1
|
Nuti F, Fernández FR, Severi M, Traversi R, Fanos V, Street ME, Palanza P, Rovero P, Papini AM. Study of Endocrine-Disrupting Chemicals in Infant Formulas and Baby Bottles: Data from the European LIFE-MILCH PROJECT. Molecules 2024; 29:5434. [PMID: 39598823 PMCID: PMC11597460 DOI: 10.3390/molecules29225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is inevitable, and growing scientific evidence indicates that even very low doses can negatively impact human health, particularly during pregnancy and the neonatal period. As part of the European project LIFE18 ENV/IT/00460, this study aims to identify the presence of EDCs in 20 infant formulas (both powdered and liquid) and the release from baby bottles and teats. Particularly, sensitization of young people and future parents towards the potential harmful effects of EDCs could significantly help to reduce exposure. Seven different UPLC-MS/MS methodologies and one ICP-AES were set up to quantify already assessed and suspected EDCs among 85 different chemicals (bisphenols, parabens, PAHs, phthalates, pesticides, herbicides and their main metabolites, PFAS, and metals). Results showed that in 2 out of 14 baby bottles, only anthracene and phenanthrene of the group of PAHs were released (10.68-10.81 ng/mL). Phthalates such as mono-ethyl phthalate (MEP) were found in 9 of 14 samples (0.054-0.140 ng/mL), while mono(2-ethyl-5-oxohexyl) phthalate (MeOHP) appeared in 2 samples (0.870-0.930 ng/mL). In accordance with current EU regulations, other chemicals were not detected in baby bottles and teats. However, bisphenols, parabens, PAHs, phthalates, PFAS, and metals were detected in infant formula, emphasizing the need for continued monitoring and public health interventions.
Collapse
Affiliation(s)
- Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| | - Feliciana Real Fernández
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), 50019 Sesto Fiorentino, Italy
| | - Mirko Severi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| | - Rita Traversi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| | - Vassilios Fanos
- Section of Neonatal Intensive Care Unit, Department of Paediatrics, Puericulture Institute and Neonatal Section, Azienda Mista and University of Cagliari, 09124 Cagliari, Italy;
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.E.S.)
- Unit of Pediatrics, University Hospital of Parma, 43126 Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.E.S.)
- Behavioral Biology Laboratory, University of Parma, 43124 Parma, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| |
Collapse
|
2
|
Parkinson LV, Geueke B, Muncke J. Potential mammary carcinogens used in food contact articles: implications for policy, enforcement, and prevention. FRONTIERS IN TOXICOLOGY 2024; 6:1440331. [PMID: 39381597 PMCID: PMC11458522 DOI: 10.3389/ftox.2024.1440331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Many nations have food contact material (FCM) legislation purporting to protect citizens from hazardous chemicals, often specifically by regulating genotoxic carcinogens. Despite such regulations, cancers that are associated with harmful chemical exposures are highly prevalent, especially breast cancer. Using the novel Key Characteristics of Toxicants framework, Kay et al. found 921 substances that are potential mammary carcinogens. By comparing Kay et al.'s chemicals list with our own Database on migrating and extractable food contact chemicals (FCCmigex), we found that 189 (21%) of the potential mammary carcinogens have been measured in FCMs. When limiting these results to migration studies published in 2020-2022, 76 potential mammary carcinogens have been detected to migrate from FCMs sold in markets across the globe, under realistic conditions of use. This implies that chronic exposure of the entire population to potential mammary carcinogens from FCMs is the norm and highlights an important, but currently underappreciated opportunity for prevention. Reducing population-wide exposure to potential mammary carcinogens can be achieved by science-based policy amendments addressing the assessment and management of food contact chemicals.
Collapse
Affiliation(s)
| | | | - Jane Muncke
- Food Packaging Forum Foundation, Zürich, Switzerland
| |
Collapse
|
3
|
Franko N, Kodila A, Sollner Dolenc M. Adverse outcomes of the newly emerging bisphenol A substitutes. CHEMOSPHERE 2024; 364:143147. [PMID: 39168390 DOI: 10.1016/j.chemosphere.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Collapse
Affiliation(s)
- Nina Franko
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Kodila
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Franko N, Sollner Dolenc M. Evaluation of THP-1 and Jurkat Cell Lines Coculture for the In Vitro Assessment of the Effects of Immunosuppressive Substances. TOXICS 2024; 12:607. [PMID: 39195709 PMCID: PMC11358983 DOI: 10.3390/toxics12080607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
The strong appeal to reduce animal testing calls for the development and validation of in vitro, in chemico and in silico models that would replace the need for in vivo testing and ex vivo materials. A category that requires such new approach methods is the assessment of immunosuppression that can be induced by chemicals including environmental pollutants. To assess the immunosuppressive action on monocytes and lymphocytes, we mimicked the whole-blood cytokine-release assay by preparing an in vitro coculture of THP-1 and Jurkat cell lines. We optimised its activation and investigated the effects of known immunosuppressive drugs with different mechanisms of action on the release of proinflammatory cytokines. Decreased secretion of IL-8 was achieved by several immunosuppressive mechanisms and was therefore selected as an appropriate marker of immunosuppression. A set of environmentally occurring bisphenols, BPA, BPAP, BPP, BPZ, BPE, TCBPA and BPS-MAE, were then applied to the model and BPP and BPZ were found to act as potent immunosuppressants at micromolar concentrations.
Collapse
Affiliation(s)
| | - Marija Sollner Dolenc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Santos CRD, Arcanjo GS, Araújo AAD, Santos LVDS, Amaral MCS. Occurrence, environmental risks, and removal of bisphenol A and its analogues by membrane bioreactors. CHEMICAL ENGINEERING JOURNAL 2024; 494:153278. [DOI: 10.1016/j.cej.2024.153278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Govindharaj K, Govindasamy M, Gokila N, Huang CH, Rajaji U, Albaqami MD, Kumar RTR. Green sonochemical synthesis of ZnCo 2O 4 decorated with carbon nanofibers for enhanced electrochemical detection of bisphenol A in food products. Mikrochim Acta 2024; 191:460. [PMID: 38987355 DOI: 10.1007/s00604-024-06511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
The facile sonochemical synthesis is reported of zinc cobalt oxide (ZnCo2O4) composited with carbon nanofiber (CNF). Structural, chemical, and morphological were characterized by X-ray diffraction (XRD), X-ray photoluminescent spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmittance electron microscopy (TEM), respectively. ZnCo2O4/CNF-modified GCE was applied to the detection of bisphenol A (BPA). The modified GCE shows enhanced sensing performance towards BPA, which includes a linear range (0.2 to 120 μM L-1) alongside a low limit of detection (38.2 nM L-1), low interference, and good stability. Detection of lower concentrations of BPA enables real sample analysis in the food industries (milk, orange juice, yogurt, tap water, and baby feeding bottles). Surprisingly, the BPA was detected in milk 510 nM L-1, orange juice 340 nM L-1, yogurt 1050 nM L-1, and tap water 140 nM L-1. Moreover, an interaction mechanism between the BPA analyte and ZnCo2O4 was discussed.
Collapse
Affiliation(s)
- Kamaraj Govindharaj
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
- Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, 24301, Taiwan
| | - Mani Govindasamy
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - N Gokila
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, 24301, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Umamaheswari Rajaji
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), 602105, Chennai, Tamil Nadu, India
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Thangavelu Rajendra Kumar
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
7
|
Zhao X, Liu Z, Zhang Y, Pan Y, Wang T, Wang Z, Li Z, Zeng Q, Qian Y, Qiu J, Mu X. Developmental effects and lipid disturbances of zebrafish embryos exposed to three newly recognized bisphenol A analogues. ENVIRONMENT INTERNATIONAL 2024; 189:108795. [PMID: 38857550 DOI: 10.1016/j.envint.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Bisphenol G (BPG), bisphenol M (BPM) and bisphenol TMC (BPTMC), are newly recognized analogues of bisphenol A (BPA), which have been detected in multiple environmental media. However, the understanding of their negative impacts on environmental health is limited. In this study, zebrafish embryos were exposed to BPA and the three analogues (0.1, 10, and 1000 μg/L) to identify their developmental toxic effects. According to our results, all of the three analogues induced significant developmental disorders on zebrafish embryos including inhibited yolk sac absorption, altered heart rate, and teratogenic effects. Oil Red O staining indicated lipid accumulation in the yolk sac region of zebrafish after bisphenol analogues exposure, which was consistent with the delayed yolk uptake. Untargeted lipidomic analysis indicated the abundance of triacylglycerols, ceramides and fatty acids was significantly altered by the three analogues. The combined analysis of lipidomics and transcriptomics results indicated BPG and BPM affected lipid metabolism by disrupting peroxisome proliferator-activated receptor pathway and interfering with lipid homeostasis and transport. This partly explained the morphological changes of embryos after bisphenol exposure. In conclusion, our study reveals that BPG, BPM and BPTMC possess acute and developmental toxicity toward zebrafish, and the developmental abnormalities are associated with the disturbances in lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yining Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yecan Pan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tiancai Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zishuang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zishu Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qingxiao Zeng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
9
|
van den Brand AD, Hessel EVS, Rijk R, van de Ven B, Leijten NM, Rorije E, den Braver-Sewradj SP. A prioritization strategy for functional alternatives to bisphenol A in food contact materials. Crit Rev Toxicol 2024; 54:291-314. [PMID: 38726570 DOI: 10.1080/10408444.2024.2341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 06/09/2024]
Abstract
The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM.
Collapse
Affiliation(s)
- Annick D van den Brand
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Bianca van de Ven
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Niels M Leijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Shalenie P den Braver-Sewradj
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
10
|
Mu X, Liu Z, Zhao X, Yuan L, Li Y, Wang C, Xiao G, Mu J, Qiu J, Qian Y. Bisphenol A Analogues Induce Neuroendocrine Disruption via Gut-Brain Regulation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1022-1035. [PMID: 38165294 DOI: 10.1021/acs.est.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
There is epidemiological evidence in humans that exposure to endocrine-disrupting chemicals such as bisphenol A (BPA) is tied to abnormal neuroendocrine function with both behavioral and intestinal symptoms. However, the underlying mechanism of this effect, particularly the role of gut-brain regulation, is poorly understood. We exposed zebrafish embryos to a concentration series (including environmentally relevant levels) of BPA and its analogues. The analogue bisphenol G (BPG) yielded the strongest behavioral impact on zebrafish larvae and inhibited the largest number of neurotransmitters, with an effective concentration of 0.5 μg/L, followed by bisphenol AF (BPAF) and BPA. In neurod1:EGFP transgenic zebrafish, BPG and BPAF inhibited the distribution of enteroendocrine cells (EECs), which is associated with decreased neurotransmitters level and behavioral activity. Immune staining of ace-α-tubulin suggested that BPAF inhibited vagal neural development at 50 and 500 μg/L. Single-cell RNA-Seq demonstrated that BPG disrupted the neuroendocrine system by inducing inflammatory responses in intestinal epithelial cells via TNFα-trypsin-EEC signaling. BPAF exposure activated apoptosis and inhibited neural developmental pathways in vagal neurons, consistent with immunofluorescence imaging studies. These findings show that both BPG and BPAF affect the neuroendocrine system through the gut-brain axis but by different mechanisms, revealing new insights into the modes of bisphenol-mediated neuroendocrine disruption.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 214081, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 214081, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100083, China
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066000, China
- Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066004, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066000, China
- Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066004, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
12
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
13
|
Moore B, He C, Knight E, Mueller JF, Tscharke B. Bisphenols and phthalates in Australian wastewater: A statistical approach for estimating contributions from diffuse and point sources. WATER RESEARCH 2023; 246:120680. [PMID: 37801981 DOI: 10.1016/j.watres.2023.120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Chemicals associated with plastics, such as bisphenols and phthalates, enter sewerage from both diffuse (domestic/commercial) and point (industrial) sources. In this study, we aimed to devise a conservative, statistical baseline to estimate contributions from these source types when sampling of specific sources is not possible. Population-normalised mass loads of two bisphenols and nine phthalates were estimated in wastewater samples from 22 sewage treatment plants (STPs) in 2019. Two multiday (10 and 7 day) pools were created for each STP. Baseline (diffuse) release thresholds were set at the mean of the first quartile (Q1) plus 10 times the standard deviation (STDV) of this quartile [Q1 mean + (10 x STDV)], with contributions over this considered to come from point sources. Chemicals with at least one population-normalised mass load more than three times their baseline were classified as point-source dominant and the remaining as diffuse-source dominant. Eleven of the twelve chemicals examined were detected above limits of quantification in all wastewater samples. Bisphenol A (BPA), bisphenol S (BPS), di-isononyl phthalate (DiNP) and di-methyl phthalate (DMP) were classified as point-source dominant chemicals. The total annual mass loads entering STPs across Australia were estimated to be 4.2 tonnes/year from diffuse sources and 4.5 tonnes/year from point sources for bisphenols, and 47 tonnes/year from diffuse sources and 5.9 tonnes/year from point sources for phthalates.
Collapse
Affiliation(s)
- Belinda Moore
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia.
| | - Chang He
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Emma Knight
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Benjamin Tscharke
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
14
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
15
|
Li XP, Qiu SQ, Huang GY, Lei DQ, Wang CS, Xie L, Ying GG. Toxicity and Estrogenicity of Bisphenol TMC in Oryzias melastigma via In Vivo and In Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3280-3290. [PMID: 36795899 DOI: 10.1021/acs.est.2c08009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 μg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 μg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 μg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 β-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.
Collapse
Affiliation(s)
- Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
16
|
Kourmaeva E, Sabry R, Favetta LA. Bisphenols A and F, but not S, induce apoptosis in bovine granulosa cells via the intrinsic mitochondrial pathway. Front Endocrinol (Lausanne) 2022; 13:1028438. [PMID: 36387888 PMCID: PMC9650025 DOI: 10.3389/fendo.2022.1028438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
With the gradual decline in global fertility rates, there is a need to identify potential contributing factors, their mechanisms of actions and investigate possible solutions to reverse the trend. Endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), are environmental toxicants that are known to negatively impact reproductive functions. As such, the use of BPA in the manufacturing industry has slowly been replaced by analogs, including bisphenol S (BPS) and bisphenol F (BPF), despite limited knowledge available regarding their impact on health and their safety. The following study investigates the effects of BPA, BPS and BPF at a concentration of 0.5 μg/mL and 50 μg/mL on bovine granulosa cell apoptosis, with the ultimate goal of determining how they may impact oocyte competence and, thus, overall fertility. The underlying hypothesis is that bisphenols disrupt the granulosa cell environment surrounding the oocyte inducing excessive apoptosis via the intrinsic mitochondrial pathway. To test this hypothesis, apoptosis was measured following a time- and dose-dependent exposure to all three bisphenols by flowcytometry paired with annexin V/PI staining as well as by quantification of key genes belonging to the intrinsic apoptotic pathway both at the mRNA and protein levels. The results of this study report that BPA and BPF reduce cell viability through reduced cell counts and increased apoptosis. This increase is due, in part, to the induction of apoptotic genes of the intrinsic pathway of apoptosis. Additionally, this study also suggests that BPS may not act on the intrinsic mitochondrial apoptotic pathway in bovine granulosa cells. Overall, this study allows us to establish potential apoptotic pathways activated by bisphenols as well as compare the relative apoptotic activities of BPA to its most widespread analogs.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Release of Selected Non-Intentionally Added Substances (NIAS) from PET Food Contact Materials: A New Online SPE-UHPLC-MS/MS Multiresidue Method. SEPARATIONS 2022. [DOI: 10.3390/separations9080188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Food contact materials (FCMs) are an underestimated source of food chemical contaminants and a potentially relevant route of human exposure to chemicals that are harmful to the endocrine system. Foods and water are the main sources of exposure due to contact with the packaging materials, often of polymeric nature. European Regulation 10/2011 requires migration tests on FCMs and foodstuffs to evaluate the presence of listed substances (authorized monomers and additives) and non-intentionally added substances (NIAS) not listed in the regulation and not subjected to restrictions. The tests are required to ensure the compliance of packaging materials for the contained foods. NIAS are a heterogeneous group of substances classified with a potential estrogenic or androgenic activity. Subsequently, the evaluation of the presence of these molecules in foods and water is significant. Here we present an online SPE/UHPLC-tandem MS method to quantify trace levels of NIAS in food simulants (A: aqueous 3% acetic acid; B: aqueous 20% ethanol) contained in PET preformed bottles. The use of online SPE reduces systemic errors thanks to the automation of the technique. For the developed analytical method, we evaluate the limit of detection (LOD), the limit of quantitation (LOQ), selectivity, RSD% and BIAS% for LLOQ for a total of twelve NIAS, including monomers, antioxidants, UV-filters and additives. LOD ranged between 0.002 µg/L for bisphenol S and 13.6 µg/L for 2,6-di-tert-butyl-4-methylphenol (BHT). LOQs are comprised between 0.01 µg/L for bisphenol S and 42.2 µg/L for BHT. The online-SPE/UHPLC-tandem MS method is applied to the food simulants contained in several types of PET packaging materials to evaluate the migration of the selected NIAS. The results show the presence (µg/L) of NIAS in the tested samples, underlining the need for a new regulation for these potentially toxic molecules.
Collapse
|
18
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Sabry R, Nguyen M, Younes S, Favetta LA. BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression. Mol Cell Endocrinol 2022; 545:111574. [PMID: 35065199 DOI: 10.1016/j.mce.2022.111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol A is a widespread endocrine disruptor with numerous effects on reproductive functions. Limitations on BPA in manufacturing has prompted the use of analogs, such as BPS and BPF, with limited research on their safety. The objective of this study was to evaluate the effects of BPA and its analogs on oxidative stress levels within bovine granulosa cells and to measure the expression of key antioxidant genes. Results indicate that BPA and BPF reduce cell viability and induce mitochondrial dysfunction and all three bisphenols increased production of reactive oxygen species as early as 12hrs post exposure. BPA increased the levels of antioxidants at 12hrs at the mRNA and protein levels, while these results were not significant at 48hrs. These results together suggest that BPA and its analogs can induce oxidative stress within bovine granulosa cells, although not necessarily through common mechanisms. Therefore, the use of BPA analogs may have to be re-considered.
Collapse
Affiliation(s)
- R Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Nguyen
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - S Younes
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L A Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|