mechanism to rather specific interactions than a direct chemical reactivity. Carbons with few times less nitrogen than in their amine-modified counterparts, but in quaternary form and with the small amount of sulfur in thiophenic configurations, regardless the origin, worked as very efficient adsorbents of HCHO. Due to the modification of the carbon matrix electronic structure, resulting in a positive charge on carbon atoms in the vicinity of the heteroatoms incorporated to carbon rings, the density of specific adsorption centers on the surface in larger pores was significantly higher than that in ultramicropores. This markedly contributed to efficient utilization of pores/surface, where heteroatom can exist and where otherwise the dispersive adsorptions forces would be weak, for HCHO removal at ambient conditions.
Collapse
Affiliation(s)
- Niklas Unglaube
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| | - Marc Florent
- The City College of New York, Department of Chemistry and Biochemistry, New York, NY 10031, USA
| | - Thomas Otto
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| | - Markus Stötzer
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| | - Julia Grothe
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Dresden, Germany.
| | - Stefan Kaskel
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Dresden, Germany.
| | - Teresa J Bandosz
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Dresden, Germany; The City College of New York, Department of Chemistry and Biochemistry, New York, NY 10031, USA.
| |
Collapse
|
4
|
Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, Zhang J, Liew RK, Foong SY, Chong WWF, Lam SS, Verma M, Ng HS, Sonne C, Ge S. Recent advances in the control of volatile organic compounds emissions from indoor wood-based panels: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163741. [PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
Collapse
Affiliation(s)
- Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China.
| | - Lei Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Feifei Song
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Yi Ren
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Jijuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
5
|
Ji W, Zhang M, Fan X, Zou H, Meng Y, Cai Y, Meng F, Wang H, Lou Y. Surface Structure Analysis and Formaldehyde Removal Mechanism of Lotus Shell Biochar: An Experimental and Theoretical Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37499073 DOI: 10.1021/acs.langmuir.3c01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.
Collapse
Affiliation(s)
- Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Manping Zhang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Haiming Zou
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Yuanyuan Meng
- College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Hongying Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Yu Lou
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
6
|
Lai S, Zhao H, Qu Z, Tang Z, Yang X, Jiang P, Wang Z. Promotion of formaldehyde degradation by electro-Fenton: Controlling the distribution of ·OH and formaldehyde near cathode to increase the reaction probability. CHEMOSPHERE 2022; 307:135776. [PMID: 35868527 DOI: 10.1016/j.chemosphere.2022.135776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The mismatch of pollutant concentration and ·OH concentration is the key reason for the inefficient degradation of formaldehyde in the electro-Fenton system. Therefore, formaldehyde and ·OH are adsorbed near the cathode, and the high concentration reaction region is constructed to increase the reaction probability, which is called control of the reaction region. Through nitrogen doping modification of the activated carbon cathode, the adsorption capacity of the modified cathode for formaldehyde and active species, and the selectivity of the two-electron oxygen reduction reaction were deeply analyzed. The results show that the suitable nitrogen doping form of the modified cathode significantly promotes the adsorption capacity of formaldehyde and H2O2, which is beneficial to realizing the promotion of formaldehyde degradation by nitrogen doped cathodes in the electro-Fenton system through control of the reaction region. Graphite nitrogen and pyrrolic nitrogen improve formaldehyde adsorption by enhancing the van der Waals force (8.897 mg g-1), and pyridinic nitrogen improve H2O2 adsorption (1.841 mg g-1) by enhancing the effect of hydrogen bonding interaction. Nitrogen doping enhances Fe2+ regeneration, which contributes to the generation of ·OH at the cathode, and promotes formaldehyde degradation. The control of the reaction region through modification of the electro-Fenton cathode achieved formaldehyde degradation of 35.1 mg L-1 (48.51% higher than that of the unmodified cathode), which provides a promising process for formaldehyde treatment.
Collapse
Affiliation(s)
- Shiwei Lai
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Haiqian Zhao
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziyu Tang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Xue Yang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Peng Jiang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| |
Collapse
|
7
|
A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Formaldehyde is a highly toxic indoor pollutant that can adversely impact human health. Various technologies have been intensively evaluated to remove formaldehyde from an indoor atmospheres. Activated carbon (AC) has been used to adsorb formaldehyde from the indoor atmosphere, which has been commercially viable owing to its low operational costs. AC has a high adsorption affinity due to its high surface area. In addition, applications of AC may be diversified by the surface modification. Among the different surface modifications for AC, amination treatments of AC have been reported and evaluated. Specifically, the amine functional groups of the amine-treated AC have been found to play an important role in the adsorption of formaldehyde. Surface modifications of AC by impregnating and/or grafting the amine functional groups onto the AC surface have been reported in the literature. The impregnation of the amine-containing species on AC is mainly achieved by physical interaction or H-bond of the amines to the AC surface. Meanwhile, the grafting of the amine functional groups is mainly conducted through chemical reactions occurring between the amines and the AC surface. Herein, the carboxyl group, as a representative functional group for grafting on the surface of AC, plays a key role in the amination reactions. A qualitative comparison of amination chemicals for the surface modification of AC has also been discussed. Thermodynamics and kinetics for adsorption of formaldehyde on AC are firstly reviewed in this paper, and then the major factors affecting the adsorptive removal of formaldehyde over AC are highlighted and discussed in terms of humidity and temperature. In addition, new strategies for amination, as well as the physical modification option for AC application, are proposed and discussed in terms of safety and processability.
Collapse
|
8
|
Jing W, Yang C, Luo S, Lin X, Tang M, Zheng R, Lian D, Luo X. One-Pot Method to Synthesize Silver Nanoparticle-Modified Bamboo-Based Carbon Aerogels for Formaldehyde Removal. Polymers (Basel) 2022; 14:polym14050860. [PMID: 35267682 PMCID: PMC8912511 DOI: 10.3390/polym14050860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
The present study demonstrated a freeze-drying-carbonization method to synthesize silver nanoparticle-modified bamboo-based carbon aerogels to remove formaldehyde. The bamboo-based carbon aerogel (BCA) has the advantages of controllable pore size and rich oxygen-containing groups, which can provide a good foundation for surface modification. BCA can greatly enhance the purification of formaldehyde by loading silver nanoparticles. The maximum adsorption capacity of 5% Ag/BCA for formaldehyde reached 42 mg/g under 25 ppm formaldehyde concentration, which is 5.25 times more than that of BCA. The relevant data were fitted by the Langmuir model and the pseudo 2nd-order model and good results were obtained, indicating that chemical absorption occurred between the carbonyl of formaldehyde and the hydroxyl of BCA. Therefore, silver nanoparticle-modified bamboo-based carbon aerogels play a positive role in the selective removal of formaldehyde. Silver nanoparticles promoted the activation of oxygen and strengthened the effect of BCA on HCHO adsorption.
Collapse
Affiliation(s)
- Wenxiang Jing
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621002, China; (W.J.); (X.L.)
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China; (C.Y.); (M.T.); (R.Z.); (D.L.)
| | - Chai Yang
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China; (C.Y.); (M.T.); (R.Z.); (D.L.)
| | - Shuang Luo
- Sichuan Tea College, Yibin University, Yibin 644000, China;
| | - Xiaoyan Lin
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621002, China; (W.J.); (X.L.)
- Correspondence:
| | - Min Tang
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China; (C.Y.); (M.T.); (R.Z.); (D.L.)
| | - Renhong Zheng
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China; (C.Y.); (M.T.); (R.Z.); (D.L.)
| | - Dongming Lian
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China; (C.Y.); (M.T.); (R.Z.); (D.L.)
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621002, China; (W.J.); (X.L.)
| |
Collapse
|
9
|
Kim BJ, An KH, Shim WG, Park YK, Park J, Lee H, Jung SC. Acetaldehyde Adsorption Characteristics of Ag/ACF Composite Prepared by Liquid Phase Plasma Method. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2344. [PMID: 34578660 PMCID: PMC8467781 DOI: 10.3390/nano11092344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
Ag particles were precipitated on an activated carbon fiber (ACF) surface using a liquid phase plasma (LPP) method to prepare a Ag/ACF composite. The efficiency was examined by applying it as an adsorbent in the acetaldehyde adsorption experiment. Field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry confirmed that Ag particles were distributed uniformly on an ACF surface. X-ray diffraction and X-ray photoelectron spectroscopy confirmed that metallic silver (Ag0) and silver oxide (Ag2O) precipitated simultaneously on the ACF surface. Although the precipitated Ag particles blocked the pores of the ACF, the specific surface area of the Ag/ACF composite material decreased, but the adsorption capacity of acetaldehyde was improved. The AA adsorption of ACF and Ag/ACF composites performed in this study was suitable for the Dose-Response model.
Collapse
Affiliation(s)
- Byung-Joo Kim
- Department of Carbon & Nanomaterials Engineering, Jeonju University, Jeonju 55069, Korea; (B.-J.K.); (K.-H.A.)
| | - Kay-Hyeok An
- Department of Carbon & Nanomaterials Engineering, Jeonju University, Jeonju 55069, Korea; (B.-J.K.); (K.-H.A.)
| | - Wang-Geun Shim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea;
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| | - Jaegu Park
- Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Korea; (J.P.); (H.L.)
| | - Heon Lee
- Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Korea; (J.P.); (H.L.)
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Korea; (J.P.); (H.L.)
| |
Collapse
|
10
|
Zhang Y, Kan W, Miao J, Cheng M, Jing Z. Hydrothermal Synthesis of Amino-PVC/DE Composite and Its Adsorption Performance for Formaldehyde. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
| | - Wenjie Kan
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
| | - Jiajun Miao
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
| | - Mingzhao Cheng
- Shanghai HighGood New Materials Technology Co., Ltd., 4801 Cao’an Road, Shanghai 201804, China
| | - Zhenzi Jing
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
| |
Collapse
|
11
|
Saravanan A, Kumar PS, Govarthanan M, George CS, Vaishnavi S, Moulishwaran B, Kumar SP, Jeevanantham S, Yaashikaa PR. Adsorption characteristics of magnetic nanoparticles coated mixed fungal biomass for toxic Cr(VI) ions in aquatic environment. CHEMOSPHERE 2021; 267:129226. [PMID: 33338712 DOI: 10.1016/j.chemosphere.2020.129226] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
In this research, the adsorptive removal of Cr(VI) ions from the aquatic environment have been studied using newly synthesized magnetic nanoparticles coated mixed fungal biomass (MNP-FB). Two fungal biomass such as Aspergillus fumigatus and Aspergillus niger were isolated, screened, and utilized as a precursor for making an adsorbent. Molecular characterization of isolated fungal species was recognized using 18S rRNA sequencing. The characterization studies of the MNP-FB were evaluated using Fourier Transform Infrared Spectrophotometer (FTIR) and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses. Optimization studies were studied to check the effect of different operating variables such as pH (2.0-9.0), equilibrium time (10-90 min), MNP-FB dosage (0.1-1.0 g/L), temperature (30-60 °C) and concentration of Cr(VI) ions (50-500 mg/L). Additionally, Freundlich isotherm model fits well for the adsorption of Cr(VI) ion using MNP-FB. The adsorption kinetics was interpreted well by Pseudo-first order model. The thermodynamic study concluded that Cr(VI) ions removal by MNP-FB was exothermic and appreciative at low temperatures. The monolayer adsorption efficiency of MNP-FB for Cr(VI) ions was measured as 249.9 mg/g. The current results reveal that MNP-FB has considered being a proficient and economically suitable material for the Cr(VI) ions removal from the water environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - S Vaishnavi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Moulishwaran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Praveen Kumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|