1
|
Tampouratzi E, Asonitis K, Katsantonis J, Talaiporou K, Sfaelos K. Preoperative and postoperative evaluation of survivin in peripheral blood of patients with non-melanoma skin cancers. A pilot study. J DERMATOL TREAT 2023; 34:2147390. [PMID: 36369849 DOI: 10.1080/09546634.2022.2147390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Konstantinos Asonitis
- Department of Internal Medicine, Réseau Hospitalier Neuchâtelois, Neuchâtel, Switzerland
| | - John Katsantonis
- Department of Dermatology and Venereology, Tzaneio General Hospital, Piraeus, Greece
| | - Kyriakos Talaiporou
- Department of Business Administration, University of Western Attica, Athens, Greece
| | - Konstantinos Sfaelos
- Department of Skin & Venereal Diseases, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
2
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
3
|
Kumar HA, Desai A, Mohiddin G, Mishra P, Bhattacharyya A, Nishat R. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S826-S830. [PMID: 37694019 PMCID: PMC10485429 DOI: 10.4103/jpbs.jpbs_81_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer stem cells (CSCs) are a small sub-population of cells within a tumor mass proficient of tumor initiation and progression. Distinguishing features possessed by CSCs encompass self-renewal, regeneration and capacity to differentiate. These cells are attributed to the phenomenon of aggression, recurrence and metastasis in neoplasms. Due to their cancer initiating and contributing features, a proper understanding of these CSCs and its microenvironment would aid in better understanding of cancer and designing better targeted therapeutic strategies for improved clinical outcome, thus improving the prognosis. This article dispenses a narrative review of CSCs in the context of head and neck carcinoma under the sub headings of overview of cancer stem cells, methods of isolation of these cells, putative CSC markers of head and neck cancer, signaling pathways used by these cells and their therapeutic implications.
Collapse
Affiliation(s)
- Harish A. Kumar
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Anupama Desai
- Department of Periodontology and Oral Implantology, A.M.E’S Dental College, Raichur, Karnataka, India
| | - Gouse Mohiddin
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Pallavi Mishra
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Arnab Bhattacharyya
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Roquaiya Nishat
- Oral Pathology and Microbiology, Private Practitioner, Shri Balaji Dental Clinic, Patia, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Polverini PJ, Nör F, Nör JE. Crosstalk between cancer stem cells and the tumor microenvironment drives progression of premalignant oral epithelium. FRONTIERS IN ORAL HEALTH 2023; 3:1095842. [PMID: 36704239 PMCID: PMC9872128 DOI: 10.3389/froh.2022.1095842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSC) are a subpopulation of cancer cells that exhibit properties of self-renewal and differentiation and have been implicated in metastasis and treatment failures. There is mounting evidence that carcinogen-initiated mucosal epithelial stem cells acquire the CSC phenotype following exposure to environmental or infectious mutagens and are responsible for promoting the malignant transformation of premalignant (dysplastic) epithelium. CSC further contribute to the progression of dysplasia by activating signaling pathways through crosstalk with various cell populations in the tumor microenvironment. Two cell types, tumor-associated macrophages (TAM) and vascular endothelial cells (EC) nurture CSC development, support CSC stemness, and contribute to tumor progression. Despite mounting evidence implicating CSC in the initiation and progression of dysplastic oral epithelium to squamous cell carcinoma (SCC), the molecular mechanisms underlying these synergistic biological processes remain unclear. This review will examine the mechanisms that underlie the transformation of normal epithelial stem cells into CSC and the mechanistic link between CSC, TAM, and EC in the growth and the malignant conversation of dysplastic oral epithelium.
Collapse
Affiliation(s)
- Peter J. Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States,Correspondence: Peter J. Polverini
| | - Felipe Nör
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Siqueira JM, Heguedusch D, Rodini CO, Nunes FD, Rodrigues MFSD. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:116-137. [PMID: 37065869 PMCID: PMC10099599 DOI: 10.20517/cdr.2022.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023]
Abstract
Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome therapy failure.
Collapse
Affiliation(s)
- Juliana Mota Siqueira
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo 17012-230, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Maria Fernanda Setúbal Destro Rodrigues
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo 01504-001, Brazil
- Correspondence to: PhD. Maria Fernanda Setúbal Destro Rodrigues. Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Rua Vergueiro, 235/249 - Liberdade, São Paulo 01504-001, Brazil. E-mail:
| |
Collapse
|
6
|
Cheng T, Zhang S, Xia T, Zhang Y, Ji Y, Pan S, Xie H, Ren Q, You Y, You B. EBV promotes vascular mimicry of dormant cancer cells by potentiating stemness and EMT. Exp Cell Res 2022; 421:113403. [PMID: 36336028 DOI: 10.1016/j.yexcr.2022.113403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Vascular mimicry (VM) is defined as a vascular channel-like structure composed of tumor cells that correlates with the growth of cancer cells by providing blood circulation. However, whether VM can be formed in dormant cancer cells remains unclear. Our previous research revealed that polyploid giant cancer cells (PGCCs) are specific dormant cells related to the poor prognosis of head and neck cancer. Here, we demonstrated that EBV could promote VM formation by PGCCs in vivo and in vitro. Furthermore, we revealed that the activation of the ERK pathway partly mediated by LMP2A is responsible for stemness, and the acquisition of the stemness phenotype is crucial to the malignant biological behavior of PGCCs. The epithelial-to-mesenchymal transition (EMT) process plays a considerable role in PGCCs, and EMT progression is vital for EBV-positive PGCCs to form VM. This is the first study to reveal that EBV creates plasticity in PGCC-VM and provide a new strategy for targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tianyi Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Tian Xia
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Yanshu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yan Ji
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Qianqian Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China.
| |
Collapse
|
7
|
Ghasemi K, Ghasemi K. Evaluation of the Tocilizumab therapy in human cancers: Latest evidence and clinical potential. J Clin Pharm Ther 2022; 47:2360-2368. [PMID: 36271617 DOI: 10.1111/jcpt.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Tocilizumab (Actemra®), as the first human interleukin-6 receptor (IL-6R) antagonist, has been used in treating moderate to severe active rheumatoid arthritis (RA) patients who were undertreatment with one or more disease-modifying anti-rheumatic drugs (DMARDs) and did not improve significantly. Tocilizumab also has been administrated and confirmed in several inflammatory-based diseases. Recently, tocilizumab has been prescribed to treat patients with advanced coronavirus disease (COVID-19) and is used as one of the effective drugs in reducing the increased inflammation in these patients. On the other hand, cancer treatment has been considered by researchers one of the most important challenges to human health. Regarding inflammatory-associated malignancies, it has been shown that inflammatory mediators such as interleukin-1 beta (IL-1β), IL-6, and tumour necrosis factor-alpha (TNF-α) may play a role in tumorigenesis, thus targeting these cytokines as evidence suggested can be useful in the treatment of these types of cancers. This review summarized the role of the IL-6/IL-6R axis in inflammation-based cancers and discussed the effectiveness and challenges of treating cancer with tocilizumab.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Shahoumi LA. Oral Cancer Stem Cells: Therapeutic Implications and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:685236. [PMID: 35048028 PMCID: PMC8757826 DOI: 10.3389/froh.2021.685236] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is currently one of the 10 most common malignancies worldwide, characterized by a biologically highly diverse group of tumors with non-specific biomarkers and poor prognosis. The incidence rate of HNSCC varies widely throughout the world, with an evident prevalence in developing countries such as those in Southeast Asia and Southern Africa. Tumor relapse and metastasis following traditional treatment remain major clinical problems in oral cancer management. Current evidence suggests that therapeutic resistance and metastasis of cancer are mainly driven by a unique subpopulation of tumor cells, termed cancer stem cells (CSCs), or cancer-initiating cells (CICs), which are characterized by their capacity for self-renewal, maintenance of stemness and increased tumorigenicity. Thus, more understanding of the molecular mechanisms of CSCs and their behavior may help in developing effective therapeutic interventions that inhibit tumor growth and progression. This review provides an overview of the main signaling cascades in CSCs that drive tumor repropagation and metastasis in oral cancer, with a focus on squamous cell carcinoma. Other oral non-SCC tumors, including melanoma and malignant salivary gland tumors, will also be considered. In addition, this review discusses some of the CSC-targeted therapeutic strategies that have been employed to combat disease progression, and the challenges of targeting CSCs, with the aim of improving the clinical outcomes for patients with oral malignancies. Targeting of CSCs in head and neck cancer (HNC) represents a promising approach to improve disease outcome. Some CSC-targeted therapies have already been proven to be successful in pre-clinical studies and they are now being tested in clinical trials, mainly in combination with conventional treatment regimens. However, some studies revealed that CSCs may not be the only players that control disease relapse and progression of HNC. Further, clinical research studying a combination of therapies targeted against head and neck CSCs may provide significant advances.
Collapse
Affiliation(s)
- Linah A Shahoumi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
10
|
Song S, Li Y, Zhang K, Zhang X, Huang Y, Xu M, Li S, Guan X, Yang T, Liu Z, Jiang J, Luo Y, Lan Y. Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45 +CD19 - cells but in the ALDH high Cells. J Cancer 2020; 11:142-152. [PMID: 31892981 PMCID: PMC6930399 DOI: 10.7150/jca.35000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Although the existence of cancer stem cells (CSCs) has been suggested in diffuse large B cell lymphoma (DLBCL), there is still no definitive marker. CD45+CD19- has been regarded as a potential marker of CSCs in mantle cell lymphoma (MCL). So, we explored the role of CD45+CD19- in DLBCL. However, both CD45+CD19- cells and CD45+CD19+ cells did not generate tumors until more than 100,000 cells were inoculated in NOD/SCID mice, even CD45+CD19+ cells generated more and larger tumors, as well as the soft agar colony formation in vitro; The aldehyde dehydrogenase (ALDH) activity was also identified in this study. Only 1,500 ALDHhigh cells were enough to generate tumors in mice while the same number of ALDH- cells were not. Moreover, both groups formed tumors when more cells were inoculated, but ALDHhigh cells formed more and larger tumors. The similar result was obtained in vitro clonogenicity experiments. OCT4, SOX2, Nanog, and ABCG2 genes did not show any difference in CD45+CD19+, CD45+CD19-, ALDHhigh and ALDH- cells. Taken together, CSCs are not enriched in the CD45+CD19- cells but in the ALDHhigh cells in DLBCL cell lines.
Collapse
Affiliation(s)
- Shupeng Song
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Yongguo Li
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Kaili Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Xi Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Yanxin Huang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Mingyan Xu
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Shuangxing Li
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Xue Guan
- Animal experimental center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Tao Yang
- Instrument Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, Hei Longjiang, China
| | - Zhiyu Liu
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Jie Jiang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing,10005, China
| | - Yinghua Lan
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| |
Collapse
|
11
|
Gunduz M, Gunduz E, Tamagawa S, Enomoto K, Hotomi M. Identification and chemoresistance of cancer stem cells in HPV-negative oropharyngeal cancer. Oncol Lett 2019; 19:965-971. [PMID: 31897209 PMCID: PMC6924148 DOI: 10.3892/ol.2019.11127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying mechanisms of resistance to chemoradiotherapy of human papilloma virus (HPV)-negative patients with oropharyngeal cancer (OPC) remain unclear. The present study aimed to characterize cancer stem cells (CSC) of the HPV-negative OPC cell line in terms of chemotherapy resistance. CSCs were isolated through magnetic activated cell sorting using the CSC specific marker aldehyde dehydrogenase 1 antibody, and characterized by sphere formation capacity, immunofluorescence staining, and CSC marker expression. CSC response to cisplatin treatment was evaluated via XTT-assays. Spheres of CSCs of the HPV-negative UTSCC-60A cell line were highly dark holospheres. RNA expression levels of CSC markers OCT4, SOX2, Kruppel-like factor 4 and BMI1 were significantly higher in CSC. CSCs were significantly resistant to cisplatin treatment at various dosages compared with nonCSC. The present study suggested that the proportion of CSCs is very low in the tumor bulk, CSCs are resistant to cisplatin in HPV-negative OPC, which requires further investigation to define their mechanism.
Collapse
Affiliation(s)
- Mehmet Gunduz
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Esra Gunduz
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shunji Tamagawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Keisuke Enomoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
12
|
Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, Pashaiasl M. Bidirectional and Opposite Effects of Naïve Mesenchymal Stem Cells on Tumor Growth and Progression. Adv Pharm Bull 2019; 9:539-558. [PMID: 31857958 PMCID: PMC6912184 DOI: 10.15171/apb.2019.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been considered as a heterogeneous population of uncontrolled proliferation of
different transformed cell types. The recent findings concerning tumorigeneses have highlighted
the fact that tumors can progress through tight relationships among tumor cells, cellular, and
non-cellular components which are present within tumor tissues. In recent years, studies have
shown that mesenchymal stem cells (MSCs) are essential components of non-tumor cells within
the tumor tissues that can strongly affect tumor development. Several forms of MSCs have been
identified within tumor stroma. Naïve (innate) mesenchymal stem cells (N-MSCs) derived from
different sources are mostly recruited into the tumor stroma. N-MSCs exert dual and divergent
effects on tumor growth through different conditions and factors such as toll-like receptor
priming (TLR-priming), which is the primary underlying causes of opposite effects. Moreover,
MSCs also have the contrary effects by various molecular mechanisms relying on direct cellto-
cell connections and indirect communications through the autocrine, paracrine routes, and
tumor microenvironment (TME).
Overall, cell-based therapies will hold great promise to provide novel anticancer treatments.
However, the application of intact MSCs in cancer treatment can theoretically cause adverse
clinical outcomes. It is essential that to extensively analysis the effective factors and conditions
in which underlying mechanisms are adopted by MSCs when encounter with cancer.
The aim is to review the cellular and molecular mechanisms underlying the dual effects of
MSCs followed by the importance of polarization of MSCs through priming of TLRs.
Collapse
Affiliation(s)
- Faramarz Rahmatizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khodadad Khodadadi
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Maryam Lale Ataei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozko P, Plentz RR. Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res 2019; 385:111671. [PMID: 31634481 DOI: 10.1016/j.yexcr.2019.111671] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
Abstract
Aberrant activation of Sonic Hedgehog (SHH) pathway has been implicated in a variety of cancers including cholangiocarcinoma (CC); however, the influencing factors are still unknown. Additionally, intratumoral hypoxia is known to contribute towards therapeutic resistance through modulatory effects on various pathways. In this study, we investigated the relationship between hypoxia and SHH pathway activation and the effect of this interplay on cancer stemness and epithelial-to- mesenchymal transition (EMT) during cholangiocarcinogenesis. Hypoxia promoted SHH pathway activation, evidenced by upregulated SHH and SMO levels, and enhanced glioma-associated oncogene homolog 1 (GLI1) nuclear translocation; whereas silencing of HIF-1α impaired SHH upregulation. Hypoxia also enhanced the expression of cancer stem cell (CSC) transcription factors (NANOG, Oct4, SOX2), CD133 and EMT markers (N-cadherin, Vimentin), thereby supporting invasion. Cyclopamine treatment suppressed hypoxia induced SHH pathway activation, consequently reducing invasiveness by downregulating the expression of CSC transcription factors, CD133 and EMT. Cyclopamine induced apoptosis in CC cells under hypoxia, suggesting that hypoxia induced activation of SHH pathway has modulatory effects on CC progression. Therefore, SHH signaling is proposed as a target for CC treatment, which is refractory to standard chemotherapy.
Collapse
Affiliation(s)
- Vikas Bhuria
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Jun Xing
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Tim Scholta
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Mai Ly Thi Nguyen
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany.
| | - Ruben R Plentz
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany; Department of Internal Medicine II, Bremen-Nord Hospital, Bremen, Germany.
| |
Collapse
|
14
|
The Emerging Role of NANOG as an Early Cancer Risk Biomarker in Patients with Oral Potentially Malignant Disorders. J Clin Med 2019; 8:jcm8091376. [PMID: 31484317 PMCID: PMC6780631 DOI: 10.3390/jcm8091376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
NANOG, a key regulator of pluripotency and self-renewal in embryonic and adult stem cells, is frequently overexpressed in multiple cancers, including oral squamous cell carcinoma (OSCC). It has been frequently associated with poor outcomes in epithelial cancers, and recently implicated in laryngeal tumorigenesis. On this basis, we investigated the role of NANOG protein expression as an early cancer risk biomarker in oral potentially malignant disorders (OPMD), and the impact on prognosis and disease outcomes in OSCC patients. NANOG expression was evaluated by immunohistochemistry in 55 patients with oral epithelial dysplasia, and 125 OSCC patients. Correlations with clinical and follow-up data were assessed. Nuclear NANOG expression was detected in 2 (3.6%) and cytoplasmic NANOG expression in 9 (16.4%) oral dysplasias. NANOG expression increased with the grade of dysplasia. Cytoplasmic NANOG expression and the histopathological grading were significantly correlated with oral cancer risk, although dysplasia grading was the only significant independent predictor of oral cancer development in multivariate analyses. Cytoplasmic NANOG expression was also detected in 39 (31%) OSCC samples. Positive NANOG expression was significantly associated with tobacco and alcohol consumption, and was more frequent in pN0 tumors, early I-II stages. These data unveil the clinical relevance of NANOG in early stages of OSCC tumorigenesis rather than in advanced neoplastic disease. NANOG expression emerges as an early predictor of oral cancer risk in patients with OPMD.
Collapse
|
15
|
Liu M, Song H, Xing Z, Lu G, Li J, Chen D. Correlation between PTEN gene polymorphism and oral squamous cell carcinoma. Oncol Lett 2019; 18:1755-1760. [PMID: 31423242 PMCID: PMC6614663 DOI: 10.3892/ol.2019.10526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Correlation between phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene polymorphism and oral squamous cell carcinoma (OSCC) was investigated. A total of 33 OSCC patients were studied and 33 healthy individuals were included as the control group. Correlation between PTEN gene and OSCC was explored via quantitative polymerase chain reaction (qPCR), immunohistochemistry and western blot analysis. The PTEN gene polymorphism was detected via PCR-restriction fragment length polymorphism (PCR-RFLP), and its correlation with OSCC was explored. The immunohistochemical assay showed that the PTEN protein expression level significantly declined in OSCC patients (2.37±1.01 µg/l) compared with that in healthy subjects (3.09±0.95 µg/l). There was no significant difference in the rs2943773 genotype between control and experimental group (χ2=0.863, P=0.712), but there was a significant difference in the rs9651495 genotype between the two groups (P<0.05). The C/C genotype frequency of rs9651495 in OSCC patients (50.15%) was significantly higher than that in healthy subjects (23.71%) (P<0.05). The C/T genotype frequency of rs9651495 had no significant difference between the two groups (18.52 vs. 19.01%) (P>0.05). The T/T genotype frequency of rs9651495 in OSCC patients (31.33%) was obviously lower than that in healthy subjects (57.19%) (P<0.05). According to statistics, the PTEN protein expression level in patients with C/C genotype was remarkably lower than that in patients with other genotypes. There is a correlation between PTEN gene polymorphism and OSCC. Thereby, the higher C/C genotype frequency corresponds to the lower PTEN protein expression level, thus inducing OSCC.
Collapse
Affiliation(s)
- Min Liu
- Department of Stomatology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Hongning Song
- Department of Stomatology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Zaichen Xing
- Department of Stomatology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Guo Lu
- First People's Hospital in Ningyang County, Taian, Shandong 271400, P.R. China
| | - Junfu Li
- Department of Stomatology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Daiyun Chen
- Department of Stomatology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
16
|
Elkashty OA, Ashry R, Tran SD. Head and neck cancer management and cancer stem cells implication. Saudi Dent J 2019; 31:395-416. [PMID: 31700218 PMCID: PMC6823822 DOI: 10.1016/j.sdentj.2019.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are heterogeneous in nature. Risk factors for HNSCCs are smoking, excessive alcohol consumption, and the human papilloma virus. Conventional treatments are surgery, radiotherapy, chemotherapy, or a combined modality; however, no international standard mode of therapy exists. In contrast to the conventional model of clonal evolution in tumor development, there is a newly proposed theory based on the activity of cancer stem cells (CSCs) as the model for carcinogenesis. This “CSC hypothesis” may explain the high mortality rate, low response to treatments, and tendency to develop multiple tumors for HNSCC patients. We review current knowledge on HNSCC etiology and treatment, with a focus on CSCs, including their origins, identifications, and effects on therapeutic options.
Collapse
Key Words
- ABC, ATP-binding cassette transporters
- ATC, amplifying transitory cell
- Antineoplastic agents
- BMI-1, B cell-specific Moloney murine leukemia virus integration site 1
- Cancer stem cells
- Cancer treatment
- Carcinoma
- EGFR, epidermal growth factor receptor
- HIFs, hypoxia-inducible factors
- Head and neck cancer
- MDR1, Multidrug Resistance Protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase
- Squamous cell
- TKIs, tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ramy Ashry
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
18
|
Salazar‐García L, Pérez‐Sayáns M, García‐García A, Carracedo Á, Cruz R, Lozano A, Sobrino B, Barros F. Whole exome sequencing approach to analysis of the origin of cancer stem cells in patients with head and neck squamous cell carcinoma. J Oral Pathol Med 2018; 47:938-944. [DOI: 10.1111/jop.12771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mario Pérez‐Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit Faculty of Medicine and Dentistry Instituto de Investigación Sanitaria de Santiago (IDIS) Santiago de Compostela Spain
| | - Abel García‐García
- Oral Medicine, Oral Surgery and Implantology Unit Faculty of Medicine and Dentistry Instituto de Investigación Sanitaria de Santiago (IDIS) Santiago de Compostela Spain
| | - Ángel Carracedo
- Fundacion Publica Galega de Medicina Xenomica‐SERGAS Santiago de Compostela Spain
- Grupo de Medicina Xenómica CIBER de Enfermedades Raras (CIBERER)‐Instituto de Salud Carlos III Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica CIBER de Enfermedades Raras (CIBERER)‐Instituto de Salud Carlos III Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Antonio Lozano
- Department of Gastroenterology University Hospital Santiago de Compostela Spain
| | - Beatriz Sobrino
- Fundacion Publica Galega de Medicina Xenomica‐SERGAS Santiago de Compostela Spain
| | - Francisco Barros
- Fundacion Publica Galega de Medicina Xenomica‐SERGAS Santiago de Compostela Spain
- Grupo de Medicina Xenómica CIBER de Enfermedades Raras (CIBERER)‐Instituto de Salud Carlos III Universidade de Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
19
|
Curtarelli RB, Gonçalves JM, dos Santos LGP, Savi MG, Nör JE, Mezzomo LAM, Rodríguez Cordeiro MM. Expression of Cancer Stem Cell Biomarkers in Human Head and Neck Carcinomas: a Systematic Review. Stem Cell Rev Rep 2018; 14:769-784. [DOI: 10.1007/s12015-018-9839-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Qian X, Nie X, Yao W, Klinghammer K, Sudhoff H, Kaufmann AM, Albers AE. Reactive oxygen species in cancer stem cells of head and neck squamous cancer. Semin Cancer Biol 2018; 53:248-257. [PMID: 29935313 DOI: 10.1016/j.semcancer.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
One of the greatest challenges in systemic treatment of head and neck squamous cell carcinoma (HNSCC) is a small tumor cell population, namely, cancer stem-like cells (CSC). CSC can regenerate and maintain a heterogenic tumor by their self-renewal capacity. Their potential ability to be more resistant to and survival after chemo- and radiation therapy was also identified. Further studies have shown that reactive oxygen species (ROS) contribute to this CSC-associated resistance. In this review, we focus on the current knowledge of HNSCC-CSC, with regard to ROS as a possible and novel therapeutic approach in targeting CSC.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany; Division of Molecular Diagnostics, Department of Laboratory Medicine, Zhejiang Cancer Hospital, Hangzhou, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, PR China
| | - Wenhao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Konrad Klinghammer
- Department of Hematology and Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas E Albers
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
21
|
Irani S, Dehghan A. The Expression and Functional Significance of Vascular Endothelial-Cadherin, CD44, and Vimentin in Oral Squamous Cell Carcinoma. J Int Soc Prev Community Dent 2018; 8:110-117. [PMID: 29780735 PMCID: PMC5946518 DOI: 10.4103/jispcd.jispcd_408_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/15/2018] [Indexed: 01/29/2023] Open
Abstract
Objectives Ninety percent of head and neck cancers are squamous cell carcinoma which develops in the oral cavity. Metastasis is the main causative factor for death in 90% of all cancer-related deaths and begins with the invasion of tumor cells through the walls of small blood vessels or lymph vessels. A growing body of evidence has shown that vasculogenic mimicry (VM) facilitates tumor growth and cancer metastasis. The current study aimed to present the role of vascular endothelial (VE)-cadherin, CD44, and vimentin in inducing VM and epithelial-mesenchymal transition (EMT) and to identify the cancer stem cell (CSC) niche in different grades of oral squamous cell carcinoma (OSCC). Materials and Methods A total of 63 OSCC samples (21 samples each grade) were collected from the archive of Pathology Department of Besat educational hospital, Hamadan, Iran, from 2000 to 2015. VE-cadherin, CD44, and vimentin/periodic acid-Schiff (PAS) double-staining were used to validate VM. VM was identified by the detection of PAS-positive loops surrounded by tumor cells. Chi-square test was used to examine the differences between the variables. Significant level was set at 0.05. Pearson's correlation was used to assess the co-localization of the markers. Results There were statistically significant differences between tumor grade and the expression levels of VE-cadherin, CD44, and vimentin (P = 0.000). In addition, significant differences were found between tumor grade and microvessel density (P = 0.000) and between tumor grade and VM (P = 0.000). Conclusion Our results may disclose a definite relationship between VE-cadherin, CD44 and vimentin expression levels, VM formation, EMT, CSCs, and microvessel count in OSCC samples. For this reason, it is suggested that VE-cadherin, CD44, and vimentin are related to angiogenesis and VM formation in OSCC, therefore, in tumor progression and metastasis. Recently, antitumor angiogenic therapies have been challenged. The presence of VM may explain the failure of antiangiogenic treatments.
Collapse
Affiliation(s)
- Soussan Irani
- Department of Oral Pathology, Dental Research Centre, Research Centre for Molecular Medicine, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Dehghan
- Department of Pathology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Forster JC, Douglass MJJ, Harriss-Phillips WM, Bezak E. Simulation of head and neck cancer oxygenation and doubling time in a 4D cellular model with angiogenesis. Sci Rep 2017; 7:11037. [PMID: 28887560 PMCID: PMC5591194 DOI: 10.1038/s41598-017-11444-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
Tumor oxygenation has been correlated with treatment outcome for radiotherapy. In this work, the dependence of tumor oxygenation on tumor vascularity and blood oxygenation was determined quantitatively in a 4D stochastic computational model of head and neck squamous cell carcinoma (HNSCC) tumor growth and angiogenesis. Additionally, the impacts of the tumor oxygenation and the cancer stem cell (CSC) symmetric division probability on the tumor volume doubling time and the proportion of CSCs in the tumor were also quantified. Clinically relevant vascularities and blood oxygenations for HNSCC yielded tumor oxygenations in agreement with clinical data for HNSCC. The doubling time varied by a factor of 3 from well oxygenated tumors to the most severely hypoxic tumors of HNSCC. To obtain the doubling times and CSC proportions clinically observed in HNSCC, the model predicts a CSC symmetric division probability of approximately 2% before treatment. To obtain the doubling times clinically observed during treatment when accelerated repopulation is occurring, the model predicts a CSC symmetric division probability of approximately 50%, which also results in CSC proportions of 30-35% during this time.
Collapse
Affiliation(s)
- Jake C Forster
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia. .,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Michael J J Douglass
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Wendy M Harriss-Phillips
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Sansom Institute for Health Research and the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:8. [PMID: 28536639 PMCID: PMC5415770 DOI: 10.1186/s11658-017-0038-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India.,Department of Biomedical Sciences, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Prakash Singh Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India
| |
Collapse
|
24
|
Qian X, Coordes A, Kaufmann AM, Albers AE. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time. Oncol Lett 2016; 12:3429-3434. [PMID: 27900016 DOI: 10.3892/ol.2016.5100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/01/2016] [Indexed: 01/02/2023] Open
Abstract
Despite the development of novel multimodal treatment combinations in advanced oropharyngeal squamous cell carcinoma (OSCC), outcomes remain poor. The identification of specifically validated biomarkers is required to understand the underlying molecular mechanisms, to evaluate treatment efficiency and to develop novel therapeutic targets. The present study, therefore, examined the presence of aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and high mobility group box 1 (HMGB1) expression in primary OSCC and analyzed the impact on survival time. In 59 patients with OSCC, the expression of ALDH1A1, p16 and HMGB1, and their clinicopathological data were analyzed. HMGB1 positivity was significantly increased in patients with T1-2 stage disease compared with T3-4 stage disease (P<0.001), whereas ALDH1A1 positivity was not. ALDH1A1+ tumors showed significantly lower differentiation than ALDH1A1- tumors (P=0.018). Multivariate analysis showed that ALDH1A1 positivity (P=0.041) and nodal status (N2-3) (P=0.036) predicted a poor prognosis. In this patient cohort, ALDH1A1 and nodal status were identified as independent predictors of a shorter overall survival time. The study results, therefore, provide evidence of the prognostic value of ALDH1A1 as a marker for cancer stem cells and nodal status in OSCC patients.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otolaryngology, Head and Neck Surgery, Charité - Medical University of Berlin, Benjamin Franklin Campus, D-12200 Berlin, Germany; School of Basic Medical Science, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Annekatrin Coordes
- Department of Otolaryngology, Head and Neck Surgery, Charité - Medical University of Berlin, Benjamin Franklin Campus, D-12200 Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité - Medical University of Berlin, Benjamin Franklin Campus, D-12200 Berlin, Germany
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité - Medical University of Berlin, Benjamin Franklin Campus, D-12200 Berlin, Germany
| |
Collapse
|
25
|
Barnawi R, Al-Khaldi S, Majed Sleiman G, Sarkar A, Al-Dhfyan A, Al-Mohanna F, Ghebeh H, Al-Alwan M. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway. Stem Cells 2016; 34:2799-2813. [DOI: 10.1002/stem.2473] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rayanah Barnawi
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Samiyah Al-Khaldi
- National Genome Center, King Abdulaziz City for Sciences and Technology; Riyadh Saudi Arabia
| | | | - Abdullah Sarkar
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Abdullah Al-Dhfyan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Falah Al-Mohanna
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| |
Collapse
|
26
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
27
|
Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo. Int J Mol Sci 2016; 17:ijms17010089. [PMID: 26771605 PMCID: PMC4730332 DOI: 10.3390/ijms17010089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.
Collapse
|
28
|
Qian X, Ma C, Nie X, Lu J, Lenarz M, Kaufmann AM, Albers AE. Biology and immunology of cancer stem(-like) cells in head and neck cancer. Crit Rev Oncol Hematol 2015; 95:337-45. [DOI: 10.1016/j.critrevonc.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 03/14/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
|
29
|
Ventelä S, Sittig E, Mannermaa L, Mäkelä JA, Kulmala J, Löyttyniemi E, Strauss L, Cárpen O, Toppari J, Grénman R, Westermarck J. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 2015; 6:144-58. [PMID: 25474139 PMCID: PMC4381584 DOI: 10.18632/oncotarget.2670] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022] Open
Abstract
Radiotherapy is a mainstay for treatment of many human cancer types, including head and neck squamous cell carcinoma (HNSCC). Thereby, it is clinically very relevant to understand the mechanisms determining radioresistance. Here, we identify CIP2A as an Oct4 target gene and provide evidence that they co-operate in radioresistance. Oct4 positively regulates CIP2A expression both in testicular cancer cell lines as well as in embryonic stem cells. To expand the relevance of these findings we show that Oct4 and CIP2A are co-expressed in CD24 positive side-population of patient-derived HNSCC cell lines. Most importantly, all Oct4 positive HNSCC patient samples were CIP2A positive and this double positivity was linked to poor differentiation level, and predicted for decreased patient survival among radiotherapy treated HNSCC patients. Oct4 and CIP2A expression was also linked with increased aggressiveness and radioresistancy in HNSCC cell lines. Together we demonstrate that CIP2A is a novel Oct4 target gene in stem cells and in human cancer cell lines. Clinically these results suggest that diagnostic evaluation of HNSCC tumors for Oct4 or Oct4/CIP2A positivity might help to predict HNSCC tumor radioresistancy. These results also identify both Oct4 and CIP2A as potential targets for radiosensitation.
Collapse
Affiliation(s)
- Sami Ventelä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland. Department of Physiology, University of Turku, Finland. Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Eleonora Sittig
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | - Leni Mannermaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | | | - Jarmo Kulmala
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | | | - Leena Strauss
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland
| | - Olli Cárpen
- Department of Pathology, University of Turku, Finland
| | - Jorma Toppari
- Department of Physiology, University of Turku, Finland. Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland. Department of Pathology, University of Turku, Finland
| |
Collapse
|
30
|
Coordes A, Lenz K, Qian X, Lenarz M, Kaufmann AM, Albers AE. Meta-analysis of survival in patients with HNSCC discriminates risk depending on combined HPV and p16 status. Eur Arch Otorhinolaryngol 2015; 273:2157-69. [DOI: 10.1007/s00405-015-3728-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/14/2015] [Indexed: 12/23/2022]
|
31
|
SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer 2014; 111:2122-30. [PMID: 25321191 PMCID: PMC4260038 DOI: 10.1038/bjc.2014.528] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCCs) display cellular heterogeneity and contain cancer stem cells (CSCs). Sex-determining region Y [SRY]-box (SOX)2 is an important regulator of embryonic stem cell fate and is aberrantly expressed in several types of human tumours. Nonetheless, the role of SOX2 in HNSCC remains unclear. Methods: We created cells ectopically expressing SOX2 from previously established HNSCC cells and examined the cell proliferation, self-renewal capacity, and chemoresistance of these cells compared with control cells. In addition, we knocked down SOX2 in primary spheres obtained from HNSCC tumour tissue and assessed the attenuation of stemness-associated traits in these cells in vitro and in vivo. Furthermore, we examined the clinical relevance of SOX2 expression in HNSCC patients. Results: SOX2 is aberrantly expressed in primary tissue of HNSCC patients but not in healthy tissue. SOX2 expression correlated with tumour recurrence and poor prognosis of HNSCC patients. Ectopic expression of SOX2 induced cell proliferation via cyclin B1 expression and stemness-associated features, such as self-renewal and chemoresistance. In addition, a knockdown of SOX2 in HNSCC CSCs attenuated their self-renewal capacity, chemoresistance (through ABCG2 suppression), invasion capacity (via snail downregulation), and in vivo tumorigenicity. Conclusions: These results suggest that SOX2 may have important roles in the ‘stemness' and progression of HNSCC. Targeting SOX2-positive tumour cells (CSCs) could be a new therapeutic strategy in HNSCCs.
Collapse
|
32
|
Sun AX, Liu CJ, Sun ZQ, Wei Z. NANOG: A promising target for digestive malignant tumors. World J Gastroenterol 2014; 20:13071-13078. [PMID: 25278701 PMCID: PMC4177486 DOI: 10.3748/wjg.v20.i36.13071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/03/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
NANOG has been extensively researched since its discovery by Chambers et al. NANOG is a homeodomain transcription factor and an essential regulator of embryonic stem cell (ESC) self-renewal, which inhibits differentiation. Cancer stem cells (CSCs) are a small subset of cells that are thought to drive uncontrolled tumor growth; CSCs retain the tumor capabilities of self-renewal and propagation. The existence of CSCs was recently shown by direct experimental evidence. NANOG is expressed in CSCs and ESCs, although it remains unclear whether ESCs and CSCs share similar mechanisms in the regulation of physical and biological processes. Several studies suggest that the expression level of NANOG is high in cancer tissues and low or absent in normal tissues. High levels of NANOG expression are associated with advanced stages of cancer and a poor prognosis, indicating that it plays a vital role in tumor transformation, tumorigenesis, and tumor metastasis. NANOG is part of a complex regulatory network that controls cell fate determination, proliferation, and apoptosis. NANOG cooperates with other regulators, such as microflora, transcription factors, and kinases, in cancer cells. NANOG might have a promising future in anti-cancer and other therapeutic treatments, which could improve human health.
Collapse
|
33
|
Nisa L, Aebersold DM, Giger R, Zimmer Y, Medová M. Biological, diagnostic and therapeutic relevance of the MET receptor signaling in head and neck cancer. Pharmacol Ther 2014; 143:337-49. [DOI: 10.1016/j.pharmthera.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
|
34
|
Papagerakis S, Pannone G, Zheng L, About I, Taqi N, Nguyen NPT, Matossian M, McAlpin B, Santoro A, McHugh J, Prince ME, Papagerakis P. Oral epithelial stem cells - implications in normal development and cancer metastasis. Exp Cell Res 2014; 325:111-29. [PMID: 24803391 DOI: 10.1016/j.yexcr.2014.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022]
Abstract
Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Li Zheng
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Imad About
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | - Nawar Taqi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nghia P T Nguyen
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Margarite Matossian
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Blake McAlpin
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Angela Santoro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Jonathan McHugh
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Mark E Prince
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Organogenesis, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Han J, Fujisawa T, Husain SR, Puri RK. Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma. BMC Cancer 2014; 14:173. [PMID: 24612587 PMCID: PMC4008349 DOI: 10.1186/1471-2407-14-173] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 02/26/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current evidence suggests that initiation, growth, and invasion of cancer are driven by a small population of cancer stem cells (CSC). Previous studies have identified CD44+ cells as cancer stem cells in head and neck squamous cell carcinoma (HNSCC). However, CD44 is widely expressed in most cells in HNSCC tumor samples and several cell lines tested. We previously identified a small population of CD24+/CD44+ cells in HNSCC. In this study, we examined whether this population of cells may represent CSC in HNSCC. METHODS CD24+/CD44+ cells from HNSCC cell lines were sorted by flow cytometry, and their phenotype was confirmed by qRT-PCR. Their self-renewal and differentiation properties, clonogenicity in collagen gels, and response to anticancer drugs were tested in vitro. The tumorigenicity potential of CD24+/CD44+ cells was tested in athymic nude mice in vivo. RESULTS Our results show that CD24+/CD44+ cells possessed stemness characteristics of self-renewal and differentiation. CD24+/CD44+ cells showed higher cell invasion in vitro and made higher number of colonies in collagen gels compared to CD24-/CD44+ HNSCC cells. In addition, the CD24+/CD44+ cells were more chemo-resistant to gemcitabine and cisplatin compared to CD24-/CD44+ cells. In vivo, CD24+/CD44+ cells showed a tendency to generate larger tumors in nude mice compared to CD24-/CD44+ cell population. CONCLUSION Our study clearly demonstrates that a distinct small population of CD24+/CD44+ cells is present in HNSCC that shows stem cell-like properties. This distinct small population of cells should be further characterized and may provide an opportunity to target HNSCC CSC for therapy.
Collapse
Affiliation(s)
| | | | | | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, NIH Bldg 29B, Rm 2NN20, 29 Lincoln Dr,, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Cancer stem cells accountability in progression of head and neck squamous cell carcinoma: the most recent trends! Mol Biol Int 2014; 2014:375325. [PMID: 24693428 PMCID: PMC3946131 DOI: 10.1155/2014/375325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) play a major role in local recurrence and metastatic spread in head and neck squamous cell carcinomas (HNSCC). Evidence suggests that cancer stem cells are resistant to conventional therapy. So the emerging concepts of the role of cancer stem cells in the pathobiology of HNSCC should be understood carefully to be able to create new paradigms in treatment plans.
Collapse
|
37
|
Iv Santaliz-Ruiz LE, Xie X, Old M, Teknos TN, Pan Q. Emerging role of nanog in tumorigenesis and cancer stem cells. Int J Cancer 2014; 135:2741-8. [PMID: 24375318 DOI: 10.1002/ijc.28690] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
Nanog is a transcription factor that is well-established as a key regulator of embryonic stem cell (ESC) maintenance. Recent evidence demonstrates that Nanog is dysregulated and intimately involved in promoting tumorigenesis in part through regulation of the cancer stem cell (CSC) population. Elevated Nanog is associated with poorer outcome in numerous epithelial malignancies. Nanog is enriched in CSCs and ablation of Nanog is sufficient to reduce the CSC pool. Nanog has also been implicated to promote chemoresistance and epithelial-mesenchymal transition (EMT). Insight into the Nanog signaling cascade, upstream regulators and downstream effectors, is beginning to emerge but remains to be fully elucidated. This review highlights the current literature on the emerging role of Nanog in tumorigenesis and CSCs.
Collapse
Affiliation(s)
- Luis E Iv Santaliz-Ruiz
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | | | | |
Collapse
|
38
|
Wu CP, Zhou L, Xie M, Du HD, Tian J, Sun S, Li JY. Identification of cancer stem-like side population cells in purified primary cultured human laryngeal squamous cell carcinoma epithelia. PLoS One 2013; 8:e65750. [PMID: 23776540 PMCID: PMC3679141 DOI: 10.1371/journal.pone.0065750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/29/2013] [Indexed: 01/06/2023] Open
Abstract
Cancer stem-like side population (SP) cells have been identified in many solid tumors; however, most of these investigations are performed using established cancer cell lines. Cancer cells in tumor tissue containing fibroblasts and many other types of cells are much more complex than any cancer cell line. Although SP cells were identified in the laryngeal squamous cell carcinoma (LSCC) cell line Hep-2 in our pilot study, it is unknown whether the LSCC tissue contains SP cells. In this study, LSCC cells (LSCCs) were primary cultured and purified from a surgically resected LSCC specimen derived from a well-differentiated epiglottic neoplasm of a Chinese male. This was followed by the verification of epithelium-specific characteristics, such as ultrastructure and biomarkers. A distinct SP subpopulation (4.45±1.07%) was isolated by Hoechst 33342 efflux analysis from cultured LSCCs by using a flow cytometer. Cancer stem cell (CSC)-associated assays, including expression of self-renewal and CSC marker genes, proliferation, differentiation, spheroid formation, chemotherapy resistance, and tumorigenicity were then conducted between SP and non-SP (NSP) LSCCs. In vitro and in vivo assays revealed that SP cells manifested preferential expression of self-renewal and CSC marker genes, higher capacity for proliferation, differentiation, and spheroid formation; enhanced resistance to chemotherapy; and greater xenograft tumorigenicity in immunodeficient mice compared with NSP cells. These findings suggest that the primary cultured and purified LSCCs contain cancer stem-like SP cells, which may serve as a valuable model for CSC research in LSCC.
Collapse
Affiliation(s)
- Chun-Ping Wu
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| | - Ming Xie
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huai-Dong Du
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jie Tian
- Central Laboratory, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shan Sun
- Central Laboratory, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Biomedical Science, Stem Cell and Regenerative Medicine, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jin-Yan Li
- Department of Cellular and Genetic Medicine, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
39
|
Januchowski R, Wojtowicz K, Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 2013; 67:669-80. [PMID: 23721823 DOI: 10.1016/j.biopha.2013.04.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy in cancer patients is still not satisfactory because of drug resistance. The main mechanism of drug resistance results from the ability of cancer cells to actively expel therapeutic agents via transport proteins of the ABC family. ABCB1 and ABCG2 are the two main proteins responsible for drug resistance in cancers. Recent investigations indicate that aldehyde dehydrogenase (ALDH) can also be involved in drug resistance. Expression of the ABC transporters and ALDH enzymes is observed in normal stem cells, cancer stem cells and drug resistant cancers. Current chemotherapy regimens remove the bulk of the tumour but are usually not effective against cancer stem cells (CSCs) expressing ALDH. As a result, the number of ALDH positive drug resistant CSCs increases after chemotherapy. This indicates that therapies targeting drug resistant CSCs should be developed. A number of therapies targeting CSCs are currently under investigation. These therapies include differentiation therapy using different retinoic acids (RA) as simple agents or in combination with DNA methyltransferase inhibitors (DNMTi) and/or histone deacetylase inhibitors (HDACi). Therapies that target cancer stem cell signaling pathways are also under investigation. A number of natural compounds are effective against cancer stem cells and lead to decreasing numbers of ALDH positive cells and downregulation of the ABC proteins. Combinations of differentiation therapies or therapies targeting CSC signaling pathways with classical cytostatics seem promising. This review discusses the role of ALDH and ABC proteins in the development of drug resistance in cancer and current therapies designed to target CSCs.
Collapse
Affiliation(s)
- Radosław Januchowski
- Department of histology and embryology, Poznań university of medical sciences, Święcickiego 6 Street, 61781 Poznań, Poland.
| | | | | |
Collapse
|
40
|
Qian X, Wagner S, Ma C, Klussmann JP, Hummel M, Kaufmann AM, Albers AE. ALDH1-positive cancer stem-like cells are enriched in nodal metastases of oropharyngeal squamous cell carcinoma independent of HPV status. Oncol Rep 2013; 29:1777-84. [PMID: 23483187 DOI: 10.3892/or.2013.2340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/27/2012] [Indexed: 11/06/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OSCC) is caused by high-risk (HR) human papillomavirus (HPV) or alcohol and tobacco abuse. Aldehyde dehydrogenase 1 (ALDH1) is a confirmed marker for cancer stem-like cells (CSCs) of OSCC responsible for therapy resistance, recurrence and metastasis. Associations between HR-HPV/p16, CSC frequency and clinicopathological parameters in patients with metastatic OSCC were investigated. In the present study, HPV genotypes and expression of ALDH1 and p16 was analyzed in 40 paired OSCC and metastases. A significant correlation between ALDH1 positivity with lower primary tumor differentiation grade (P=0.009) and higher nodal status (P=0.015) was noted. Compared to primary tumors, the proportion of ALDH1-expressing cells was significantly increased in metastases (P=0.012), while significantly fewer ALDH1-expressing cells were found in HR-HPV-DNA⁺/p16⁺ primary tumors (P=0.038) compared to HR-HPV-DNA⁻/p16⁻ primary tumors. Metastases showed no difference. ALDH1⁺ CSCs are detectable in OSCC and metastases. ALDH1 high-grade OSCC exhibits a more aggressive phenotype characterized by higher nodal classification and lower differentiation. This suggests a subpopulation contained in the ALDH1-positive OSCC cell pool able to complete the metastatic cascade and subsequently enriching in metastasis independent of tumor etiology and ALDH1 content.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int 2013; 2013:319489. [PMID: 23533441 PMCID: PMC3603684 DOI: 10.1155/2013/319489] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the world's top ten most common cancers. Current survival rates are poor with only 50% of patients expected to survive five years after diagnosis. The poor survival rate of HNSCC is partly attributable to the tendency for diagnosis at the late stage of the disease. One of the reasons for treatment failure is thought to be related to the presence of a subpopulation of cells within the tumour called cancer stem cells (CSCs). CSCs display stem cell-like characteristics that impart resistance to conventional treatment modalities and promote tumour initiation, progression, and metastasis. Specific markers for this population have been investigated in the hope of developing a deeper understanding of their role in the pathogenesis of HNSCC and elucidating novel therapeutic strategies.
Collapse
|
42
|
Tang XH, Scognamiglio T, Gudas LJ. Basal stem cells contribute to squamous cell carcinomas in the oral cavity. Carcinogenesis 2013; 34:1158-64. [PMID: 23358851 DOI: 10.1093/carcin/bgt021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cells of origin of oral cavity squamous cell carcinoma (OCSCC) are unknown. We used a cell lineage tracing approach (adult K14-CreER(TAM); ROSA26 mice transiently treated with tamoxifen) to identify and track normal epithelial stem cells (SCs) in mouse tongues by X-gal staining and to determine if these cells become neoplastically transformed by treatment with a carcinogen, 4-nitroquinoline 1-oxide (4-NQO). Here, we show that in normal tongue epithelia, X-gal(+) cells formed thin columns throughout the entire epithelium 12 weeks after tamoxifen treatment, indicating that the basal layer contains long-lived SCs that produce progeny by asymmetric division to maintain homeostasis. Carcinogen treatment results in a ~10-fold reduction in the total number of X-gal(+) clonal cell populations and horizontal expansion of X-gal(+) clonal cell columns, a pattern consistent with symmetric division of some SCs. Finally, X-gal(+) SCs are present in papillomas and invasive OCSCCs, and these long-lived X-gal(+) SCs are the cells of origin of these tumors. Moreover, the resulting 4-NQO-induced tumors are multiclonal. These findings provide insights into the identity of the initiating cells of oral cancer.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
43
|
Vira D, Basak SK, Veena MS, Wang MB, Batra RK, Srivatsan ES. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev 2012; 31:733-51. [PMID: 22752409 DOI: 10.1007/s10555-012-9382-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells divide continuously and differentiate into organs through the expression of specific transcription factors at specific time periods. Differentiated adult stem cells on the other hand remain in quiescent state and divide by receiving cues from the environment (extracellular matrix or niche), as in the case of wound healing from tissue injury or inflammation. Similarly, it is believed that cancer stem cells (CSCs), forming a smaller fraction of the tumor bulk, also remain in a quiescent state. These cells are capable of initiating and propagating neoplastic growth upon receiving environmental cues, such as overexpression of growth factors, cytokines, and chemokines. Candidate CSCs express distinct biomarkers that can be utilized for their identification and isolation. This review focuses on the known and candidate cancer stem cell markers identified in various solid tumors and the promising future of disease management and therapy targeted at these markers. The review also provides details on the differential expression of microRNAs (miRNAs), and the miRNA- and natural product-based therapies that could be applied for the treatment of cancer stem cells.
Collapse
Affiliation(s)
- Darshni Vira
- Department of Surgery, VAGLAHS West Los Angeles, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cancer stem cells (CSCs), also called “cells that start the tumor,” represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to differentiate, thus making them easier to remove. For all these reasons, we have collected existing literature on head and neck cancer stem cells that correlate the biological characteristics of this subpopulation of cancer cells with the clinical behavior of tumors.
Collapse
Affiliation(s)
- Eugenia Allegra
- Otolaryngology - Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
45
|
Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 2012; 27:13-24. [PMID: 23024375 DOI: 10.1096/fj.12-218222] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Primary tumors are responsible for 10% of cancer deaths. In most cases, the main cause of mortality is the formation of metastases. Accumulating evidence suggests that a subpopulation of tumor cells with distinct stem-like properties is responsible for tumor initiation, invasive growth, and metastasis formation. This population is defined as cancer stem cells (CSCs). Existing therapies have enhanced the length of survival after diagnosis of cancer but have completely failed in terms of recovery. CSCs appear to be resistant to chemotherapy, may remain quiescent for extended periods, and have affinity for hypoxic environments. The CSCs can be identified and isolated by different methodologies, including isolation by CSC-specific cell surface marker expression, detection of side population phenotype by Hoechst 33342 exclusion, assessment of their ability to grow as floating spheres, and aldehyde dehydrogenase (ALDH) activity assay. None of the methods mentioned are exclusively used to isolate the solid tumor CSCs, highlighting the imperative to delineate more specific markers or to use combinatorial markers and methodologies. This review provides an overview of the main characteristics and approaches used to identify, isolate, and characterize CSCs from solid tumors.
Collapse
Affiliation(s)
- Virginia Tirino
- Department of Experimental Medicine, Section of Histology and Embryology, Tissue Engineering and Regenerative Medicine Laboratory, Cancer Stem Cell Eradication Program, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012; 424:58-64. [PMID: 22728043 DOI: 10.1016/j.bbrc.2012.06.065] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022]
Abstract
Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.
Collapse
|