1
|
Luesch H, Ellis EK, Chen QY, Ratnayake R. Progress in the discovery and development of anticancer agents from marine cyanobacteria. Nat Prod Rep 2024. [PMID: 39620500 PMCID: PMC11610234 DOI: 10.1039/d4np00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 12/11/2024]
Abstract
Covering 2010-April 2024There have been tremendous new discoveries and developments since 2010 in anticancer research based on marine cyanobacteria. Marine cyanobacteria are prolific sources of anticancer natural products, including the tubulin agents dolastatins 10 and 15 which were originally isolated from a mollusk that feeds on cyanobacteria. Decades of research have culminated in the approval of six antibody-drug conjugates (ADCs) and many ongoing clinical trials. Antibody conjugation has been enabling for several natural products, particularly cyanobacterial cytotoxins. Targeting tubulin dynamics has been a major strategy, leading to the discovery of the gatorbulin scaffold, acting on a new pharmacological site. Cyanobacterial compounds with different mechanisms of action (MOA), targeting novel or validated targets in a range of organelles, also show promise as anticancer agents. Important advances include the development of compounds with novel MOA, including apratoxin and coibamide A analogues, modulating cotranslational translocation at the level of Sec61 in the endoplasmic reticulum, largazole and santacruzamate A targeting class I histone deacetylases, and proteasome inhibitors based on carmaphycins, resembling the approved drug carfilzomib. The pipeline extends with SERCA inhibitors, mitochondrial cytotoxins and membrane-targeting agents, which have not yet advanced clinically since the biology is less understood and selectivity concerns remain to be addressed. In addition, efforts have also focused on the identification of chemosensitizing and antimetastatic agents. The review covers the state of current knowledge of marine cyanobacteria as anticancer agents with a focus on the mechanism, target identification and potential for drug development. We highlight the importance of solving the supply problem through chemical synthesis as well as illuminating the biological activity and in-depth mechanistic studies to increase the value of cyanobacterial natural products to catalyze their development.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Emma K Ellis
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
2
|
Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, Rastegar H, Mohammadi SA, Azadmard-Damirchi S. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications. J Appl Microbiol 2024; 135:lxae274. [PMID: 39496524 DOI: 10.1093/jambio/lxae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
Bacteriocins, natural antimicrobial peptides produced by bacteria, present eco-friendly, non-toxic, and cost-effective alternatives to traditional chemical antimicrobial agents in the food industry. This review provides a comprehensive update on the classification of bacteriocins in food preservation. It highlights the significant industrial potential of pediocin-like and two-peptide bacteriocins, emphasizing chemical synthesis methods like Fmoc-SPPS to meet the demand for bioactive bacteriocins. The review details the mode of action, focusing on mechanisms such as transmembrane potential disruption and pH-dependent effects. Furthermore, it addresses the limitations of bacteriocins in food preservation and explores the potential of nanotechnology-based encapsulation to enhance their antimicrobial efficacy. The benefits of nanoencapsulation, including improved stability, extended antimicrobial spectrum, and enhanced functionality, are underscored. This understanding is crucial for advancing the application of bacteriocins to ensure food safety and quality.
Collapse
Affiliation(s)
- Sara Bahrami
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Dadgarnejad
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ali Mohammadi
- Faculty of Nursing and Midwifery, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
4
|
Junier P, Cailleau G, Fatton M, Udriet P, Hashmi I, Bregnard D, Corona-Ramirez A, Francesco ED, Kuhn T, Mangia N, Zhioua S, Hunkeler D, Bindschedler S, Sieber S, Gonzalez D. A cohesive Microcoleus strain cluster causes benthic cyanotoxic blooms in rivers worldwide. WATER RESEARCH X 2024; 24:100252. [PMID: 39308956 PMCID: PMC11416633 DOI: 10.1016/j.wroa.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Over the last two decades, proliferations of benthic cyanobacteria producing derivatives of anatoxin-a have been reported in rivers worldwide. Here, we follow up on such a toxigenic event happening in the Areuse river in Switzerland and investigate the diversity and genomics of major bloom-forming riverine benthic cyanobacteria. We show, using 16S rRNA-based community profiling, that benthic communities are dominated by Oscillatoriales. We correlate the detection of one Microcoleus sequence variant matching the Microcoleus anatoxicus species with the presence of anatoxin-a derivatives and use long-read metagenomics to assemble complete circular genomes of the strain. The main dihydro-anatoxin-a-producing strain in the Areuse is distinct from strains isolated in New Zealand, the USA, and Canada, but forms a monophyletic strain cluster with them with average nucleotide identity values close to the species threshold. Compared to the rest of the Microcoleus genus, the toxin-producing strains encode a 15 % smaller genome, lacking genes for the synthesis of some essential vitamins. Toxigenic mats harbor a distinct microbiome dominated by proteobacteria and bacteroidetes, which may support cyanobacterial growth by providing them with essential nutrients. We recommend that strains closely related to M. anatoxicus be monitored internationally in order to help predict and mitigate similar cyanotoxic events.
Collapse
Affiliation(s)
- Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | | | - Mathilda Fatton
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Pauline Udriet
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Isha Hashmi
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Danae Bregnard
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | | | - Eva di Francesco
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Naïma Mangia
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Sami Zhioua
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Switzerland
| | | | - Simon Sieber
- Department of Chemistry, University of Zürich, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, University of Neuchâtel, Switzerland
| |
Collapse
|
5
|
Liistro E, Battistuzzi M, Cocola L, Claudi R, Poletto L, La Rocca N. Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108793. [PMID: 38870681 DOI: 10.1016/j.plaphy.2024.108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.
Collapse
Affiliation(s)
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy; CNR-IFN, Padua, Italy; Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | | | - Riccardo Claudi
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy; Department of Mathematics and Physics, University Roma Tre, Rome, Italy
| | | | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy; Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Avalon N, Reis MA, Thornburg CC, Williamson RT, Petras D, Aron AT, Neuhaus GF, Al-Hindy M, Mitrevska J, Ferreira L, Morais J, El Abiead Y, Glukhov E, Alexander KL, Vulpanovici FA, Bertin MJ, Whitner S, Choi H, Spengler G, Blinov K, Almohammadi AM, Shaala LA, Kew WR, Paša-Tolić L, Youssef DTA, Dorrestein PC, Vasconcelos V, Gerwick L, McPhail KL, Gerwick WH. Leptochelins A-C, Cytotoxic Metallophores Produced by Geographically Dispersed Leptothoe Strains of Marine Cyanobacteria. J Am Chem Soc 2024; 146:18626-18638. [PMID: 38918178 PMCID: PMC11240249 DOI: 10.1021/jacs.4c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.
Collapse
Affiliation(s)
- Nicole
E. Avalon
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Mariana A. Reis
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | | | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Daniel Petras
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Biochemistry, University of California
Riverside, Riverside, California 92507, United States
- CMFI Cluster
of Excellence, University of Tuebingen, Tuebingen 72706, Germany
| | - Allegra T. Aron
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - George F. Neuhaus
- College
of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Momen Al-Hindy
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Jana Mitrevska
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Leonor Ferreira
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - João Morais
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - Yasin El Abiead
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kelsey L. Alexander
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Matthew J. Bertin
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Syrena Whitner
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Hyukjae Choi
- College
of Pharmacy, Yeungnam University, Gyeongsan, Gyeong-buk 38541, South Korea
| | - Gabriella Spengler
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6725, Hungary
| | - Kirill Blinov
- Molecule
Apps, LLC, Corvallis, Oregon 97330, United States
| | - Ameen M. Almohammadi
- Department
of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Lamiaa A. Shaala
- Suez Canal
University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - William R. Kew
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Diaa T. A. Youssef
- Department
of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Pieter C. Dorrestein
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor Vasconcelos
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - Lena Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kerry L. McPhail
- College
of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Gurnani M, Chauhan A, Ranjan A, Gopi P, Ghosh A, Tuli HS, Haque S, Pandya P, Lal R, Jindal T. Cyanobacterial compound Tolyporphine K as an inhibitor of Apo-PBP (penicillin-binding protein) in A. baumannii and its ADME assessment. J Biomol Struct Dyn 2024; 42:4133-4144. [PMID: 37261797 DOI: 10.1080/07391102.2023.2218930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic-resistant Acinetobacter baumannii, is a common pathogen found in hospital settings and has become nosocomial due to its high infection-causing tendency amongst ICU patients. The present study explores the cyanocompoundswhich were capable to inhibit the Penicillin Binding Protein of A. baumannii through molecular docking, ADMET, and molecular dynamicssimulation strategy. A database having structural and origin details was generated for 85 bioactive compounds in MS Excel. The 3-D structures weredownloaded from the PubChem database and minimized. The receptor protein was minimized and validated for structure correctness. The database was screened against the penicillin-binding protein of A. baumannii through PyRx software. The top 5 compounds including the control molecule werefurther redocked to the receptor molecule through Autodock Vina software. The molecule pose having the highest affinity was further subjected to 100ns MD- simulation and simultaneously the in-vitro activity of the methanol extract and hexane extract was checked through agar well diffusion assay.Docking studies indicate Tolyporphine K to be a lead molecule which was further assessed through Molecular dynamics and MM/PBSA. The in-silicoresults suggested that the protein-ligand complex was found to be stable over the 100 ns trajectory with a binding free energy of -8.56 Kcalmol-1. Theligand did not induce any major structural conformation in the protein moiety and was largely stabilized by hydrophobic interactions. The bioactivityscore and ADME properties of the compounds were also calculated. The in-vitro agar well diffusion assay showed a moderate zone of inhibition of12.33mm. The results indicate that the compound Tolyporphin- K could be a potential inhibitor of penicillin-binding protein in A. baumannii. Yet furtherwork needs to be done to have a more concrete basis for the pathway of inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| | - Anuj Ranjan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Guwahati University, Guwahati, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Tanu Jindal
- Amity Institute of Environmental Sciences, Amity University, Noida, India
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| |
Collapse
|
8
|
Gonçalves CDCS, Barros MGA, Bilha JK, Ottoni JR, Uliana MP, Passarini MR. Pharmacological potential of cyanobacteria secondary metabolites. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2024:385-409. [DOI: 10.1016/b978-0-443-22214-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Akmukhanova NR, Leong YK, Seiilbek SN, Konysbay A, Zayadan BK, Sadvakasova AK, Sarsekeyeva FK, Bauenova MO, Bolatkhan K, Alharby HF, Chang JS, Allakhverdiev SI. Eco-friendly biopesticides derived from CO 2-Fixing cyanobacteria. ENVIRONMENTAL RESEARCH 2023; 239:117419. [PMID: 37852466 DOI: 10.1016/j.envres.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.
Collapse
Affiliation(s)
- Nurziya R Akmukhanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Sandugash N Seiilbek
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Aigerim Konysbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Fariza K Sarsekeyeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
10
|
Bishoyi AK, Lakra A, Mandhata CP, Sahoo CR, Padhy RN. Prospective Phycocompounds for Developing Therapeutics for Urinary Tract Infection. Curr Microbiol 2023; 81:35. [PMID: 38063889 DOI: 10.1007/s00284-023-03535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Antibiotic resistance of bacteria is causing clinical and public health concerns that are challenging to treat. Infections are becoming more common in the present era, and patients admitted to hospitals often have drug-resistant bacteria that can spread nosocomial infections. Urinary tract infections (UTIs) are among the most common infectious diseases affecting all age groups. There has been an increase in the proportion of bacteria that are resistant to multiple drugs. Herein is a comprehensive update on UTI-associated diseases: cystitis, urethritis, acute urethral syndrome, pyelonephritis, and recurrent UTIs. Further emphasis on the global statistical incidence and recent advancement of the role of natural products in treating notorious infections are described. This updated compendium will inspire the development of novel phycocompounds as the prospective antibacterial candidate.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Anjali Lakra
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
11
|
Verma S, Suman P, Mandal S, Kumar R, Sahana N, Siddiqui N, Chakdar H. Assessment and identification of bioactive metabolites from terrestrial Lyngbya spp. responsible for antioxidant, antifungal, and anticancer activities. Braz J Microbiol 2023; 54:2671-2687. [PMID: 37688688 PMCID: PMC10689636 DOI: 10.1007/s42770-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Lyngbya from fresh and marine water produces an array of pharmaceutically bioactive therapeutic compounds. However, Lyngbya from agricultural soil is still poorly investigated. Hence, in this study, the bioactive potential of different Lyngbya spp. extract was explored. Intracellular petroleum ether extract of L. hieronymusii K81 showed the highest phenolic content (626.22 ± 0.65 μg GAEs g-1 FW), while intracellular ethyl acetate extract of L. aestuarii K97 (74.02 ± 0.002 mg QEs g-1 FW) showed highest flavonoid content. Highest free radical scavenging activity in terms of ABTS•+ was recorded in intracellular methanolic extract of Lyngbya sp. K5 (97.85 ± 0.068%), followed by L. wollei K80 (97.22 ± 0.059%) while highest DPPH• radical scavenging activity observed by intracellular acetone extract of Lyngbya sp. K5 (54.59 ± 0.165%). All the extracts also showed variable degrees of antifungal activities against Fusarium udum, F. oxysporum ciceris, Colletotrichum capsici, and Rhizoctonia solani. Further, extract of L. wollei K80 and L. aestuarii K97 showed potential anticancer activities against MCF7 (breast cancer) cell lines. GC-MS analyses of intracellular methanolic extract of L. wollei K80 showed the dominance of PUFAs with 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z) as the most abundant bioactive compound. On the other hand, the extracellular ethyl acetate extract of L. aestuarii K97 was rich in alkanes and alkenes with 1-hexyl-2-nitrocyclohexane as the most predominant compound. Extracts of Lyngbya spp. rich in novel secondary metabolites such as PUFAs, alkanes, and alkenes can be further explored as an alternative and low-cost antioxidant and potential apoptogens for cancer therapy.
Collapse
Affiliation(s)
- Shaloo Verma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
12
|
Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics. Mar Drugs 2023; 21:md21020076. [PMID: 36827117 PMCID: PMC9967302 DOI: 10.3390/md21020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species Roseofilum reptotaenium, other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected. Through chemical ecology and metagenomic sequencing, we uncovered cryptic strains of Roseofilum species from Siderastrea siderea corals that differ from those on other corals in the Caribbean and Pacific. Isolation of metabolites from Siderastrea-derived Roseofilum revealed the prevalence of unique forms of looekeyolides, distinct from previously characterized Roseofilum reptotaenium strains. In addition, comparative genomics of Roseofilum strains showed that only Siderastrea-based Roseofilum strains have the genetic capacity to produce lasso peptides, a family of compounds with diverse biological activity. All nine Roseofilum strains examined here shared the genetic capacity to produce looekeyolides and malyngamides, suggesting these compounds support the ecology of this genus. Similar biosynthetic gene clusters are not found in other cyanobacterial genera associated with black band disease, which may suggest that looekeyolides and malyngamides contribute to disease etiology through yet unknown mechanisms.
Collapse
|
13
|
Witthohn M, Strieth D, Kollmen J, Schwarz A, Ulber R, Muffler K. Process Technologies of Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 36571615 DOI: 10.1007/10_2022_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the handling and exploitation of cyanobacteria is associated with some challenges, these phototrophic bacteria offer great opportunities for innovative biotechnological processes. This chapter covers versatile aspects of working with cyanobacteria, starting with up-to-date in silico and in vitro screening methods for bioactive substances. Subsequently, common conservation techniques and vitality/viability estimation methods are compared and supplemented by own data regarding the non-invasive vitality evaluation via pulse amplitude modulated fluorometry. Moreover, novel findings about the influence the state of the pre-cultures have on main cultures are presented. The following sub-chapters deal with different photobioreactor-designs, with special regard to biofilm photobioreactors, as well as with heterotrophic and mixotrophic cultivation modes. The latter topic provides information from literature on successfully enhanced cyanobacterial production processes, augmented by own data.
Collapse
Affiliation(s)
- Marco Witthohn
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Dorina Strieth
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jonas Kollmen
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| |
Collapse
|
14
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
15
|
Kar J, Ramrao DP, Zomuansangi R, Lalbiaktluangi C, Singh SM, Joshi NC, Kumar A, Kaushalendra, Mehta S, Yadav MK, Singh PK. Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front Microbiol 2022; 13:1034471. [PMID: 36466636 PMCID: PMC9717611 DOI: 10.3389/fmicb.2022.1034471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2023] Open
Abstract
Cyanobacterial species are ancient photodiazotrophs prevalent in freshwater bodies and a natural reservoir of many metabolites (low to high molecular weight) such as non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids, cyanotoxins, and isoprenoids with a well-established bioactivity potential. These metabolites enable cyanobacterial survival in extreme environments such as high salinity, heavy metals, cold, UV-B, etc. Recently, these metabolites are gaining the attention of researchers across the globe because of their tremendous applications as antimicrobial agents. Many reports claim the antimicrobial nature of these metabolites; unfortunately, the mode of action of such metabolites is not well understood and/or known limited. Henceforth, this review focuses on the properties and potential application, also critically highlighting the possible mechanism of action of these metabolites to offer further translational research. The review also aims to provide a comprehensive insight into current gaps in research on cyanobacterial biology as antimicrobials and hopes to shed light on the importance of continuing research on cyanobacteria metabolites in the search for novel antimicrobials.
Collapse
Affiliation(s)
- Joyeeta Kar
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Devde Pandurang Ramrao
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Ruth Zomuansangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - C. Lalbiaktluangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Shiv Mohan Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology (AIMT), Amity University, Noida, Uttar Pradesh, India
| | - Ajay Kumar
- Agriculture Research Organization (ARO) - The Volcani Center, Rishon LeZion, Israel
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | | - Mukesh Kumar Yadav
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| |
Collapse
|
16
|
Chakroun I, Fedhila K, Maatallah M, Mzoughi R, Bakhrouf A, Krichen Y. The Synbiotic Effect of Probiotics and Dried Spirulina platensis or Phycocyanin on Biofilm Formation by Salmonella Typhimurium and Staphylococcus aureus. Foodborne Pathog Dis 2022; 19:655-662. [PMID: 36126311 DOI: 10.1089/fpd.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the synbiotic effect of probiotics and dried Spirulina platensis or phycocyanin on autoaggregation, coaggregation, and the inhibition of biofilm formation by Salmonella Typhimurium and Staphylococcus aureus on 96-well microtiter plates and Human colon carcinoma cells-116 surfaces. The results showed that the probiotics strains cultured in the presence of S. platensis exhibited the highest autoaggregation values, ranging between 68.5 and 74.2% after 24 h. All probiotic strains with or without S. platensis and phycocyanin showed coaggregation abilities with S. Typhimurium and S. aureus. Interestingly, significant effect of S. platensis and phycocyanin supplementation was observed on the inhibition of the biofilm formation by the selected pathogens during the competition, exclusion, and displacement on abiotic and biotic surfaces.
Collapse
Affiliation(s)
- Ibtissem Chakroun
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Kais Fedhila
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Makaoui Maatallah
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | | |
Collapse
|
17
|
Gong F, Meng X, Lan S, Liu J, Yang S, Fang X. Asymmetric Semipinacol Rearrangement Enabled by Copper-Catalyzed Propargylic Alkylation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fan Gong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, People’s Republic of China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, People’s Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, People’s Republic of China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, People’s Republic of China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, People’s Republic of China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, People’s Republic of China
| |
Collapse
|
18
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
19
|
Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World J Microbiol Biotechnol 2022; 38:100. [PMID: 35486205 DOI: 10.1007/s11274-022-03285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes responsible for the oxygenation of the earth's reducing atmosphere. Apart from oxygen they are producers of a myriad of bioactive metabolites with diverse complex chemical structures and robust biological activities. These secondary metabolites are known to have a variety of medicinal and therapeutic applications ranging from anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and immunomodulating properties. The present review discusses various aspects of secondary metabolites viz. biosynthesis, types and applications, which highlights the repertoire of bioactive constituents they harbor. Majority of these products have been produced from only a handful of genera. Moreover, with the onset of various OMICS approaches, cyanobacteria have become an attractive chassis for improved secondary metabolites production. Also the intervention of synthetic biology tools such as gene editing technologies and a variety of metabolomics and fluxomics approaches, used for engineering cyanobacteria, have significantly enhanced the production of secondary metabolites.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
20
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
21
|
Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyanobacteria, also called blue-green algae, are a group of prokaryotic microorganisms largely distributed in both terrestrial and aquatic environments. They produce a wide range of bioactive compounds that are mostly used in cosmetics, animal feed and human food, nutraceutical and pharmaceutical industries, and the production of biofuels. Nowadays, the research concerning the use of cyanobacteria in agriculture has pointed out their potential as biofertilizers and as a source of bioactive compounds, such as phycobiliproteins, for plant pathogen control and as inducers of plant systemic resistance. The use of alternative products in place of synthetic ones for plant disease control is also encouraged by European Directive 2009/128/EC. The present up-to-date review gives an overall view of the recent results on the use of cyanobacteria for both their bioprotective effect against fungal and oomycete phytopathogens and their plant biostimulant properties. We highlight the need for considering several factors for a proper and sustainable management of agricultural crops, ranging from the mechanisms by which cyanobacteria reduce plant diseases and modulate plant resistance to the enhancement of plant growth.
Collapse
|
22
|
Potential Antioxidant and Anticancer Activities of Secondary Metabolites of Nostoc linckia Cultivated under Zn and Cu Stress Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9111972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of the present study is to determine the antioxidant and anticancer activities of Nostoc linckia extracts cultivated under heavy metal stress conditions (0.44, 0.88, and 1.76 mg/L for zinc and 0.158, 0.316, 0.632 mg/L for copper). Phycobiliprotein, phenolic compounds, flavonoids, and tannins were measured. Active ingredients of extracts were evaluated by GC-mass spectroscopy. The obtained results revealed that higher zinc and copper concentrations showed growth inhibition while 0.22 mg/L (Zn) and 0.079 mg/L (Cu) enhanced growth, reaching its maximum on the 25th day. Increases in catalase, lipids peroxidation, and antioxidants, as well as tannins and flavonoids, have been induced by integration of 0.88 mg/L (Zn) and 0.316 mg/L (Cu). Elevation of Zn concentration induced augmentation of antioxidant activity of crude extract (DPPH or ABTS), with superior activity at 0.44 mg/L zinc concentration (81.22%). The anticancer activity of Nostoc linckia extract (0.44 mg/L Zn) tested against four cancer cell lines: A549, Hela, HCT 116, and MCF-7. The extract at 500 µg/mL appeared the lowest cell viability of tested cell lines. The promising extract (0.44 mg/L Zn) recorded the lowest cell viability of 25.57% in cervical cell line, 29.74% in breast cell line, 33.10% in lung cell line and 34.53% in the colon cell line. The antioxidant active extract showed significant stability against pH with attributed increase in antioxidant activity in the range between 8–12. The extract can be used effectively as a natural antioxidant and anticancer after progressive testing.
Collapse
|
23
|
Raihan T, Rabbee MF, Roy P, Choudhury S, Baek KH, Azad AK. Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 2021; 8:732256. [PMID: 34557521 PMCID: PMC8452873 DOI: 10.3389/fmolb.2021.732256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The present global COVID-19 pandemic caused by the noble pleomorphic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a vulnerable situation in the global healthcare and economy. In this pandemic situation, researchers all around the world are trying their level best to find suitable therapeutics from various sources to combat against the SARS-CoV-2. To date, numerous bioactive compounds from different sources have been tested to control many viral diseases. However, microbial metabolites are advantageous for drug development over metabolites from other sources. We herein retrieved and reviewed literatures from PubMed, Scopus and Google relevant to antiviral microbial metabolites by searching with the keywords "antiviral microbial metabolites," "microbial metabolite against virus," "microorganism with antiviral activity," "antiviral medicine from microbial metabolite," "antiviral bacterial metabolites," "antiviral fungal metabolites," "antiviral metabolites from microscopic algae' and so on. For the same purpose, the keywords "microbial metabolites against COVID-19 and SARS-CoV-2" and "plant metabolites against COVID-19 and SARS-CoV-2" were used. Only the full text literatures available in English and pertinent to the topic have been included and those which are not available as full text in English and pertinent to antiviral or anti-SARS-CoV-2 activity were excluded. In this review, we have accumulated microbial metabolites that can be used as antiviral agents against a broad range of viruses including SARS-CoV-2. Based on this concept, we have included 330 antiviral microbial metabolites so far available to date in the data bases and were previously isolated from fungi, bacteria and microalgae. The microbial source, chemical nature, targeted viruses, mechanism of actions and IC50/EC50 values of these metabolites are discussed although mechanisms of actions of many of them are not yet elucidated. Among these antiviral microbial metabolites, some compounds might be very potential against many other viruses including coronaviruses. However, these potential microbial metabolites need further research to be developed as effective antiviral drugs. This paper may provide the scientific community with the possible secret of microbial metabolites that could be an effective source of novel antiviral drugs to fight against many viruses including SARS-CoV-2 as well as the future viral pandemics.
Collapse
Affiliation(s)
- Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Puja Roy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Swapnila Choudhury
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
24
|
El-fayoumy EA, Shanab SM, Hassan OMA, Shalaby EA. Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-11 0 medium composition. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:6049-6066. [PMID: 33898157 PMCID: PMC8053234 DOI: 10.1007/s13399-021-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 05/21/2023]
Abstract
The current work aims to investigate the effect of abiotic stresses (nitrogen (N) and sulfur (S) [0.0 g/l, 1.5 g/l, 3 g/l, 6 g/l, and 12 g/l N and 0.0 g/l, 0.07 g/l, 0.15 g/l, 0.3 g/l, and 0.6 g/l S] and their combination [0.3 g/l S + 6 g/l N]) of axenic culture of Nostoc linckia on the production of secondary metabolites which induce different biological activities. Growth rate was measured by dry weight (DW) and optical density (OD)550 nm. Additionally, phytochemical compounds, defense enzymes as well as antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(ethylbenzthiazoline-6-sulfonic acid) (ABTS·+) radical assays of crude extracts (methylene chloride:methanol, 1:1) were evaluated. Based on antioxidant activity, four promising extracts were subjected to different biological activities such as anticancer, antimicrobial, and antiviral activities. The obtained results revealed that supplementation of external nitrogen source in the form of sodium nitrate was found to increase the total phycobiliprotein content by fivefold. Also, nitrogen depletion provoked significantly highest quantities of phenolic and flavonoid content and this has effects on biological activities of Nostoc linckia. Moreover, 0.3 g/l S was found to be the most effective extract exhibiting a significant increase in antioxidant activity based on DPPH and ABTS assays, respectively (88.18 ± 0.64% and 84.20 ± 1.01%). Furthermore, it recorded anticancer activity against HCT 116 cell line with IC50 of 155 μg/ml. Moreover, this extract possessed a noticeable antibacterial potency (21.0 ± 1.0 as mm inhibition zone against Staphylococcus aureus and 19.3 ± 0.6 against Streptococcus mutans). In addition, its antiviral activity against H5N1 virus as a percentage of inhibition was 50% and 63.6% at a concentration of 7 μg/ml and 28 μg/ml, respectively, with cytotoxicity less than 7 μg/μl. GC-MS analysis recorded the presence of bioactive compounds exhibiting different biological activities. Therefore, the obtained results can represent valuable bioactive compounds with variable biological potencies.
Collapse
Affiliation(s)
- Eman A. El-fayoumy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Sanaa M. Shanab
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Omnia M. A. Hassan
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Center, Dokki, Egypt
| | - Emad A. Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| |
Collapse
|
25
|
Witthohn M, Strieth D, Eggert S, Kins S, Ulber R, Muffler K. Heterologous production of a cyanobacterial bacteriocin with potent antibacterial activity. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|