1
|
Kgabi DP, Ambushe AA. Removal of Pb(II) ions from aqueous solutions using natural and HDTMA-modified bentonite and kaolin clays. Heliyon 2024; 10:e38136. [PMID: 39381225 PMCID: PMC11459056 DOI: 10.1016/j.heliyon.2024.e38136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
This work focused on the removal of Pb(II) from aqueous solution using kaolin and bentonite clays modified with hexadecyl trimethyl ammonium bromide (HDTMA). The clays were characterized using a zetasizer, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Brunauer-Emmet-Teller (BET), Fourier-transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). Factors that influence the adsorption of Pb(II) from aqueous solution, namely pH, contact time, adsorbent mass, ionic strength, temperature and initial Pb(II) concentration were investigated. The results show that HDTMA was successfully incorporated into the kaolin and bentonite clay structures. The most favorable parameters for the adsorption of Pb(II) ions onto all adsorbents was pH of 6.0, temperature of 25 °C and adsorbent mass of 200 mg. Adsorption isotherms and kinetic studies showed that the adsorption of Pb(II) onto kaolin, bentonite and organobentonite clays followed the Langmuir isotherm and pseudo-first order kinetic model, while the adsorption onto organobentonite was better explained by the Freundlich isotherm and pseudo-second order kinetic model. Maximum monolayer adsorption capacity of organobentonite, calculated from the Langmuir model was 18.75 mg/g, which is higher than that obtained for the unmodified bentonite (14.71 mg/g); while for organokaolin it was 2.26 mg/g, which is less than that of the unmodified kaolin (4.19 mg/g). Thermodynamic studies showed that the reactions were exothermic and unfavoured at high temperatures. The adsorbents also showed good removal efficiency for up to four regeneration cycles.
Collapse
Affiliation(s)
- Dipuo Precious Kgabi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Abayneh Ataro Ambushe
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
2
|
Mahmoud A, Gajbhiye R, Elkatatny S. Evaluating the Effect of Claytone-EM on the Performance of Oil-Based Drilling Fluids. ACS OMEGA 2024; 9:12866-12880. [PMID: 38524495 PMCID: PMC10956349 DOI: 10.1021/acsomega.3c08967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
This study provides a detailed characterization and evaluation of Claytone-EM as a rheological additive to enhance the performance of oil-based drilling fluids (OBDFs) under high-pressure, high-temperature (HPHT) conditions. It also offers a comparative evaluation of the effectiveness of Claytone-EM with an existing organoclay, analyzing their mineral and chemical compositions, morphologies, and particle sizes. A series of experiments are performed to evaluate Claytone-EM's influence on crucial drilling mud properties, such as mud density, electrical stability, sagging tendency, rheology, viscoelastic properties, and filtration properties, to formulate a stable and high-performing OBDF. Results indicated that Claytone-EM had no significant impact on mud density but remarkably enhanced emulsion stability. Claytone-EM effectively mitigated sagging issues under both static and dynamic conditions, leading to improvements in the plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and YP/PV ratio. The PV, YP, AV, and YP/PV ratios were improved by 11, 85, 28, and 66% increments, respectively, compared with those of the drilling fluid formulated with MC-TONE. The addition of Claytone-EM resulted in enhancing gel strength and improving the filtration properties of the drilling fluid. The filtration volume was reduced by 2% from 5.0 to 4.9 cm3, and the filter cake thickness had a 13% reduction from 2.60 to 2.26 mm. These findings highlight Claytone-EM as a valuable additive for enhancing OBDF performance, particularly under challenging HPHT conditions. Its ability to provide emulsion stability, reduce static and dynamic sag, and control filtration holds the potential to enhance drilling operations, minimize downtime, and bolster wellbore stability. This study acknowledges certain limitations, including its temperature range, which could benefit from exploration at extreme temperatures. Additionally, the absence of flow experiments limits a comprehensive understanding of sag effects, and further research and field-scale evaluations are recommended to validate and optimize the application of Claytone-EM in OBDFs.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Mahmoud A, Gajbhiye R, Elkatatny S. Investigating the efficacy of novel organoclay as a rheological additive for enhancing the performance of oil-based drilling fluids. Sci Rep 2024; 14:5323. [PMID: 38438428 PMCID: PMC10912425 DOI: 10.1038/s41598-024-55246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Oil-based drilling fluids (OBDFs) are extensively used in the drilling industry due to their superior performance in challenging drilling conditions. These fluids control wellbore stability, lubricate the drill bit, and transport drill cuttings to the surface. One important component of oil-based drilling fluids is the viscosifier, which provides rheological properties to enhance drilling operations. This study evaluates the effectiveness of Claytone-IMG 400, a novel rheological agent, in enhancing the performance of OBDFs under high-pressure and high-temperature (HPHT) conditions. A comparative analysis was conducted with a pre-existing organoclay (OC) to assess the improvements achieved by Claytone-IMG 400. The OCs were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and particle size distribution (PSD) to identify their mineral and chemical compositions, morphologies, and particle sizes. The drilling fluid density, electrical stability, sagging tendency, rheological properties, viscoelastic properties, and filtration properties were studied to formulate a stable and high-performance drilling fluid. The results confirmed that the novel OC does not affect the drilling fluid density but enhances the emulsion stability with a 9% increment compared with the drilling fluid formulated with MC-TONE. The sagging experiments showed that Claytone-IMG 400 prevented the sagging issues in both static and dynamic conditions. Also, Claytone-IMG 400 improved the plastic viscosity (PV), yield point (YP), and apparent viscosity (AV). The PV, YP, and AV were improved by 30%, 38%, and 33% increments respectively compared with the drilling fluid formulated with MC-TONE. The YP/PV ratio increased with a 6% increment from 1.12 to 1.19. Moreover, the gel strength (GS) was significantly increased, and the filtration properties were enhanced. The filtration volume was reduced by 10% from 5.0 to 4.5 cm3, and the filter cake thickness had a 37.5% reduction from 2.60 to 1.89 mm. The novelty of this study is highlighted by the introduction and evaluation of Claytone-IMG 400 as a new rheological additive for safe, efficient, and cost-effective drilling operations. The results indicate that Claytone-IMG 400 significantly improves the stability and performance of OBDFs, thereby reducing wellbore instability and drilling-related problems.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Sirajunnisa P, Sreelakshmi S, Sailaja GS. Lawsonia inermis-organically modified chitosan intercalated bentonite clay: A multifunctional nanotheranostic system for controlled drug delivery, sensing and cellular imaging. Int J Biol Macromol 2024; 262:130209. [PMID: 38365155 DOI: 10.1016/j.ijbiomac.2024.130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
This study presents the development of organo-bentonites (OBs); a cost-effective drug delivery system holding both sensing and imaging capabilities. The OBs were synthesized using quaternary ammonium cations derived from chitosan, Lawsonia inermis, and pyrene/anthracene carboxaldehyde combinations through a three-step process: Mannich reaction, quaternization, and intercalation. Physicochemical characterization confirms the organic modification of bentonite. The OBs: NQPB and NQAB hold substantial ciprofloxacin (Cipro) loading capacities (71.51 % and 78.04 %, respectively) and exhibit pH-dependent release profiles, suggesting their potential use as drug delivery platforms. Cell viability evaluation by MTT and live-dead assays indicates favourable results. Both OBs demonstrate fluorescence within the 450-500 nm range, and they display concentration-dependent fluorescence quenching and enhancement for NQPB and NQAB, respectively, in the presence of tryptophan (Trp), making them suitable for its detection. Confocal analysis further enunciates the live intracellular fluorescence upon OB uptake. In summary, the intrinsically fluorescent mesoporous OBs synthesized from Lawsonia inermis and chitosan exhibit multifunctionality, including Cipro delivery, Trp sensing, and live cell imaging. Among the OBs, NQAB could be considered as a promising theranostic platform owing to its superior cytocompatibility (>80 %), appreciable fluorescence, and controlled release profile.
Collapse
Affiliation(s)
- P Sirajunnisa
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala 682022, India
| | - S Sreelakshmi
- Department of Biotechnology, Cochin University of Science and Technology, Kerala 682022, India
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala 682022, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala 682022, India.
| |
Collapse
|
5
|
Gürses A, Güneş K. Preparation of Polyethylene Clay Composites via Melt Intercalation Using Hydrophobic and Superhydrophobic Organoclays and Comparison of Their Textural, Mechanical and Thermal Properties. Polymers (Basel) 2024; 16:272. [PMID: 38276681 PMCID: PMC10819245 DOI: 10.3390/polym16020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Polymer clay nanocomposites, which can exhibit many superior properties compared to virgin polymers, have gained increasing interest and importance in recent years. This study aimed to prepare composites of two organoclays with unusual ratios and different degrees of lyophilicity with low-density polyethylene and compare their textural structures and thermal and mechanical properties with those of virgin polymer. For this purpose, firstly, organoclays, hydrophobic and superhydrophobic organoclays (OC and SOC), were prepared by solution intercalation method using cetyltrimethylammonium bromide with and without addition of a hydrocarbon substance. Then, using both organoclays, polyethylene organoclay composites were prepared and characterized using X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Additionally, tensile and hardness tests were performed to determine the mechanical properties of the composites, and differential scanning calorimetry (DSC) thermograms were taken to examine their thermal behavior. XRD patterns and HRTEM images of hydrophobic and superhydrophobic organoclays and the composites show that the characteristic smectite peak of the clay shifts to the left and expands, that is, the interlayer space widens and, in the composites, it deforms immediately at low clay ratios. HRTEM images of the composites prepared especially with low clay ratios indicate that a heterogeneous dispersion of clay platelets occurs, indicating that nanocomposite formation has been achieved. On the contrary, in the composites prepared with high clay ratios, this dispersion behavior partially turns into aggregation. In the composites prepared using up to 20% by weight of superhydrophobic organoclay, extremely stable and continuous improvements in all mechanical properties were observed compared to those of the composites prepared using hydrophobic organoclay. This indicates that by using superhydrophobic organoclay, a ductile nanocomposite of polyethylene containing inorganic components in much higher than usual proportions can be prepared.
Collapse
Affiliation(s)
- Ahmet Gürses
- Department of Chemistry Education, K, K Education Faculty, Atatürk University, Erzurum 25240, Turkey;
| | | |
Collapse
|
6
|
Ukalska-Jaruga A, Bejger R, Smreczak B, Weber J, Mielnik L, Jerzykiewicz M, Ćwieląg-Piasecka I, Jamroz E, Debicka M, Kocowicz A, Bekier J. The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation. Molecules 2023; 28:7146. [PMID: 37894625 PMCID: PMC10609562 DOI: 10.3390/molecules28207146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The constant influx of pesticides into soils is a key environmental issue in terms of their potential retention in the soil, thus reducing their negative impact on the environment. Soil organic matter (SOM) is an important factor influencing the environmental fate of these substances. Therefore, the aim of this research was to assess the chemical behavior of pesticides (flufenacet, pendimethalin, α-cypermethrin, metazachlor, acetamiprid) toward stable soil humin fractions (HNs) as a main factor affecting the formation of non-extractable residues of agrochemicals in soil. This research was conducted as a batch experiment according to OECD Guideline 106. For this purpose, HNs were isolated from eight soils with different physicochemical properties (clay content = 16-47%, pHKCl = 5.6-7.7, TOC = 13.3-49.7 g·kg-1, TN = 1.06-2.90 g·kg-1, TOC/TN = 11.4-13.7) to reflect the various processes of their formation. The extraction was carried out through the sequential separation of humic acids with 0.1 M NaOH, and then the digestion of the remaining mineral fraction with 10% HF/HCl. The pesticide concentrations were detected using GC-MS/MS. The pesticides were characterized based on the different sorption rates to HNs, according to the overall trend: metazachlor (95% of absorbed compound) > acetamiprid (94% of absorbed compound) > cypermethrin (63% of partitioning compound) > flufenacet (39% of partitioning compound) > pendimethalin (28% of partitioning compound). Cypermethrin and metazachlor exhibited the highest saturation dynamic, while the other agrochemicals were much more slowly attracted by the HNs. The obtained sorption kinetic data were congruous to the pseudo-first-order and pseudo-second-order models related to the surface adsorption and interparticle diffusion isotherm. The conducted research showed that the processes of pesticide sorption, apart from physicochemical phenomena, are also affected by the properties of the pollutants themselves (polarity, KOC) and the soil properties (SOM content, clay content, and pHKCl).
Collapse
Affiliation(s)
- Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Romualda Bejger
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI/3, 71-459 Szczecin, Poland;
| | - Bożena Smreczak
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Jerzy Weber
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Lilla Mielnik
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI/3, 71-459 Szczecin, Poland;
| | | | - Irmina Ćwieląg-Piasecka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Elżbieta Jamroz
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Magdalena Debicka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Andrzej Kocowicz
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| | - Jakub Bekier
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.W.); (I.Ć.-P.); (E.J.); (M.D.); (A.K.); (J.B.)
| |
Collapse
|
7
|
Mohan C, Kumari P, Kumari N, Negi A. Fabrication of Colored Polymeric Membrane Using Clay-Based Nano Pigments of Safranin O (SO) Dye. MEMBRANES 2023; 13:619. [PMID: 37504985 PMCID: PMC10383822 DOI: 10.3390/membranes13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
In the present work, a novel methodology was developed for the fabrication of clay-based nano pigments with enhanced thermal stability and used further as a colorant to prepare polymeric membranes. Initially, the batch extraction studies were performed to analyze the maximum adsorption of Safranin O (SO) dye onto pristine montmorillonite (Mt) and organo montmorillonite (OMt) by varying different parameters like pH, contact time, and concentration. It was confirmed from batch extraction studies that the adsorption efficacy of pristine Mt for SO was found to be more than OMt due to their negatively charged surface. Clay-based nano pigments were fabricated by considering the optimized condition where the maximum uptake of SO was observed and further characterized by XRD, FTIR, TGA, and SEM techniques. XRD studies confirmed the intercalation of SO dye while FTIR spectra revealed surface interaction of the dye with Mt/OMt. TGA studies showed that the clay-based nano pigments had more thermal stability than pure SO. Nano pigments were used as colorants to prepare thin, transparent, and homogeneously dispersed polymeric membranes through the solvent casting method. XRD studies of the polymeric membrane confirmed that the intercalation of poly methylmethacrylate (PMMA) into the interlayer of clay increases interlayer spacing, which was further confirmed by the TEM analysis. The mechanical properties of the PMMA polymeric membrane were also enhanced after the dispersion of clay-based nano pigments.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Chemistry, School of Basic and Applied Sciences, K. R. Mangalam University Gurugram, Gurugram 122103, India
| | - Priyanka Kumari
- Department of Chemistry, Shivaji College, University of Delhi, Delhi 110027, India
| | - Neeraj Kumari
- Department of Chemistry, School of Basic and Applied Sciences, K. R. Mangalam University Gurugram, Gurugram 122103, India
| | - Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
8
|
Grabowska B, Cukrowicz S, Kaczmarska K, Żymankowska-Kumon S, Bobrowski A, Tyliszczak B, Mrówka NM. Thermostability of Organobentonite Modified with Poly(acrylic acid). MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103626. [PMID: 37241253 DOI: 10.3390/ma16103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
A new type of organobentonite foundry binder composed of a composite of bentonite (SN) and poly(acrylic acid) (PAA) was analyzed using thermal analysis (TG-DTG-DSC) and pyrolysis gas chromatography mass spectrometry (Py-GC/MS). The temperature range in which the composite retains its binding properties was identified using thermal analysis of the composite and its components. Results showed that the thermal decomposition process is complex and involves physicochemical transformations that are mainly reversible at temperatures in the ranges of 20-100 °C (related to evaporation of solvent water) and 100-230 °C (related to intermolecular dehydration). The decomposition of PAA chains occurs between 230 and 300 °C, while complete decomposition of PAA and formation of organic decomposition products takes place at 300-500 °C. Dehydroxylation of montmorillonite (MMT) in bentonite begins at about 500 °C, which leads to a drastic structural transformation. An endothermic effect associated with the remodeling of the mineral structure was observed on the DSC curve in the range of 500-750 °C. The produced SN/PAA composite was found to be thermostable during degradation in both oxidative and inert atmosphere, similar to the starting bentonite, and even maintained over a relatively higher and wider temperature range compared to organic binding materials used. At the given temperatures of 300 °C and 800 °C, only CO2 emissions occur from all the examined SN/PAA samples. There is no emission of compounds from the BTEX group. This means that the proposed binding material in the form of the MMT-PAA composite will not pose a threat to the environment and the workplace.
Collapse
Affiliation(s)
- Beata Grabowska
- Faculty of Foundry Engineering, AGH-University of Krakow, Reymonta 23, 30059 Krakow, Poland
| | - Sylwia Cukrowicz
- Faculty of Foundry Engineering, AGH-University of Krakow, Reymonta 23, 30059 Krakow, Poland
| | - Karolina Kaczmarska
- Faculty of Foundry Engineering, AGH-University of Krakow, Reymonta 23, 30059 Krakow, Poland
| | | | - Artur Bobrowski
- Faculty of Foundry Engineering, AGH-University of Krakow, Reymonta 23, 30059 Krakow, Poland
| | - Bożena Tyliszczak
- Faculty of Materials Engineering and Physics, Department of Materials Engineering, Cracow University of Technology, 37 Jana Pawła II Av., 31864 Krakow, Poland
| | - Natalia Maria Mrówka
- Fundry Institute, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
9
|
Shobuke H, Matsumoto T, Hirosawa F, Miyagawa M, Takaba H. Estimation of Adsorbed Amounts in Organoclay by Machine Learning. ACS OMEGA 2023; 8:1146-1153. [PMID: 36643430 PMCID: PMC9835538 DOI: 10.1021/acsomega.2c06602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Adsorption properties of organoclay have been investigated for decades focusing on the morphology and physicochemical properties of two-dimensional interlayers. Experimental studies have previously revealed that the adsorption mechanisms depend on the molecular species of the organocation and adsorbate, making it difficult to estimate the adsorbed amount without experiments. Considering that the adsorption of aromatic compounds has been reported by using various clays, organocations, and adsorbates, machine learning is a promising method to overcome the difficulty. In the present study, we collected adsorption data from the literature and constructed models to estimate the adsorbed amount of the organoclay by random forest regression. The composition of the clay, molecular descriptors of the organocation and adsorbate obtained by the RDKit, and experimental conditions were used as the explanatory variables. Simple model construction by using all the experimental data resulted in low R 2 and a mean absolute error. This problem was solved by the correction of the adsorbed amount data by the Langmuir or Freundlich equation and the following model construction at various equilibrium concentrations. The plots of the adsorbed amount estimated by the latter model were located close to the corresponding adsorption isotherm, while that by the former was not. Thus, it was revealed that the adsorbed amount was estimated quantitatively without understanding the adsorption mechanisms individually. Feature importance analysis also revealed that the combination of the organocation and adsorbate is important at high equilibrium concentrations, while the clay should be selected carefully as the concentration gets lower. Our results give an insight into the rational design of the organoclay including the synthesis and adsorption properties.
Collapse
|
10
|
Muiz LJ, Juwono AL, Krisnandi YK. A review: Silver–zinc oxide nanoparticles – organoclay-reinforced chitosan bionanocomposites for food packaging. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Research on bionanocomposites has been developed, while its application as food packaging is still being explored. They are usually made from natural polymers such as cellulose acetate, chitosan (CS), and polyvinyl alcohol. Bionanocomposite materials can replace traditional non-biodegradable plastic packaging materials, enabling them to use new, high-performance, lightweight, and environmentally friendly composite materials. However, this natural polymer has a weakness in mechanical properties. Therefore, a composite system is needed that will improve the properties of the biodegradable food packaging. The aim of this mini-review is to demonstrate recent progress in the synthesis, modification, characterization, and application of bionanocomposites reported by previous researchers. The focus is on the preparation and characterization of CS-based bionanocomposites. The mechanical properties of CS-based food packaging can be improved by adding reinforcement from inorganic materials such as organoclay. Meanwhile, the anti-bacterial properties of CS-based food packaging can be improved by adding nanoparticles such as Ag and ZnO.
Collapse
Affiliation(s)
- Lisna Junaeni Muiz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Ariadne Lakshmidevi Juwono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Yuni Krisyuningsih Krisnandi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
- Department of Chemistry, Solid Inorganic Framework Laboratory, Faculty of Mathematics and Natural Science, Universitas Indonesia , Depok , 16424 , Indonesia
| |
Collapse
|
11
|
Nag A, Hayakawa T, Minase M, Ogawa M. Organophilic Clay with Useful Whiteness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2979-2985. [PMID: 35196014 DOI: 10.1021/acs.langmuir.1c03467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An organophilic clay was obtained by the intercalation of dioctadecyldimethylammonium ions into the interlayer space of a purified bentonite. The organophilic clay was characterized by its excellent whiteness, which originated from the used purified bentonite with a low content of colored impurities, suitable for its practical application in paints, cosmetics, polymer additives, etc. The dioctadecyldimethylammonium-bentonite clay was applied as a support to accommodate polyaromatic molecules to afford luminescent hybrids with high luminescence efficiency, showing its usefulness as a component of photofunctional hybrid materials.
Collapse
Affiliation(s)
- Aniruddha Nag
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Takayuki Hayakawa
- Laboratory of Applied Clay Technology, Hojun Co., Ltd., An-naka, Gunma 379-0133, Japan
| | - Makoto Minase
- Laboratory of Applied Clay Technology, Hojun Co., Ltd., An-naka, Gunma 379-0133, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
12
|
Labianca C, De Gisi S, Todaro F, Notarnicola M, Bortone I. A review of the in-situ capping amendments and modeling approaches for the remediation of contaminated marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151257. [PMID: 34710404 DOI: 10.1016/j.scitotenv.2021.151257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Contaminated sediments can pose long-term risks to human beings and ecosystems as they accumulate inorganic and organic contaminants becoming a sink and source of pollution. Compared to ex-situ technologies (i.e., dredging activities and off site treatments), in-situ capping (ISC) intends to minimize contaminated sediment mobilization and impact into the water column whilst treating contamination. Literature shows that numerous types of ISC amendments in presence of both organic and inorganic pollutants are investigated, although a few are contributions whose experiments have been designed and conducted with a view to future engineering. Against this background of shortcomings, this review paper intends to investigate ISC reliability, applicability and its long-term effectiveness, by also comparing reactive and physical ISCs. Additionally, an examination of the main numerical simulations applied to ISC technology was carried out. We found that activated carbon and organoclay resulted the most studied amendments for organically contaminated sediment, whereas biochar, clay minerals, and industrial-by products were more employed in presence of sediment contaminated by metal(loids). There is no better ISC system in absolute terms, since technological performance depends on many factors and only a few experimental investigations included a long-term modeling phase to predict ISC long-term efficiency. Most of numerical models included simplified transport equations based on diffusion and adsorption, and the goodness of fitting between experimental and modeled data was not always computed. The review finally discusses new research directions such as the need for long-term applications on field-scale and cap effectiveness in presence of site-specific tidal forces and currents.
Collapse
Affiliation(s)
- Claudia Labianca
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy.
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - Francesco Todaro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - Imma Bortone
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, United Kingdom
| |
Collapse
|
13
|
Köse K, Tüysüz M, Aksüt D, Uzun L. Modification of cyclodextrin and use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:182-209. [PMID: 34212318 DOI: 10.1007/s11356-021-15005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Water pollution, which has become a global problem in parallel with environmental pollution, is a problem that needs to be solved urgently, considering the gradual depletion of water resources. The inadequacy of the water treatment methods and the materials used somehow directed the researchers to look for dual character structures such as biocompatible and biodegradable β-cyclodextrin (β-CD). β-CD, which is normally insoluble in water, is used in demanding wastewater applications by being modified with the help of different agents to be water soluble or transformed into polymeric adsorbents as a result of co-polymerization via cross-linkers. In this way, in addition to the host-guest interactions offered by β-CD, secondary forces arising from these interactions provide advantages in terms of regeneration and reusability. However, the adsorption efficiency and synthesis steps need to be improved. Based on the current studies presented in this review, in which cross-linkers and modification methods are also mentioned, suggestions for novel synthesis methods of new-generation β-CD-based materials, criticisms, and recent methods of removal of micropollutants such as heavy metals, industrial dyes, harmful biomolecules, and pharmaceutics wastes are mentioned.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, 19040, Çorum, Turkey.
| | - Miraç Tüysüz
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Davut Aksüt
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Ito T, Endo S, Sugahara Y, Tamate R, Guégan R. Preparation of biocompatible hydrogels reinforced by different nanosheets. RSC Adv 2021; 12:753-761. [PMID: 35425126 PMCID: PMC8978654 DOI: 10.1039/d1ra07604c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of inorganic nanosheets with various chemical compositions and properties at different concentrations on the rheological properties and the gelation formation of a thermo-responsive hydrogel was investigated. F127 Pluronic triblock copolymers, with the structure (EO)99(PO)65(EO)99 (EO: ethylene oxide and PO propylene oxide respectively), functionalized by dimethacrylate (F127-DMA) at a concentration of 25% was used in this study. After careful characterization by complementary techniques: transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction of nanosheets derived from the peeling of layered materials (montmorillonite, organoclays and hexaniobate), the nanosheets were seen to be suitably dispersed in the hydrogels. The inclusion of hydrophobic nanosheets (i.e. those treated with the grafting of surfactants onto their surface: organoclays and hexaniobate) leads to a depression of the gelation temperature while the nanocomposites exhibit an enhancement of their elastic properties, as determined by rheological measurements. In contrast, the inclusion of hydrophilic nanosheet derived from raw montmorillonite engenders an opposite trend. The whole nanocomposites whose gelation temperature can be tuned by both the nature and concentration of the nanosheets were successfully photopolymerized allowing the formation of a 3D structure containing a large content of water. The results obtained in this study open new perspectives for possible uses of hydrogel-based nanocomposites as embedding matrixes for bio-organisms.
Collapse
Affiliation(s)
- Taiga Ito
- Department of Applied Chemistry, Waseda University Tokyo Japan
| | - Saki Endo
- Department of Applied Chemistry, Waseda University Tokyo Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University Tokyo Japan.,Kagami Memorial Institute for Materials Science and Technology, Waseda University Tokyo Japan
| | - Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science Tsukuba Japan
| | - Régis Guégan
- Global Center for Science and Engineering, Waseda University Tokyo Japan
| |
Collapse
|
15
|
Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. MINERALS 2021. [DOI: 10.3390/min11111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural and modified clay minerals have been extensively used for the adsorption/desorption of organic substances, especially pesticides, from waters and wastewater, aiming at pollution control and more efficient use of the herbicides through controlled release. While natural clay minerals efficiently remove organic cations such as paraquat and diquat, the adsorption of anionic or neutral species demands surface chemical modification with, for instance, quaternary ammonium salts containing long alkyl chains. Basic pesticides, on the other hand, are better absorbed in clay minerals modified with polycations. Kinetic studies and adsorption/desorption isotherms provide the parameters needed to evaluate the clay mineral’s adsorptive performance towards the pollutant target. However, the direct comparison of these parameters is complicated because the experimental conditions, the analytical techniques, the kinetic and isotherm models, and the numerical fitting method differ among the various studies. The free-energy-related Langmuir constant depends on the degree of site occupation; that is, it depends on the concentration window used to construct the adsorption isotherm and, consequently, on the analytical technique used to quantify the free concentrations. This paper reviews pesticides’ adsorption on natural and modified clay minerals and proposes guidelines for designing batch adsorption/desorption studies to obtain easily comparable and meaningful adsorption parameters. Articles should clearly describe the experimental conditions such as temperature, contact time, total concentration window, the solution to adsorbent ratio, the analytical technique, and its detection and quantification limits, besides the fitting models. Research should also evaluate the competitive effects of humic substances, colloidal inorganic particles, and ionic strength to emulate real-world adsorption experiments.
Collapse
|
16
|
Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives. Adv Colloid Interface Sci 2021; 297:102537. [PMID: 34624725 DOI: 10.1016/j.cis.2021.102537] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Poly- and perfluoroalkyl substances (PFAS) present globally in drinking-, waste-, and groundwater sources are contaminants of emerging concern due to their long-term environmental persistence and toxicity to organisms, including humans. Here we review PFAS occurrence, behavior, and toxicity in various water sources, and critically discuss their removal via mineral adsorbents, including natural aluminosilicate clay minerals, oxidic clays (Al, Fe, and Si oxides), organoclay minerals, and clay-polymer and clay‑carbon (biochar and graphene oxide) composite materials. Among the many remediation technologies, such as reverse osmosis, adsorption, advanced oxidation and biologically active processes, adsorption is the most suitable for PFAS removal in aquatic systems. Treatment strategies using clay minerals and oxidic clays are inexpensive, eco-friendly, and efficient for bulk PFAS removal due to their high surface areas, porosity, and high loading capacity. A comparison of partition coefficient values calculated from extracted data in published literature indicate that organically-modified clay minerals are the best-performing adsorbent for PFAS removal. In this review, we scrutinize the corresponding plausible mechanisms, factors, and challenges affecting the PFAS removal processes, demonstrating that modified clay minerals (e.g., surfactant, amine), including some commercially available products (e.g., FLUORO-SORB®, RemBind®, matCARE™), show good efficacy in PFAS remediation in contaminated media under field conditions. Finally, we propose future research to focus on the challenges of using clay-based adsorbents for PFAS removal from contaminated water due to the regeneration and safe-disposal of spent clay adsorbents is still a major issue, whilst enhancing the PFAS removal efficiency should be an ongoing scientific effort.
Collapse
|
17
|
Sato R, Machida S, Sohmiya M, Sugahara Y, Guégan R. Intercalation of a Cationic Cyanine Dye Assisted by Anionic Surfactants within Mg-Al Layered Double Hydroxide. ACS OMEGA 2021; 6:23837-23845. [PMID: 34568663 PMCID: PMC8459359 DOI: 10.1021/acsomega.1c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
An original route for the intercalation of a 1,1'-diethyl-2,2'-cyanine iodide (PIC) cationic dye, through the use of anionic surfactants as vector/carrier phases, within Mg-Al layered double hydroxide (LDH) was investigated. From the data acquired from complementary techniques (X-ray diffraction, infrared and UV-visible spectroscopies, thermogravimetry, and fluorimetry), it appears that both the intercalation and aggregation states of the cationic dye within the internal structure of LDH mainly depend on both the surfactant state (monomer form or spherical micelle) and its amount. The intercalation of PIC at a low molar ratio to the anionic surfactant leads to the formation of J-aggregates with singular fluorescence properties that mainly depend on the nature of the anionic surfactant used for the co-intercalation process. The results obtained in this study open new routes for the intercalation of cationic species, assisted by anionic surfactants, within LDHs.
Collapse
Affiliation(s)
- Rina Sato
- Department
of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8050, Japan
| | - Shingo Machida
- Department
of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8050, Japan
- Tokyo
University of Science, Katsushika Campus, Musashino 162-8601, Tokyo, Japan
| | - Minoru Sohmiya
- Tokyo
University of Science, Katsushika Campus, Musashino 162-8601, Tokyo, Japan
- Seikei
University, 3-1 Kichijojikitamachi, Musashino 180-8633, Tokyo, Japan
| | - Yoshiyuki Sugahara
- Department
of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8050, Japan
| | - Régis Guégan
- Global
Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8050, Japan
| |
Collapse
|
18
|
Esmaeili E, Rounaghi SA, Eckert J. Mechanochemical Synthesis of Rosin-Modified Montmorillonite: A Breakthrough Approach to the Next Generation of OMMT/Rubber Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1974. [PMID: 34443805 PMCID: PMC8401612 DOI: 10.3390/nano11081974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
The current investigation presents a green mechanochemical procedure for the synthesis of a special kind of rubber-compatible organo-montmorillonite (OMMT) for use in the inner liner compound of tires. The compatibility character of the OMMT arises from the mechanochemical reaction of the raw bentonite mineral and gum rosin as some of the organic constituents of the inner liner composition. The monitoring of OMMT synthesis by various characterization techniques reveals that gum rosin gradually intercalates into the montmorillonite (MMT) galleries during milling and increases the interlayer spacing to 41.1 ± 0.5 Å. The findings confirm the simultaneous formation of single- or few-layered OMMT platelets with average sizes from the sub-micron range up to several micrometers during the milling process. The mechanical properties of the OMMT/rubber nanocomposite, such as tensile strength, tear resistance and elongation, present a good enhancement in comparison to the un-modified material. Moreover, the organo-modification of the inner liner composition also leads to a property improvement of about 50%.
Collapse
Affiliation(s)
- Elaheh Esmaeili
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
| | - Seyyed Amin Rounaghi
- Research and Development Laboratory, Nano Parmin Khavaran Company, Birjand, Iran;
| | - Jürgen Eckert
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben, Austria
- Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben, Austria
| |
Collapse
|
19
|
Stability of Atrazine–Smectite Intercalates: Density Functional Theory and Experimental Study. MINERALS 2021. [DOI: 10.3390/min11060554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atrazine (A) is one of the most applied herbicides and has a negative impact on the environment and health. Density functional theory (DFT) and experimental methods were used in the study of the immobilization of atrazine in two smectites, montmorillonite (Mt) and beidellite (Bd), as well as in their organically modified structures. Four systems were examined: A-Mt and A-Bd, as well as the structures modified by tetramethylphosphonium cation (TMP), A-TMP-Mt and A-TMP-Bd. The calculations revealed a flat arrangement of the atrazine in the interlayer space of both smectites with higher stability of beidellite structures. The presence of the TMP cation increased the fixation of atrazine in both organically modified smectites. The calculated vibrational spectra allowed a detailed analysis of the overlapping bands observed in the experimental FTIR spectra and their correct assignment. Further, selected FTIR bands unambiguously assigned to atrazine and both smectites served for the estimation of the adsorbed amount of atrazine. It was shown that the adsorption capacity of both TMP-modified smectites did not increase in comparison to the adsorption capacity of unmodified smectite samples.
Collapse
|
20
|
Al Dmour H, Kooli F, Mohmoud A, Liu Y, Popoola SA. Al and Zr Porous Clay Heterostructures as Removal Agents of Basic Blue-41 Dye from an Artificially Polluted Solution: Regeneration Properties and Batch Design. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2528. [PMID: 34068006 PMCID: PMC8152262 DOI: 10.3390/ma14102528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
The removal of Basic Blue-41 dye molecules was carried out by using two doped porous clay heterostructures by aluminum (Al) or zirconium (Zr) species. The proposed method of synthesis showed its efficiency, starting from Al or Zr intercalated hydrolyzed species, prior to its reaction with dodecylamine (C12 amine) and tetraethyl orthosilicate (TEOS) as a silica source. The intercalated precursors and their porous clay heterostructures (PCH) derivatives were characterized by different techniques. Solid NMR technique proved the presence of Al species into the intercalated silica between the clay sheets, and in addition to Si in different environments within the PCH materials. The Zr-PCH material exhibited a higher surface area and pore volume compared to its Al-PCH counterpart, with a mesoporous character for both materials. A maximum removed amount of 279 and 332 mg/g was achieved and deduced from the Langmuir equation. The regeneration tests revealed that the removal efficiency of Zr-PCH was retained after five regeneration runs, with a loss of 15% of the original value; meanwhile, the Al-PCH lost 45% of its efficiency after only three cycles. A single-stage batch design was proposed based on the Langmuir isotherm parameters. The increase of the removal capacity of Zr-PCH led to the reduction of the required amounts for the target removal of BB-41 dye compared to Al-PCH.
Collapse
Affiliation(s)
- Hmoud Al Dmour
- Department of Physics, Faculty of Science, Mu’tah University, Mu’tah 61710, Jordan;
| | - Fethi Kooli
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| | - Ahmed Mohmoud
- Petroleum Technology, Operated Offshore Oil Field Development, Qatar Petroleum, Doha 3212, Qatar;
| | - Yan Liu
- Institute of Chemicals and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore;
| | - Saheed A. Popoola
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| |
Collapse
|
21
|
Cukrowicz S, Sitarz M, Kornaus K, Kaczmarska K, Bobrowski A, Gubernat A, Grabowska B. Organobentonites Modified with Poly(Acrylic Acid) and Its Sodium Salt for Foundry Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1947. [PMID: 33924570 PMCID: PMC8070392 DOI: 10.3390/ma14081947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
The article aims to verify the possibility of obtaining an organic-inorganic material acting as both a binder and a lustrous carbon carrier in bentonite-bonded molding sands. Due to the wide industrial application, organoclays can be considered as innovative materials supporting the foundry technology in meeting environmental requirements. In this study, the organic modification of montmorillonite in calcium bentonite (SN) was performed by poly(acrylic acid) (PAA) and its sodium salt (PAA/Na). Additionally, for the purpose of comparison, the sodium-activated bentonite/poly(acrylic acid) (SN-Na/PAA) composites were also prepared. The collective analysis of the research results used in the assessment of the mineral/polymer interaction mechanism indicates surface adsorption combined with the intercalation of PAA monolayer into the mineral interlayer spaces. Materials were characterized by the combination of Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods. Based on the XRD analysis, the influence of PAA/Na on the aluminosilicate layered structure was found to be destructive, which may adversely affect the binding properties of SN/PAA/Na composites considered as a potential group of new foundry binders. The SN/PAA and SN-Na/PPA composites (with appropriate polymer content) can act as a binding agent in the synthetic molding sand technology, despite coating the bentonite particles with polymer molecules. The risk of losing the mineral's binding capacity is reduced by the good binding properties of pol(acrylic acid) itself. The article is the first stage (preceding the thermal analysis and the strength tests of molding sands with the prepared organobentonites) in determining the possibility of obtaining a new full-value foundry binder in molding sands with bentonite.
Collapse
Affiliation(s)
- Sylwia Cukrowicz
- Faculty of Foundry Engineering, AGH-University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland; (K.K.); (A.B.); (B.G.)
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (M.S.); (K.K.); (A.G.)
| | - Kamil Kornaus
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (M.S.); (K.K.); (A.G.)
| | - Karolina Kaczmarska
- Faculty of Foundry Engineering, AGH-University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland; (K.K.); (A.B.); (B.G.)
| | - Artur Bobrowski
- Faculty of Foundry Engineering, AGH-University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland; (K.K.); (A.B.); (B.G.)
| | - Agnieszka Gubernat
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (M.S.); (K.K.); (A.G.)
| | - Beata Grabowska
- Faculty of Foundry Engineering, AGH-University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland; (K.K.); (A.B.); (B.G.)
| |
Collapse
|
22
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
- Enhanced Polymer Research Group, Universiti Teknologi Malaysia
| |
Collapse
|
23
|
Tanimura M, Sugahara Y, Guégan R. Loss of a membrane phase under soft confinement conditions imposed by a porous silica colloids network. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Phuekphong AF, Imwiset KJ, Ogawa M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122888. [PMID: 32937697 DOI: 10.1016/j.jhazmat.2020.122888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nanoarchitecture of hybrids materials based on clay minerals as nano building blocks for the environmental remediation is summarized with the emphasis on the utilization of layered clay minerals, especially smectite group of clay minerals, as nano building blocks for designing functional nanostructures for the adsorption of molecular contaminants from the environments. Smectites are well-known adsorbents of cationic contaminants, while surface modification of smectites with organoammonium ions has given hydrophobic and microporous characters to uptake nonionic organic contaminants from environments. Not only on the designed interactions between adsorbent-adsorbate for efficient and higher capacity adsorption, the states of the adsorbed nonionic organic compounds have been altered and varied by the modification of smectites as shown by the controlled release and specific catalytic reactions. The organically modified clays are classified from the nanoarchitecture, and the functions derived from the nanoarchitectures are discussed based on the structure-property relationship.
Collapse
Affiliation(s)
- Alisa Fern Phuekphong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart Jaa Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
25
|
De Oliveira T, Boussafir M, Fougère L, Destandau E, Sugahara Y, Guégan R. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. CHEMOSPHERE 2020; 259:127480. [PMID: 32634722 DOI: 10.1016/j.chemosphere.2020.127480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
A Na+ exchanged montmorillonite clay (Na-Mt) and its organoclay derivatives prepared with benzyldimethyltetradecylammonium (BDTA) cationic and polyoxyethylene (20)oleyl-ether (Brij-O20) non-ionic surfactants were used for first time at our knowledge as adsorbents the removal diverse pharmaceuticals (PPs) from samples collected in a rural wastewater facility (town of Josnes in France). The selected facility showed a poor efficiency for the elimination of PPs that were permanently release to the environment. Although involving different interactional mechanisms, the whole adsorbents Na-Mt, nonionic Brij-Mt and cationic BDTA-Mt organoclays, could remove the entire PPs of various chemical nature in a low concentration regime (ng L-1), where electrostatic interactions mainly controlled the adsorption. Thus, the organic PPs cations were preferentially adsorbed onto Na-Mt and Brij0.4-Mt (with its dual hydrophilic-hydrophobic nature) while anionic PPs showed a bold affinity to BDTA-Mt. The hydrophobic environment generated by the intercalation of surfactants within the interlayer space of organoclays conferred a versatility for the adsorption of numerous PPs through weak molecular forces (Van der Waals and/or pi-pi interactions). The study confirmed the proper efficiency of the studied layered materials including organoclays and emphasized about their promising interests in water remediation strategy.
Collapse
Affiliation(s)
- Tiago De Oliveira
- Institut des Sciences de La Terre D'Orléans, UMR 7327, CNRS-Université D'Orléans, 1A Rue de La Férollerie, 45071 Orléans Cedex 2, France
| | - Mohammed Boussafir
- Institut des Sciences de La Terre D'Orléans, UMR 7327, CNRS-Université D'Orléans, 1A Rue de La Férollerie, 45071 Orléans Cedex 2, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, UMR 7311, CNRS-Université D'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| | - Emilie Destandau
- Institut de Chimie Organique et Analytique, UMR 7311, CNRS-Université D'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Régis Guégan
- Institut des Sciences de La Terre D'Orléans, UMR 7327, CNRS-Université D'Orléans, 1A Rue de La Férollerie, 45071 Orléans Cedex 2, France; Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
26
|
Iwasaki T. Structure of a layered octosilicate intercalated with alkylamines with different molecular structures in water. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Nanomaterials with Tailored Magnetic Properties as Adsorbents of Organic Pollutants from Wastewaters. INORGANICS 2020. [DOI: 10.3390/inorganics8040024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Water quality has become one of the most critical issue of concern worldwide. The main challenge of the scientific community is to develop innovative and sustainable water treatment technologies with high efficiencies and low production costs. In recent years, the use of nanomaterials with magnetic properties used as adsorbents in the water decontamination process has received considerable attention since they can be easily separated and reused. This review focuses on the state-of-art of magnetic core–shell nanoparticles and nanocomposites developed for the adsorption of organic pollutants from water. Special attention is paid to magnetic nanoadsorbents based on silica, clay composites, carbonaceous materials, polymers and wastes. Furthermore, we compare different synthesis approaches and adsorption performance of every nanomaterials. The data gathered in this review will provide information for the further development of new efficient water treatment technologies.
Collapse
|
28
|
Fenyvesi É, Barkács K, Gruiz K, Varga E, Kenyeres I, Záray G, Szente L. Removal of hazardous micropollutants from treated wastewater using cyclodextrin bead polymer - A pilot demonstration case. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121181. [PMID: 31541954 DOI: 10.1016/j.jhazmat.2019.121181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Increasing amount of micropollutants such as drugs, cosmetics and nutritional supplements detected in surface waters represents increasing risk to humans and to the whole environment. These hazardous materials deriving mostly from wastewaters often cannot be effectively removed by conventional water treatment technologies due to their persistence. Some of the innovative technologies use specific sorbents for their removal. Cyclodextrin-based sorbents have already proved to be efficient in laboratory-scale experiments, but no pilot-plant scale demonstration has been performed so far. We are the first who applied this sorption-technology as a tertiary treatment in a pilot-plant scale operating, biomachine-type municipal wastewater treatment plant. As a result of the treatment 7 of 9 typical micropollutants (estradiol, ethinyl estradiol, estriol, diclofenac, ibuprofen, bisphenol A and cholesterol) were removed with >80% efficiency from effluent (reducing their concentration from ∼5 μg/L to <0.001-1 μg/L). GC-MS analysis of water samples showed that many of the micropollutants were removed from the water within a short time, demonstrating the high potential of the applied cyclodextrin-based sorbent in micropollutant removal. The effect-based testing also confirmed the efficiency. There was a correlation between sorption efficacies and binding constants of micropollutant/cyclodextrin inclusion complexes, showing that among others also inclusion complex formation of pollutants with cyclodextrin played important role in sorption mechanism.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary.
| | - Katalin Barkács
- Cooperation Research Center of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Katalin Gruiz
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Erzsébet Varga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary
| | | | - Gyula Záray
- Cooperation Research Center of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary
| |
Collapse
|
29
|
Thiebault T, Brendlé J, Augé G, Limousy L. Laponites ® for the Recovery of 133Cs, 59Co, and 88Sr from Aqueous Solutions and Subsequent Storage: Impact of Grafted Silane Loads. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13030572. [PMID: 31991742 PMCID: PMC7040832 DOI: 10.3390/ma13030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
In this study, silylated Laponites® (LAP) were synthetized with various loads of 3-aminopropyltriethoxysilane (APTES) to evaluate their adsorption properties of 133Cs, 59Co, and 88Sr during single-solute and competitive experiments. The increase in the initial load of APTES increased the adsorbed amount of APTES in the resulted grafted clay. The characterization of LAP-APTES exhibited a covalent binding between APTES and LAP and emphasized the adsorption sites of APTES for each tested load. In comparison with raw LAP, LAP-APTES displayed significantly higher adsorption properties of Co2+, Cs+, and Sr2+. The competitive adsorption of these three contaminants provides a deeper understanding of the affinity between adsorbate and adsorbent. Therefore, Co2+ displayed a strong and specific adsorption onto LAP-APTES. Except for Cs+, the adsorption capacity was improved with increasing the load of APTES. Finally, the desorption behavior of the three contaminants was tested in saline solutions. Cs+ and Sr2+ were significantly released especially by inorganic cations displaying the same valence. Conversely, desorption of Co2+ was very low whatever the saline solution. LAP-APTES, therefore, presented suitable adsorption properties for the removal of radionuclides especially for Co2+, making this material suitable to improve the decontamination of radioactive wastewaters.
Collapse
Affiliation(s)
- Thomas Thiebault
- IS2M, Université de Haute-Alsace, CNRS, UMR 7361, 3b rue Alfred Werner, F-68100 Mulhouse, France; (J.B.); (L.L.)
- Université de Strasbourg, F-67081 Strasbourg, France
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005 Paris, France
| | - Jocelyne Brendlé
- IS2M, Université de Haute-Alsace, CNRS, UMR 7361, 3b rue Alfred Werner, F-68100 Mulhouse, France; (J.B.); (L.L.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Grégoire Augé
- ONET Technologies, 36 Boulevard de l’Océan, CS 20280, 13258 Marseille CEdEX 09, France;
| | - Lionel Limousy
- IS2M, Université de Haute-Alsace, CNRS, UMR 7361, 3b rue Alfred Werner, F-68100 Mulhouse, France; (J.B.); (L.L.)
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
30
|
Thiebault T, Brendlé J, Augé G, Limousy L. Cleaner Synthesis of Silylated Clay Minerals for the Durable Recovery of Ions (Co2+ and Sr2+) from Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Thiebault
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005 Paris, France
| | - Jocelyne Brendlé
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Grégoire Augé
- ONET Technologies, 36 Boulevard de l’Océan, CS 20280, 13258 Marseille Cedex 09, France
| | - Lionel Limousy
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
31
|
Sand Chee S, Jawaid M. The Effect of Bi-Functionalized MMT on Morphology, Thermal Stability, Dynamic Mechanical, and Tensile Properties of Epoxy/Organoclay Nanocomposites. Polymers (Basel) 2019; 11:polym11122012. [PMID: 31817284 PMCID: PMC6960896 DOI: 10.3390/polym11122012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, the optimum filler loading to prepare epoxy/organoclay nanocomposites by the in-situ polymerization method was studied. Bi-functionalized montmorillonite at different filler loading (0.5, 1.0, 2.0, 4.0 wt %) was dispersed in epoxy resin by using a high shear speed homogenizer. The effect on morphology, thermal, dynamic mechanical, and tensile properties of the epoxy/organoclay nanocomposites were studied in this work. Wide-angle X-ray scattering (WAXS) and field emission scanning electron microscope (FESEM) studies revealed that possible intercalated structures were obtained in epoxy/organoclay nanocomposites. Thermogravimetric analysis (TGA) shows that epoxy/organoclay nanocomposites exhibit higher thermal stability at the maximum and final decomposition temperature, as well as higher char content, compared to pristine epoxy. The dynamic mechanical analysis (DMA) indicate that storage modulus (E′), loss modulus (E″), cross-link density and glass transition temperature (Tg) of the nanocomposites were improved with organoclay loading up to 1 wt %. Beyond this loading limit, the deterioration of properties was observed. A similar trend was also observed on tensile strength and modulus. We concluded from this study that organoclay loading up to 1 wt % is suitable for further study to fabricate hybrid nanocomposites for various applications.
Collapse
Affiliation(s)
- Siew Sand Chee
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 145111, Saudi Arabia
- Correspondence: ; Tel.: +603-8946-6960
| |
Collapse
|
32
|
CoFe2O4 Nanomaterials: Effect of Annealing Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton Properties. Processes (Basel) 2019. [DOI: 10.3390/pr7120885] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this research, structural, magnetic properties and photocatalytic activity of cobalt ferrite spinel (CoFe2O4) nanoparticles were studied. The samples were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), and UV-visible diffused reflectance spectroscopy (DRS) analysis. The XRD analysis revealed the formation of the single-phase CoFe2O4 with a cubic structure that is annealed at 500–700 °C in 3 h. The optical band gap energy for CoFe2O4 was determined to be in the range of 1.57–2.03 eV. The effect on the magnetic properties of cobalt ferrites was analyzed by using a vibrating sample magnetometer (VSM). The particle size and the saturation magnetization of cobalt ferrite nanoparticles increased with increasing annealing temperature. The photocatalytic activity of CoFe2O4 nanoparticles was investigated by using rhodamine B dye under visible light. The decomposition of rhodamine B reached 90.6% after 270 min lighting with the presence of H2O2 and CF500 sample.
Collapse
|
33
|
Andrunik M, Bajda T. Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. MATERIALS 2019; 12:ma12223772. [PMID: 31744177 PMCID: PMC6888449 DOI: 10.3390/ma12223772] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Surfactant-modified clay minerals are known for their good sorption properties of both organic and inorganic compounds from aqueous solutions. However, the current knowledge regarding the effect of both cationic and nonionic surfactants on the properties of bentonite is still insufficient. Bentonite, with montmorillonite as the base clay, was modified with hexadecethyltrimethylammonium bromide (a cationic surfactant) in the amount of 1.0 cation exchange capacity (CEC) of bentonite and varying concentrations of t-octylphenoxypolyethoxyethanol (Triton X-100, a nonionic surfactant). We aimed to improve the understanding of the effect of nonionic and cationic surfactants on clay minerals. The modified bentonites were characterized by X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TG/DTA), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (SEM) and specific surface area and pore volume (BET). According to our results, the presence of a cationic surfactant significantly increased the amount of the adsorbed nonionic surfactant. Moreover, an increase in the concentration of nonionic surfactants is also associated with an increase in the effectiveness of the modification process. Our results indicate that the amount of nonionic surfactant used has a significant effect on the properties of the obtained hybrid material. Modification of bentonite with a nonionic surfactant did not cause an expansion of the interlayer space of smectite, regardless of the presence of a cationic surfactant. The modification process was found to significantly decrease the specific surface area of bentonite. Improvement of hydrophobic properties and thermal stability was also observed.
Collapse
|
34
|
Kooli F, Rakass S, Liu Y, Abboudi M, Oudghiri Hassani H, Muhammad Ibrahim S, Al Wadaani F, Al-Faze R. Eosin Removal by Cetyl Trimethylammonium-Cloisites: Influence of the Surfactant Solution Type and Regeneration Properties. Molecules 2019; 24:E3015. [PMID: 31434234 PMCID: PMC6720785 DOI: 10.3390/molecules24163015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.
Collapse
Affiliation(s)
- Fethi Kooli
- Al-Mahd Branch Community College, Taibah University, Al-Mahd 42112, Saudi Arabia.
| | - Souad Rakass
- Department of Chemistry, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawwarah 41147, Saudi Arabia
| | - Yan Liu
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Mostafa Abboudi
- Department of Chemistry, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawwarah 41147, Saudi Arabia
| | - Hicham Oudghiri Hassani
- Engineering Laboratory of Organometallic and Molecular Materials, Chemistry Department, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, P.O. Box 1796 (Atlas), Fez 30000, Morocco
| | - Sheikh Muhammad Ibrahim
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia
| | - Fahd Al Wadaani
- Department of Chemistry, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawwarah 41147, Saudi Arabia
| | - Rawan Al-Faze
- Department of Chemistry, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawwarah 41147, Saudi Arabia
| |
Collapse
|
35
|
|