1
|
Macamo A, Liu D, Färber M, Borman F, van den Oord J, Winnepenninckx V, Klufah F, Chteinberg E, Zur Hausen A. Exploring the effects of Merkel cell polyomavirus T antigens expression in REH and MCC13 cells by methylome and transcriptome profiling. J Med Virol 2024; 96:e29938. [PMID: 39344364 DOI: 10.1002/jmv.29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with a tripled incidence in the US and Europe over the past decade. Around 80% of MCC is linked to Merkel cell polyomavirus, but the cell of origin remains unknown. We stably introduced Merkel cell polyomavirus (MCPyV)-sT) and LT antigens to MCC13 and REH cell lines, analyzing DNA methylation and gene transcriptional regulation. Gene ontology analysis assessed MCPyV effects, and integrative analysis correlated gene expression and methylation. Expression patterns were compared with 15 previously sequenced primary MCCs. We found that MCPyV-LT induces DNA methylation changes in both cell lines, while MCPyV-sT only affected REH cells. Greater gene expression changes are observed in MCC13 cells, with upregulated genes associated with cellular components and downregulated genes related to biological processes. Integrative analysis of differentially expressed genes (DEG) and differentially methylated regions (DMR) of REH cell lines revealed that no genes were commonly methylated and differentially expressed. The study compared DEGs and DMG in MCC13 and REH cells to overlapping genes in MCPyV-positive cell lines (MKL1, MKL2, and WaGa), identifying hypomethylated genes in the gene body and hypermethylated genes at TSS1500. GO analysis of the two cell lines showed that MCPyV-TAs can downregulate genes in MHC-I pathways; this downregulation offers a target that can be used to create novel and efficient MCC immunotherapy approaches. Finally, it was confirmed that MCPyV-LT controls gene expression in MCC tissues using an integrative investigation of DNA methylation and gene expression.
Collapse
Affiliation(s)
- Amanda Macamo
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dan Liu
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Martina Färber
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Joost van den Oord
- Department of Pathology and Laboratory Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Faisal Klufah
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Albaha, Saudi Arabia
| | | | - Axel Zur Hausen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
2
|
Vetter VK, Haberecker M, Huber FA, Pauli C. Aberrant positivity for BCOR immunohistochemistry in merkel cell carcinoma - a potential diagnostic pitfall. Diagn Pathol 2024; 19:130. [PMID: 39334415 PMCID: PMC11437883 DOI: 10.1186/s13000-024-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKRGOUND Merkel cell carcinoma (MCC) is a rare, aggressive primary cutaneous neuroendocrine carcinoma, frequently associated with clonal Merkel cell polyomavirus integration. MCC can pose significant diagnostic challenges due to its diverse clinical presentation and its broad histological differential diagnosis. Histologically, MCC presents as a small-round-blue cell neoplasm, where the differential diagnosis includes basal cell carcinoma, melanoma, hematologic malignancies, round cell sarcoma and metastatic small cell carcinoma of any site. We here report strong aberrant immunoreactivity for BCOR in MCC, a marker commonly used to identify round cell sarcomas and other neoplasms with BCOR alterations. METHODS Based on strong BCOR expression in three index cases of MCC, clinically mistaken as sarcoma, a retrospective analysis of three patient cohorts, comprising 31 MCC, 19 small cell lung carcinoma (SCLC) and 5 cases of neoplasms with molecularly confirmed BCOR alteration was conducted. Immunohistochemical staining intensity and localization for BCOR was semi-quantitatively analyzed. RESULTS Three cases, clinically and radiologically mimicking a sarcoma were analyzed in our soft tissue and bone pathology service. Histologically, the cases showed sheets of a small round blue cell neoplasm. A broad panel of immunohistochemistry was used for lineage classification. Positivity for synaptophysin, CK20 and Merkel cell polyoma virus large T-antigen lead to the diagnosis of a MCC. Interestingly, all cases showed strong positive nuclear staining for BCOR, which was included for the initial work-up with the clinical differential of a round cell sarcoma. We analyzed a larger retrospective MCC cohort and found aberrant weak to strong BCOR positivity (nuclear and/or cytoplasmic) in up to 90% of the cases. As a positive control, we compared the expression to a small group of BCOR-altered neoplasms. Furthermore, we investigated a cohort of SCLC as another neuroendocrine neoplasm and found in all cases a diffuse moderate to strong BCOR positivity. CONCLUSIONS This study demonstrates that neuroendocrine neoplasms, such as MCC and SCLC can express strong aberrant BCOR. This might represent a diagnostic challenge or pitfall, in particular when MCC is clinically mistaken as a soft tissue or a bone sarcoma.
Collapse
Affiliation(s)
- Viola Katharina Vetter
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland
| | - Florian Alexander Huber
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland.
- Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Lugowska I, Becker JC, Ascierto PA, Veness M, Blom A, Lebbe C, Migliano E, Hamming-Vrieze O, Goebeler M, Kneitz H, Nathan P, Rutkowski P, Slowinska M, Schadendorf D, Piulats JM, Petrelli F, van Akkooi ACJ, Berruti A. Merkel-cell carcinoma: ESMO-EURACAN Clinical Practice Guideline for diagnosis, treatment and follow-up. ESMO Open 2024; 9:102977. [PMID: 38796285 PMCID: PMC11145756 DOI: 10.1016/j.esmoop.2024.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 05/28/2024] Open
Abstract
•This ESMO Clinical Practice Guideline provides key recommendations for managing Merkel-cell carcinoma (MCC). •Recommendations are based on available scientific data and the multidisciplinary group of experts’ collective opinion. •The guideline covers clinical and pathological diagnosis, staging and risk assessment, treatment and follow-up. •Algorithms for the management of locoregional and inoperable/metastatic disease are provided. •A multidisciplinary team with a high level of expertise in MCC should diagnose and make decisions about therapy.
Collapse
Affiliation(s)
- I Lugowska
- Department of Early Phase Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - J C Becker
- Department of Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital of Essen, Essen; Department of Translational Skin Cancer Research, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - P A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - M Veness
- Sydney Medical School, The University of Sydney, Sydney; Department of Radiation Oncology, Westmead Hospital, Sydney, Australia
| | - A Blom
- CARADERM Network, Department of General and Oncologic Dermatology, Université Paris-Saclay, UVSQ, EA4340-BECCOH, AP-HP, Ambroise-Paré Hospital, Boulogne-Billancourt
| | - C Lebbe
- Université de Paris Cite, Paris; Dermato-Oncology and CIC Department, AP-HP Hôpital Saint Louis, Paris; INSERM U976, Paris, France
| | - E Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - O Hamming-Vrieze
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - H Kneitz
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | - M Slowinska
- Department of Dermatology, Military Institute of Medicine-National Research Institute, Warsaw, Poland
| | - D Schadendorf
- Department of Dermatology, Westdeutsches Tumorzentrum (WTZ), University Hospital Essen, Essen; German Cancer Consortium (DKTK), Partner Site Essen & NCT-West Campus Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - J M Piulats
- Medical Oncology Department, Institut Català d'Oncologia (ICO), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), CIBEROnc, Universitat de Barcelona, Barcelona, Spain
| | - F Petrelli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - A C J van Akkooi
- Department of Melanoma and Surgical Oncology, Melanoma Institute Australia, Sydney; Faculty of Medicine and Health, University of Sydney, Sydney; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - A Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology Unit, University of Brescia, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
5
|
Ashby HE, Jones GN, Leedhanachoke O, Jen P, Helphenstine N, Al Akhrass F. Merkel Cell Carcinoma Masquerading Clinically as a Cyst in a Young Patient. Int Med Case Rep J 2024; 17:289-293. [PMID: 38596400 PMCID: PMC11001544 DOI: 10.2147/imcrj.s449543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an extremely rare and aggressive tumor. Here we report an unusual MCC that manifested as an abruptly enlarging, painful skin lesion over the right antecubital fossa and masqueraded as an epidermal cyst in a 42-year-old male. The lesion was surgically excised and subjected to histopathologic and immunohistochemical examinations. The subsequent analysis allowed for the diagnosis of MCC. Clinicians should always be cognizant of MCC, which can be easily misdiagnosed. Early diagnosis and appropriate treatment are keys to improving the survival rates of MCC patients.
Collapse
Affiliation(s)
| | - Grayson N Jones
- Department of Pathology, Pikeville Medical Center, Pikeville, KY, USA
| | - Oon Leedhanachoke
- Department of General Surgery, Pikeville Medical Center, Pikeville, KY, USA
| | - Phillip Jen
- Department of BioMedical Science, University of Pikeville, Pikeville, KY, USA
| | - Noah Helphenstine
- Department of BioMedical Science, University of Pikeville, Pikeville, KY, USA
| | - Fadi Al Akhrass
- Department of Infectious Diseases, Pikeville Medical Center, Pikeville, KY, USA
| |
Collapse
|
6
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Merkel Cell Polyomavirus: Infection, Genome, Transcripts and Its Role in Development of Merkel Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15020444. [PMID: 36672392 PMCID: PMC9857234 DOI: 10.3390/cancers15020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
The best characterized polyomavirus family member, i.e., simian virus 40 (SV40), can cause different tumors in hamsters and can transform murine and human cells in vitro. Hence, the SV40 contamination of millions of polio vaccine doses administered from 1955-1963 raised fears that this may cause increased tumor incidence in the vaccinated population. This is, however, not the case. Indeed, up to now, the only polyomavirus family member known to be the most important cause of a specific human tumor entity is Merkel cell polyomavirus (MCPyV) in Merkel cell carcinoma (MCC). MCC is a highly deadly form of skin cancer for which the cellular origin is still uncertain, and which appears as two clinically very similar but molecularly highly different variants. While approximately 80% of cases are found to be associated with MCPyV the remaining MCCs carry a high mutational load. Here, we present an overview of the multitude of molecular functions described for the MCPyV encoded oncoproteins and non-coding RNAs, present the available MCC mouse models and discuss the increasing evidence that both, virus-negative and -positive MCC constitute epithelial tumors.
Collapse
|
8
|
Dimitraki MG, Sourvinos G. Merkel Cell Polyomavirus (MCPyV) and Cancers: Emergency Bell or False Alarm? Cancers (Basel) 2022; 14:cancers14225548. [PMID: 36428641 PMCID: PMC9688650 DOI: 10.3390/cancers14225548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), the sole member of Polyomavirus associated with oncogenesis in humans, is the major causative factor of Merkel cell carcinoma (MCC), a rare, neuroendocrine neoplasia of the skin. Many aspects of MCPyV biology and oncogenic mechanisms remain poorly understood. However, it has been established that oncogenic transformation is the outcome of the integration of the viral genome into the host DNA. The high prevalence of MCPyV in the population, along with the detection of the virus in various human tissue samples and the strong association of MCPyV with the emergence of MCC, have prompted researchers to further investigate the role of MCPyV in malignancies other than MCC. MCPyV DNA has been detected in several different non-MCC tumour tissues but with significantly lower prevalence, viral load and protein expression. Moreover, the two hallmarks of MCPyV MCC have rarely been investigated and the studies have produced generally inconsistent results. Therefore, the outcomes of the studies are inadequate and unable to clearly demonstrate a direct correlation between cellular transformation and MCPyV. This review aims to present a comprehensive recapitulation of the available literature regarding the association of MCPyV with oncogenesis (MCC and non-MCC tumours).
Collapse
|
9
|
Soikkeli AI, Kyläniemi MK, Sihto H, Alinikula J. Oncogenic Merkel Cell Polyomavirus T Antigen Truncating Mutations are Mediated by APOBEC3 Activity in Merkel Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:1344-1354. [PMID: 36970060 PMCID: PMC10035372 DOI: 10.1158/2767-9764.crc-22-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer, which is frequently caused by Merkel cell polyomavirus (MCPyV). Mutations of MCPyV tumor (T) antigens are major pathologic events of virus-positive (MCPyV+) MCCs, but their source is unclear. Activation-induced cytidine deaminase (AID)/APOBEC family cytidine deaminases contribute to antiviral immunity by mutating viral genomes and are potential carcinogenic mutators. We studied the contribution of AID/APOBEC cytidine deaminases to MCPyV large T (LT) truncation events. The MCPyV LT area in MCCs was enriched with cytosine-targeting mutations, and a strong APOBEC3 mutation signature was observed in MCC sequences. AICDA and APOBEC3 expression were detected in the Finnish MCC sample cohort, and LT expression correlated with APOBEC3H and APOBEC3G. Marginal but statistically significant somatic hypermutation targeting activity was detected in the MCPyV regulatory region. Our results suggest that APOBEC3 cytidine deaminases are a plausible cause of the LT truncating mutations in MCPyV+ MCC, while the role of AID in MCC carcinogenesis is unlikely.
Significance:
We uncover APOBEC3 mutation signature in MCPyV LT that reveals the likely cause of mutations underlying MCPyV+ MCC. We further reveal an expression pattern of APOBECs in a large Finnish MCC sample cohort. Thus, the findings presented here suggest a molecular mechanism underlying an aggressive carcinoma with poor prognosis.
Collapse
Affiliation(s)
- Anni I. Soikkeli
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- 2Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Minna K. Kyläniemi
- 3Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- 4Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Jukka Alinikula
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Merkel cell carcinoma of the anorectum: a case report and review of the literature. Clin J Gastroenterol 2022; 15:740-745. [DOI: 10.1007/s12328-022-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
|
11
|
Yang JF, You J. Merkel cell polyomavirus and associated Merkel cell carcinoma. Tumour Virus Res 2022; 13:200232. [PMID: 34920178 PMCID: PMC8715208 DOI: 10.1016/j.tvr.2021.200232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a ubiquitous skin infection that can cause Merkel cell carcinoma (MCC), a highly lethal form of skin cancer with a nearly 50% mortality rate. Since the discovery of MCPyV in 2008, great advances have been made to improve our understanding of how the viral encoded oncoproteins contribute to MCC oncogenesis. However, our knowledge of the MCPyV infectious life cycle and its oncogenic mechanisms are still incomplete. The incidence of MCC has tripled over the past two decades, but effective treatments are lacking. Only recently have there been major victories in combatting metastatic MCC with the application of PD-1 immune checkpoint blockade. Still, these immune-based therapies are not ideal for patients with a medical need to maintain systemic immune suppression. As such, a better understanding of MCPyV's oncogenic mechanisms is needed in order to develop more effective and targeted therapies against virus-associated MCC. In this review, we discuss current areas of interest for MCPyV and MCC research and the progress made in elucidating both the natural host of MCPyV infection and the cell of origin for MCC. We also highlight the remaining gaps in our knowledge on the transcriptional regulation of MCPyV, which may be key to understanding and targeting viral oncogenesis for developing future therapies.
Collapse
Affiliation(s)
- June F Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
12
|
Mete O, Wenig BM. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Overview of the 2022 WHO Classification of Head and Neck Neuroendocrine Neoplasms. Head Neck Pathol 2022; 16:123-142. [PMID: 35312985 PMCID: PMC9018952 DOI: 10.1007/s12105-022-01435-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
This review article provides a brief overview of the new WHO classification by adopting a question-answer model to highlight the spectrum of head and neck neuroendocrine neoplasms which includes epithelial neuroendocrine neoplasms (neuroendocrine tumors and neuroendocrine carcinomas) arising from upper aerodigestive tract and salivary glands, and special neuroendocrine neoplasms including middle ear neuroendocrine tumors (MeNET), ectopic or invasive pituitary neuroendocrine tumors (PitNET; formerly known as pituitary adenoma) and Merkel cell carcinoma as well as non-epithelial neuroendocrine neoplasms (paragangliomas). The new WHO classification follows the IARC/WHO nomenclature framework and restricts the diagnostic term of neuroendocrine carcinoma to poorly differentiated epithelial neuroendocrine neoplasms. In this classification, well-differentiated epithelial neuroendocrine neoplasms are termed as neuroendocrine tumors (NET), and are graded as G1 NET (no necrosis and < 2 mitoses per 2 mm2; Ki67 < 20%), G2 NET (necrosis or 2-10 mitoses per 2 mm2, and Ki67 < 20%) and G3 NET (> 10 mitoses per 2 mm2 or Ki67 > 20%, and absence of poorly differentiated cytomorphology). Neuroendocrine carcinomas (> 10 mitoses per 2 mm2, Ki67 > 20%, and often associated with a Ki67 > 55%) are further subtyped based on cytomorphological characteristics as small cell and large cell neuroendocrine carcinomas. Unlike neuroendocrine carcinomas, head and neck NETs typically show no aberrant p53 expression or loss of RB reactivity. Ectopic or invasive PitNETs are subtyped using pituitary transcription factors (PIT1, TPIT, SF1, GATA3, ER-alpha), hormones and keratins (e.g., CAM5.2). The new classification emphasizes a strict correlation of morphology and immunohistochemical findings in the accurate diagnosis of neuroendocrine neoplasms. A particular emphasis on the role of biomarkers in the confirmation of the neuroendocrine nature of a neoplasm and in the distinction of various neuroendocrine neoplasms is provided by reviewing ancillary tools that are available to pathologists in the diagnostic workup of head and neck neuroendocrine neoplasms. Furthermore, the role of molecular immunohistochemistry in the diagnostic workup of head and neck paragangliomas is discussed. The unmet needs in the field of head and neck neuroendocrine neoplasms are also discussed in this article. The new WHO classification is an important step forward to ensure accurate diagnosis that will also form the basis of ongoing research in this field.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Endocrine Oncology Site, The Princess Margaret Cancer Center, Toronto, ON, Canada.
| | - Bruce M Wenig
- Department of Pathology Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
13
|
Ahmed MM, Cushman CH, DeCaprio JA. Merkel Cell Polyomavirus: Oncogenesis in a Stable Genome. Viruses 2021; 14:v14010058. [PMID: 35062263 PMCID: PMC8781562 DOI: 10.3390/v14010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCV) is the causative agent for the majority of Merkel cell carcinoma (MCC) cases. Polyomavirus-associated MCC (MCCP) is characterized by the integration of MCV DNA into the tumor genome and a low tumor mutational burden. In contrast, nonviral MCC (MCCN) is characterized by a high tumor mutational burden induced by UV damage. Since the discovery of MCV, much work in the field has focused on understanding the molecular mechanisms of oncogenesis driven by the MCV tumor (T) antigens. Here, we review our current understanding of how the activities of large T (LT) and small T (ST) promote MCC oncogenesis in the absence of genomic instability. We highlight how both LT and ST inhibit tumor suppressors to evade growth suppression, an important cancer hallmark. We discuss ST interactions with cellular proteins, with an emphasis on those that contribute to sustaining proliferative signaling. Finally, we examine active areas of research into open questions in the field, including the origin of MCC and mechanisms of viral integration.
Collapse
Affiliation(s)
- Mona M. Ahmed
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; (M.M.A.); (C.H.C.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Camille H. Cushman
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; (M.M.A.); (C.H.C.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James A. DeCaprio
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; (M.M.A.); (C.H.C.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
14
|
Tanda ET, d'Amato AL, Rossi G, Croce E, Boutros A, Cecchi F, Spagnolo F, Queirolo P. Merkel Cell Carcinoma: An Immunotherapy Fairy-Tale? Front Oncol 2021; 11:739006. [PMID: 34631574 PMCID: PMC8495203 DOI: 10.3389/fonc.2021.739006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, neuroendocrine cutaneous tumor. The incidence of MCC is growing worldwide, and the disease-related mortality is about three-fold higher than melanoma. Since a few years ago, very little has been known about this disease, and chemotherapy has been the standard of care. Nowadays, new discoveries about the pathophysiology of this neoplasm and the introduction of immunotherapy allowed to completely rewrite the history of these patients. In this review, we provide a summary of the most important changes in the management of Merkel cell carcinoma, with a focus on immunotherapy and a landscape of future treatment strategies.
Collapse
Affiliation(s)
- Enrica Teresa Tanda
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy.,Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Agostina Lagodin d'Amato
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giovanni Rossi
- Medical Oncology, Ospedale Padre Antero Micone, Genova, Italy.,Department on Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elena Croce
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Federica Cecchi
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia (IEO), European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
15
|
Krump NA, You J. From Merkel Cell Polyomavirus Infection to Merkel Cell Carcinoma Oncogenesis. Front Microbiol 2021; 12:739695. [PMID: 34566942 PMCID: PMC8457551 DOI: 10.3389/fmicb.2021.739695] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) infection causes near-ubiquitous, asymptomatic infection in the skin, but occasionally leads to an aggressive skin cancer called Merkel cell carcinoma (MCC). Epidemiological evidence suggests that poorly controlled MCPyV infection may be a precursor to MCPyV-associated MCC. Clearer understanding of host responses that normally control MCPyV infection could inform prophylactic measures in at-risk groups. Similarly, the presence of MCPyV in most MCCs could imbue them with vulnerabilities that-if better characterized-could yield targeted intervention solutions for metastatic MCC cases. In this review, we discuss recent developments in elucidating the interplay between host cells and MCPyV within the context of viral infection and MCC oncogenesis. We also propose a model in which insufficient restriction of MCPyV infection in aging and chronically UV-damaged skin causes unbridled viral replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Petersen I. Classification and Treatment of Diseases in the Age of Genome Medicine Based on Pathway Pathology. Int J Mol Sci 2021; 22:ijms22179418. [PMID: 34502326 PMCID: PMC8431301 DOI: 10.3390/ijms22179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022] Open
Abstract
The focus of pathology as a biomedical discipline is the identification of the pathomechanisms of diseases and the integration of this knowledge into routine diagnosis and classification. Standard tools are macroscopic and microscopic analysis complemented by immunohistochemistry and molecular pathology. So far, classification has been based on the paradigm of cellular pathology established by Rudolf Virchow and others more than 150 years ago, stating that diseases originate from diseased cells. This dogma is meanwhile challenged by the fact that cells can be fully reprogrammed. Many diseases are nowadays considered to originate from undifferentiated stem cells, induced into a diseased state by genetic or epigenetic alterations. In addition, the completion of the Human Genome Project, with the identification of more than 20.000 genes and a much higher number of gene variants and mutations, led to the concept that diseases are dominated by genetics/epigenetics rather than cells of origin. The axiom of cellular pathology, however, still holds true, as cells are the smallest animate units from which diseases originate. Medical doctors and researchers nowadays have to deal with a tremendous amount of data. The International Classification of Diseases will expand from 14.400 entities/codes in ICD-10 to more than 55.000 in ICD-11. In addition, large datasets generated by “genomics“, e.g., whole-genome sequencing, expression profiling or methylome analysis, are meanwhile not only applied in research but also introduced into clinical settings. It constitutes a major task to incorporate all the data into routine medical work. Pathway pathology may help solve this problem. It is based on the realization that diseases are characterized by three essential components: (i) cells of origin/cellular context and (ii) the alteration of cellular as well as (iii) molecular/signal transduction pathways. The concept is illustrated by elaborating on two key cellular pathways, i.e., the cellular senescence of normal cells and the immortality of cancer cells, and by contrasting single cell/single pathway diseases, such as mycoplasma and coughing pneumonia, with complex diseases such as cancer, with multiple cell types as well as multiple affected cellular and signaling pathways. Importantly, the concept of pathway pathology is not just intended to classify disease, but also to conceive new treatment modalities. This article is dedicated to Dr. Leonard Hayflick, who made basic discoveries in pathway pathology not only by identifying cells causing disease (Mycoplasma pneumoniae) and establishing cell strains for treating disease (WI-38 for viral vaccines), but also by first describing cellular senescence and immortality.
Collapse
Affiliation(s)
- Iver Petersen
- Institute of Pathology, SRH Poliklinik Gera, SRH-Wald-Klinikum Gera, Strasse des Friedens 122, D-07548 Gera, Germany
| |
Collapse
|
17
|
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive neuroendocrine carcinoma of unknown origin. We performed a retrospective histologic review of primary cutaneous MCCs diagnosed from 1997 to 2018 in several clinical institutions and literature review to determine the frequency of various unusual morphologic appearances of MCC. Of the 136 primary MCCs identified, intraepidermal carcinoma or epidermotropism was noted in 11/136 (8%) cases. An association with pilar cyst in 1/136 (0.7%) case, with actinic keratosis in 2/136 (1.5%) cases, with either invasive or in situ squamous cell carcinoma (SCC) in 14/136 (10%) cases, with poroma in 1/136 (0.7%), and with basal cell carcinoma in 1/136 (0.7%) case was noted. Trabecular pattern and rosettes were noted in 7/136 (5%) and 3/136 (2%) cases, respectively. There was one case of metastatic MCC in a lymph node with chronic lymphocytic leukemia and one rare case of metastatic MCC and SCC in a lymph node. Although uncommon, differentiation toward other cell lineage can be observed in both primary and metastatic MCCs. The tumor can assume a variety of histologic appearances including association with SCC, basal cell carcinoma, melanocytic neoplasm, and follicular cyst; as well as exhibit glandular, sarcomatous, and mesenchymal differentiation. This diversity of morphologic appearance of MCC reflects the complexity of its underlying pathogenesis.
Collapse
|
18
|
Stachyra K, Dudzisz-Śledź M, Bylina E, Szumera-Ciećkiewicz A, Spałek MJ, Bartnik E, Rutkowski P, Czarnecka AM. Merkel Cell Carcinoma from Molecular Pathology to Novel Therapies. Int J Mol Sci 2021; 22:6305. [PMID: 34208339 PMCID: PMC8231245 DOI: 10.3390/ijms22126305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an uncommon and highly aggressive skin cancer. It develops mostly within chronically sun-exposed areas of the skin. MCPyV is detected in 60-80% of MCC cases as integrated within the genome and is considered a major risk factor for MCC. Viral negative MCCs have a high mutation burden with a UV damage signature. Aberrations occur in RB1, TP53, and NOTCH genes as well as in the PI3K-AKT-mTOR pathway. MCC is highly immunogenic, but MCC cells are known to evade the host's immune response. Despite the characteristic immunohistological profile of MCC, the diagnosis is challenging, and it should be confirmed by an experienced pathologist. Sentinel lymph node biopsy is considered the most reliable staging tool to identify subclinical nodal disease. Subclinical node metastases are present in about 30-50% of patients with primary MCC. The basis of MCC treatment is surgical excision. MCC is highly radiosensitive. It becomes chemoresistant within a few months. MCC is prone to recurrence. The outcomes in patients with metastatic disease are poor, with a historical 5-year survival of 13.5%. The median progression-free survival is 3-5 months, and the median overall survival is ten months. Currently, immunotherapy has become a standard of care first-line therapy for advanced MCC.
Collapse
Affiliation(s)
- Karolina Stachyra
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Mateusz J. Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
19
|
Donizy P, Wróblewska JP, Dias-Santagata D, Woznica K, Biecek P, Mochel MC, Wu CL, Kopczynski J, Pieniazek M, Ryś J, Marszalek A, Hoang MP. Merkel Cell Carcinoma of Unknown Primary: Immunohistochemical and Molecular Analyses Reveal Distinct UV-Signature/MCPyV-Negative and High Immunogenicity/MCPyV-Positive Profiles. Cancers (Basel) 2021; 13:cancers13071621. [PMID: 33807452 PMCID: PMC8037250 DOI: 10.3390/cancers13071621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Merkel cell carcinomas (MCCs) of unknown primary are defined as deep-seated tumors without an associated cutaneous tumor. Although the distinction has important clinical implications, it remains unclear whether these tumors represent primary tumors of lymph nodes or metastatic cutaneous primaries. We compared the immunohistochemical profiles of four groups of Merkel cell carcinomas (virus-positive and virus-negative unknown primary tumors and virus-positive and virus-negative cutaneous tumors) and performed molecular studies on the unknown primary tumors. Virus-positive and virus-negative Merkel cell carcinomas of unknown primary (MCC-UPs) exhibited an immunoprofile similar to virus-positive and virus-negative primary cutaneous MCCs, respectively. Similar to primary cutaneous Merkel cell carcinomas, virus-negative unknown primary tumors exhibited UV signatures and frequent high tumor mutational burdens, whereas few molecular alterations were noted in virus-positive tumors. Although additional studies are warranted for the virus-positive cases, our findings are supportive of a cutaneous metastatic origin for virus-negative Merkel cell carcinomas of unknown primary. Abstract Background: Merkel cell carcinomas of unknown primary (MCC-UPs) are defined as deep-seated tumors without an associated cutaneous tumor. Although the distinction has important clinical implications, it remains unclear whether these tumors represent primary tumors of lymph nodes or metastatic cutaneous primaries. Methods: We compared the immunohistochemical profiles of four groups of MCCs (Merkel cell polyomavirus (MCPyV)-positive UP, MCPyV-negative UP, MCPyV-positive known primary (KP), and MCPyV-negative KP) using B-cell and pre-B-cell markers, cell cycle regulating proteins, follicular stem cell markers, and immune markers, and performed next generation and Sanger sequencing. Results: Virus-positive and virus-negative MCC-UPs exhibited an immunoprofile similar to virus-positive and virus-negative primary cutaneous MCCs, respectively. MCC-UP tumors (both virus-positive and -negative) were immunogenic with similar or even higher tumoral PD-L1 expression and intratumoral CD8 and FoxP3 infiltrates in comparison to MCPyV-positive cutaneous tumors. In addition, similar to primary cutaneous MCCs, MCPyV-negative MCC-UPs exhibited UV signatures and frequent high tumor mutational burdens, whereas few molecular alterations were noted in MCPyV-positive MCC-UPs. Conclusions: Our results showed distinct UV-signatures in MCPyV-negative tumors and high immunogenicity in MCPyV-positive tumors. Although additional studies are warranted for the MCPyV-positive cases, our findings are supportive of a cutaneous metastatic origin for MCPyV-negative MCC-UP tumors.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Joanna P. Wróblewska
- Department of Pathology, Poznan University Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland; (J.P.W.); (A.M.)
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Katarzyna Woznica
- Department of Mathematics and Information Science, Warsaw University of Technology, 00-6628 Warsaw, Poland; (K.W.); (P.B.)
| | - Przemyslaw Biecek
- Department of Mathematics and Information Science, Warsaw University of Technology, 00-6628 Warsaw, Poland; (K.W.); (P.B.)
| | - Mark C. Mochel
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Cheng-Lin Wu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Janusz Kopczynski
- Department of Surgical Pathology, Holy Cross Cancer Centre, 25-734 Kielce, Poland;
| | - Malgorzata Pieniazek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, 530-413 Wroclaw, Poland;
| | - Janusz Ryś
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Cracow Branch, Poland;
| | - Andrzej Marszalek
- Department of Pathology, Poznan University Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland; (J.P.W.); (A.M.)
| | - Mai P. Hoang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Correspondence:
| |
Collapse
|
20
|
van der Steen FEMM, Grinwis GCM, Weerts EAWS, Teske E. Feline and canine Merkel cell carcinoma: A case series and discussion on cellular origin. Vet Comp Oncol 2021; 19:393-398. [PMID: 33372715 PMCID: PMC8248026 DOI: 10.1111/vco.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022]
Abstract
Merkel cell carcinoma (MCC) is in humans and cats a malignant cutaneous neuroendocrine carcinoma, whereas in dogs it possibly has a more benign behaviour. It may be cytologically confused with round cell tumours such as lymphoma because of its striking cytomorphologic similarity. Although MCC is considered to arise from Merkel cells, recent findings indicated that primitive (epi‐)dermal stem cells, early B‐cells or dermal fibroblasts were the origin of human MCC. The aim of our study was to evaluate a possible lymphoid origin in feline and canine MCCs. Specific analysis of CD3, PAX‐5, KIT and PARR assay were performed in 3 feline and 3 canine MCCs. All MCCs (6/6) were negative for CD3 and PAX‐5. KIT was expressed in all MCCs (6/6). Assessment of clonality by PARR assay exhibited a polyclonal B‐ and T‐cell receptor rearrangement in all five cases tested. In conclusion, a lymphoid origin of feline and canine MCCs could not be demonstrated. This is in contrast with human MCCs, that often express early B‐cell lineage markers.
Collapse
Affiliation(s)
| | - Guy C M Grinwis
- Department Biomedical Sciences, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik A W S Weerts
- Department Biomedical Sciences, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik Teske
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Benisty D, Kay S, Rund D, Katz BZ. Differential diagnosis of malignant mononuclear cells in the cerebrospinal fluid: Merkel carcinoma cells. Diagn Cytopathol 2020; 49:443-445. [PMID: 33264487 DOI: 10.1002/dc.24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Benisty
- Department of Hematology, Tel-Aviv University, Tel Aviv, Israel
| | - Sigi Kay
- Department of Hematology, Tel-Aviv University, Tel Aviv, Israel
| | - Deborah Rund
- Department of Hematology, Tel-Aviv University, Tel Aviv, Israel
| | - Ben-Zion Katz
- Department of Hematology, Tel-Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
23
|
Hoang MP, Donizy P, Wu CL, Kopczynski J, Pieniazek M, Miller DM, Ryś J. TdT Expression Is a Marker of Better Survival in Merkel Cell Carcinoma, and Expression of B-Cell Markers Is Associated With Merkel Cell Polyomavirus. Am J Clin Pathol 2020; 154:38-47. [PMID: 32134459 DOI: 10.1093/ajcp/aqaa017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Merkel cell carcinoma is a rare but very aggressive cutaneous tumor. We evaluated the prognostic potential of B-cell markers (terminal deoxynucleotidyl transferase [TdT], PAX5, CD117), follicular stem cell markers (CK15, CK19), p63, p53, RB, and Merkel cell polyomavirus (MCPyV; CM2B4) in 136 primary cutaneous Merkel cell carcinomas. METHODS Clinical, histopathologic, and immunohistochemical analyses were performed. The results were correlated with patient outcomes by Fisher exact test, log-rank tests, and Cox multivariate models. RESULTS By Fisher exact test, although TdT significantly correlated with both lack of progression (P = .0087) and alive status (P = .0056), MCPyV status correlated only with alive status (P = .031). In univariate analyses, TdT, MCPyV, and RB significantly correlated with improved overall survival, whereas p63 and CK15 correlated with worse overall survival. However, in multivariate analyses, only TdT expression remained as an independent predictor of improved overall survival, Merkel cell carcinoma-specific survival, and progression-free survival. By linear regression analyses, significant correlations between MCPyV vs TdT, PAX5, and CD117 were observed. CONCLUSIONS TdT expression is a potential marker of better survival in Merkel cell carcinoma. Expression of B-cell markers is associated with MCPyV, suggesting that clonal viral integration might play a role in the expression of these markers.
Collapse
Affiliation(s)
- Mai P Hoang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Cheng-Lin Wu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Janusz Kopczynski
- Department of Surgical Pathology, Holy Cross Cancer Center, Kielce, Poland
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Center, Opole, Poland
| | - David M Miller
- Departments of Dermatology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Janusz Ryś
- Department of Pathology, Center of Oncology, M. Sklodowska-Curie Memorial Institute, Krakow, Poland
| |
Collapse
|
24
|
Chteinberg E, Vogt J, Kolarova J, Bormann F, van den Oord J, Speel EJ, Winnepenninckx V, Kurz AK, Zenke M, Siebert R, Hausen AZ. The curious case of Merkel cell carcinoma: epigenetic youth and lack of pluripotency. Epigenetics 2020; 15:1319-1324. [PMID: 32475296 PMCID: PMC7678933 DOI: 10.1080/15592294.2020.1773096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a very rare, but highly aggressive skin cancer which occurs mainly in elderly patients. MCC cells show an expression pattern of three cell lineages: epithelial, neuroendocrine, and B-cell progenitor. This trilinear expression pattern suggests stemness activity in MCC. The etiopathogenesis of MCC is either linked to the Merkel cell polyomavirus (MCPyV) or in a smaller proportion (20%) to high levels of UV-induced somatic mutations. Both viral presence and accumulation of mutations have been shown to be associated with accelerated DNA methylation Age (DNAmAge) compared to chronological age. The MCC DNAmAge was significantly lower compared to the chronological age, which was irrespective of the viral presence or mutational burden. Although these features indicate some aspects of stemness in MCC cells, gene-expression-based pluripotency testing did not provide evidence for pluripotency of MCC cells.
Collapse
Affiliation(s)
- Emil Chteinberg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+ , Maastricht, The Netherlands.,Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, University Hospital , Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Aachen, Germany
| | - Julia Vogt
- Institute of Human Genetics, Ulm University and Ulm University Medical Center , Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center , Ulm, Germany
| | | | - Joost van den Oord
- Department of Pathology and Laboratory Translational Cell and Tissue Research, University of Leuven , KU, Leuven, Belgium
| | - Ernst Jan Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+ , Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+ , Maastricht, The Netherlands
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, University Hospital Aachen , Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, University Hospital , Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Aachen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center , Ulm, Germany
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+ , Maastricht, The Netherlands
| |
Collapse
|
25
|
Boyer M, Cayrefourcq L, Dereure O, Meunier L, Becquart O, Alix-Panabières C. Clinical Relevance of Liquid Biopsy in Melanoma and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040960. [PMID: 32295074 PMCID: PMC7226137 DOI: 10.3390/cancers12040960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma and Merkel cell carcinoma are two aggressive skin malignancies with high disease-related mortality and increasing incidence rates. Currently, invasive tumor tissue biopsy is the gold standard for their diagnosis, and no reliable easily accessible biomarker is available to monitor patients with melanoma or Merkel cell carcinoma during the disease course. In these last years, liquid biopsy has emerged as a candidate approach to overcome this limit and to identify biomarkers for early cancer diagnosis, prognosis, therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-based non-invasive procedure that allows the sequential analysis of circulating tumor cells, circulating cell-free and tumor DNA, and extracellular vesicles. These innovative biosources show similar features as the primary tumor from where they originated and represent an alternative to invasive solid tumor biopsy. In this review, the biology and technical challenges linked to the detection and analysis of the different circulating candidate biomarkers for melanoma and Merkel cell carcinoma are discussed as well as their clinical relevance.
Collapse
Affiliation(s)
- Magali Boyer
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Olivier Dereure
- Department of Dermatology and INSERM 1058 Pathogenesis and Control of Chronic Infections, University of Montpellier, 34090 Montpellier, France;
| | - Laurent Meunier
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Ondine Becquart
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
- Correspondence: ; Tel.: +33-4-1175-99-31; Fax: +33-4-1175-99-33
| |
Collapse
|
26
|
Nirenberg A, Steinman H, Dixon J, Dixon A. Merkel cell carcinoma update: the case for two tumours. J Eur Acad Dermatol Venereol 2020; 34:1425-1431. [DOI: 10.1111/jdv.16158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023]
Affiliation(s)
- A. Nirenberg
- Australasian College of Cutaneous Oncology Docklands Vic. Australia
| | - H. Steinman
- Campbell University of School of Osteopathic Medicine Lillington NC USA
- US Dermatology Partners Grapevine TX USA
| | - J. Dixon
- Baker Heart and Diabetes Institute Melbourne Vic. Australia
| | - A. Dixon
- Australasian College of Cutaneous Oncology Docklands Vic. Australia
- American Osteopathic College of Dermatology Kirskville MO USA
| |
Collapse
|
27
|
Galvez JM, Castillo-Secilla D, Herrera LJ, Valenzuela O, Caba O, Prados JC, Ortuno FM, Rojas I. Towards Improving Skin Cancer Diagnosis by Integrating Microarray and RNA-Seq Datasets. IEEE J Biomed Health Inform 2019; 24:2119-2130. [PMID: 31871000 DOI: 10.1109/jbhi.2019.2953978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many clinical studies have revealed the high biological similarities existing among different skin pathological states. These similarities create difficulties in the efficient diagnosis of skin cancer, and encourage to study and design new intelligent clinical decision support systems. In this sense, gene expression analysis can help find differentially expressed genes (DEGs) simultaneously discerning multiple skin pathological states in a single test. The integration of multiple heterogeneous transcriptomic datasets requires different pipeline stages to be properly designed: from suitable batch merging and efficient biomarker selection to automated classification assessment. This article presents a novel approach addressing all these technical issues, with the intention of providing new sights about skin cancer diagnosis. Although new future efforts will have to be made in the search for better biomarkers recognizing specific skin pathological states, our study found a panel of 8 highly relevant multiclass DEGs for discerning up to 10 skin pathological states: 2 healthy skin conditions a priori, 2 cataloged precancerous skin diseases and 6 cancerous skin states. Their power of diagnosis over new samples was widely tested by previously well-trained classification models. Robust performance metrics such as overall and mean multiclass F1-score outperformed recognition rates of 94% and 80%, respectively. Clinicians should give special attention to highlighted multiclass DEGs that have high gene expression changes present among them, and understand their biological relationship to different skin pathological states.
Collapse
|
28
|
Hooiveld-Noeken J, Fehrmann R, de Vries E, Jalving M. Driving innovation for rare skin cancers: utilizing common tumours and machine learning to predict immune checkpoint inhibitor response. IMMUNO-ONCOLOGY TECHNOLOGY 2019; 4:1-7. [PMID: 35755000 PMCID: PMC9216707 DOI: 10.1016/j.iotech.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Metastatic Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (cSCC) are rare and both show impressive responses to immune checkpoint inhibitor treatment. However, at least 40% of patients do not respond to these expensive and potentially toxic drugs. Development of predictive biomarkers of response and rational, effective combination treatment strategies in these rare, often frail patient populations is challenging. This review discusses the pathophysiology and treatment of MCC and cSCC, with a particular focus on potential biomarkers of response to immunotherapy, and discusses how transfer learning using big data collected from patients with common tumours can be used in combination with deep phenotyping of rare tumours to develop predictive biomarkers and elucidate novel treatment targets. Metastatic Merkel cell carcinoma and cutaneous squamous cell carcinoma are rare tumours. Immunotherapy gives impressive responses but most patients do not survive long term. Small patient numbers prevent extensive biomarker research in clinical trials. Pooled data from common and rare tumours can be used to train neural networks. In rare cancers, neural networks can help identify biomarkers and novel treatment targets.
Collapse
|
29
|
Kervarrec T, Aljundi M, Appenzeller S, Samimi M, Maubec E, Cribier B, Deschamps L, Sarma B, Sarosi EM, Berthon P, Levy A, Bousquet G, Tallet A, Touzé A, Guyétant S, Schrama D, Houben R. Polyomavirus-Positive Merkel Cell Carcinoma Derived from a Trichoblastoma Suggests an Epithelial Origin of this Merkel Cell Carcinoma. J Invest Dermatol 2019; 140:976-985. [PMID: 31759946 DOI: 10.1016/j.jid.2019.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
Merkel cell carcinoma (MCC), an aggressive neuroendocrine carcinoma of the skin, is to date the only human cancer known to be frequently caused by a polyomavirus. However, it is a matter of debate which cells are targeted by the Merkel cell polyomavirus (MCPyV) to give rise to the phenotypically multifaceted MCC cells. To assess the lineage of origin of MCPyV-positive MCC, genetic analysis of a very rare tumor combining benign trichoblastoma and MCPyV-positive MCC was conducted by massive parallel sequencing. Although MCPyV was found to be integrated only in the MCC part, six somatic mutations were shared by both tumor components. The mutational overlap between the trichoblastoma and MCPyV-positive MCC parts of the combined tumor implies that MCPyV integration occurred in an epithelial tumor cell before MCC development. Therefore, our report demonstrates that MCPyV-positive MCC can derive from the epithelial lineage.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France; Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France; Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.
| | - Mohanad Aljundi
- Department of Dermatology, Avicenne University Hospital, Bobigny, France
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Mahtab Samimi
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France; Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France
| | - Eve Maubec
- Department of Dermatology, Avicenne University Hospital, Bobigny, France
| | - Bernard Cribier
- Dermatology Clinic, Hôpitaux Universitaires & Université de Strasbourg, Hôpital Civil, Strasbourg, France
| | | | - Bhavishya Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Eva-Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Berthon
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Annie Levy
- Department of Pathology, Avicenne University Hospital, Bobigny, France
| | - Guilhem Bousquet
- Department of Medical Oncology, Avicenne University Hospital, Bobigny, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France
| | - Antoine Touzé
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours Cedex, France; Biologie des infections à polyomavirus team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. Proc Natl Acad Sci U S A 2019; 116:20104-20114. [PMID: 31527246 PMCID: PMC6778204 DOI: 10.1073/pnas.1907154116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Normal cells can be transformed into cancer cells by viral oncogenes. Reversion of a viral human cancer cell, however, into a differentiated cell by viral oncogene inhibition has not been described. Merkel cell carcinoma (MCC) is a neuroendocrine cancer caused by Merkel cell polyomavirus (MCV) that encodes a T antigen oncogene. When MCV+ MCC cells with T antigen knockdown are cocultured with keratinocytes, the MCC phenotype converts to a differentiated neuronal phenotype and loses Merkel cell factor Sox2 and Atoh1 expression. MCV large T activates Sox2 and Atoh1 by its ability to inhibit retinoblastoma. Sox2 inhibition similarly induced this phenotypic conversion of MCC. These findings suggest that MCV induces cancer by dysregulating embryonic Merkel cell differentiation pathways. Viral cancers show oncogene addiction to viral oncoproteins, which are required for survival and proliferation of the dedifferentiated cancer cell. Human Merkel cell carcinomas (MCCs) that harbor a clonally integrated Merkel cell polyomavirus (MCV) genome have low mutation burden and require viral T antigen expression for tumor growth. Here, we showed that MCV+ MCC cells cocultured with keratinocytes undergo neuron-like differentiation with neurite outgrowth, secretory vesicle accumulation, and the generation of sodium-dependent action potentials, hallmarks of a neuronal cell lineage. Cocultured keratinocytes are essential for induction of the neuronal phenotype. Keratinocyte-conditioned medium was insufficient to induce this phenotype. Single-cell RNA sequencing revealed that T antigen knockdown inhibited cell cycle gene expression and reduced expression of key Merkel cell lineage/MCC marker genes, including HES6, SOX2, ATOH1, and KRT20. Of these, T antigen knockdown directly inhibited Sox2 and Atoh1 expression. MCV large T up-regulated Sox2 through its retinoblastoma protein-inhibition domain, which in turn activated Atoh1 expression. The knockdown of Sox2 in MCV+ MCCs mimicked T antigen knockdown by inducing MCC cell growth arrest and neuron-like differentiation. These results show Sox2-dependent conversion of an undifferentiated, aggressive cancer cell to a differentiated neuron-like phenotype and suggest that the ontology of MCC arises from a neuronal cell precursor.
Collapse
|
31
|
Kervarrec T, Samimi M, Guyétant S, Sarma B, Chéret J, Blanchard E, Berthon P, Schrama D, Houben R, Touzé A. Histogenesis of Merkel Cell Carcinoma: A Comprehensive Review. Front Oncol 2019; 9:451. [PMID: 31245285 PMCID: PMC6579919 DOI: 10.3389/fonc.2019.00451] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a primary neuroendocrine carcinoma of the skin. This neoplasia features aggressive behavior, resulting in a 5-year overall survival rate of 40%. In 2008, Feng et al. identified Merkel cell polyomavirus (MCPyV) integration into the host genome as the main event leading to MCC oncogenesis. However, despite identification of this crucial viral oncogenic trigger, the nature of the cell in which MCC oncogenesis occurs is actually unknown. In fact, several hypotheses have been proposed. Despite the large similarity in phenotype features between MCC tumor cells and physiological Merkel cells (MCs), a specialized subpopulation of the epidermis acting as mechanoreceptor of the skin, several points argue against the hypothesis that MCC derives directly from MCs. Alternatively, MCPyV integration could occur in another cell type and induce acquisition of an MC-like phenotype. Accordingly, an epithelial as well as a fibroblastic or B-cell origin of MCC has been proposed mainly based on phenotype similarities shared by MCC and these potential ancestries. The aim of this present review is to provide a comprehensive review of the current knowledge of the histogenesis of MCC.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France.,ISP "Biologie des infections à polyomavirus" team, UMR INRA 1282, University of Tours, Tours, France.,Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Mahtab Samimi
- ISP "Biologie des infections à polyomavirus" team, UMR INRA 1282, University of Tours, Tours, France.,Departement of Dermatology, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France.,ISP "Biologie des infections à polyomavirus" team, UMR INRA 1282, University of Tours, Tours, France
| | - Bhavishya Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Jérémy Chéret
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Emmanuelle Blanchard
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France.,Plateforme IBiSA de Microscopie Electronique, INSERM 1259, Université de Tours, Tours, France
| | - Patricia Berthon
- ISP "Biologie des infections à polyomavirus" team, UMR INRA 1282, University of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Antoine Touzé
- ISP "Biologie des infections à polyomavirus" team, UMR INRA 1282, University of Tours, Tours, France
| |
Collapse
|
32
|
Prognostic Significance of "Nonsolid" Microscopic Metastasis in Merkel Cell Carcinoma Sentinel Lymph Nodes. Am J Surg Pathol 2019; 43:907-919. [PMID: 31094923 DOI: 10.1097/pas.0000000000001277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our recent work regarding Merkel cell carcinoma sentinel lymph node (SLN) metastasis found that "solid" pattern microscopic metastasis conferred worse prognosis than the "nonsolid" ones. The goals of the present study were to (1) compare the prognostic significance/outcomes of 2 diagnostic groups-patients with a nonsolid pattern of SLN metastasis and those with diagnostically negative SLN biopsies (SLNB), and (2) evaluate the durability of SLN metastasis after extensive sectioning. Five-level, step-wise sectioning at 250-μm intervals was performed in all SLN blocks with an immunohistochemical stain for CK20 on all levels. The presence and pattern of metastases were recorded and analyzed as were corresponding patient and tumor parameters. Median follow-up durations for all patients (n=38), positive SLNB (n=16) and negative SLNB (n=22) groups were 56.3, 50.4, and 66.8 months, respectively. Overall survival (OS) and disease-specific survival (DSS) did not differ between the 2 diagnostic groups (OS P=0.65, DSS P=0.37) but did differ by immune status (immunocompetent vs. immunosuppressed, OS P=0.03, DSS P=0.005) and primary tumor category (OS P<0.0001, DSS P=0.001). On deeper sectioning, all 16 diagnostically positive SLNB continued to show nonsolid microscopic metastasis, and 32% (7/22) diagnostically negative SLNB revealed nonsolid metastasis. DSS was worse for sinusoidal-pattern metastasis versus all others (P=0.02). Five of 38 patients (13%) died of disease; the only immunocompetent patient had sinusoidal-pattern metastasis discovered in a diagnostically negative SLNB. Our data suggest that outcome for nonsolid metastasis is similar to that of negative SLNB with the exception of the sinusoidal pattern, which was associated with worse outcome. Larger studies are warranted to quantify and compare microscopic metastatic tumor burden by pattern and confirm whether the sinusoidal pattern confers an intermediate prognostic risk between solid and other nonsolid microscopic metastases.
Collapse
|
33
|
Lucas RM, Yazar S, Young AR, Norval M, de Gruijl FR, Takizawa Y, Rhodes LE, Sinclair CA, Neale RE. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem Photobiol Sci 2019; 18:641-680. [PMID: 30810559 DOI: 10.1039/c8pp90060d] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Montreal Protocol has limited increases in the UV-B (280-315 nm) radiation reaching the Earth's surface as a result of depletion of stratospheric ozone. Nevertheless, the incidence of skin cancers continues to increase in most light-skinned populations, probably due mainly to risky sun exposure behaviour. In locations with strong sun protection programs of long duration, incidence is now reducing in younger age groups. Changes in the epidemiology of UV-induced eye diseases are less clear, due to a lack of data. Exposure to UV radiation plays a role in the development of cataracts, pterygium and possibly age-related macular degeneration; these are major causes of visual impairment world-wide. Photodermatoses and phototoxic reactions to drugs are not uncommon; management of the latter includes recognition of the risks by the prescribing physician. Exposure to UV radiation has benefits for health through the production of vitamin D in the skin and modulation of immune function. The latter has benefits for skin diseases such as psoriasis and possibly for systemic autoimmune diseases such as multiple sclerosis. The health risks of sun exposure can be mitigated through appropriate sun protection, such as clothing with both good UV-blocking characteristics and adequate skin coverage, sunglasses, shade, and sunscreen. New sunscreen preparations provide protection against a broader spectrum of solar radiation, but it is not clear that this has benefits for health. Gaps in knowledge make it difficult to derive evidence-based sun protection advice that balances the risks and benefits of sun exposure.
Collapse
Affiliation(s)
- R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia. and Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - S Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - M Norval
- Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | - F R de Gruijl
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y Takizawa
- Akita University School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - L E Rhodes
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - R E Neale
- QIMR Berghofer Institute of Medical Research, Herston, Brisbane, Australia and School of Public Health, University of Queensland, Australia
| |
Collapse
|
34
|
Riethdorf S, Hildebrandt L, Heinzerling L, Heitzer E, Fischer N, Bergmann S, Mauermann O, Waldispühl-Geigl J, Coith C, Schön G, Peine S, Schuler G, Speicher MR, Moll I, Pantel K. Detection and Characterization of Circulating Tumor Cells in Patients with Merkel Cell Carcinoma. Clin Chem 2019; 65:462-472. [PMID: 30626636 DOI: 10.1373/clinchem.2018.297028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/28/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with increasing incidence and high mortality rates. MCC has recently become the subject of immune checkpoint therapy, but reliable biomarkers for estimating prognosis, risk stratification, and prediction of response are missing. METHODS Circulating tumor cells (CTCs) were detected in peripheral blood from patients with MCC by use of the CellSearch® system. Moreover, CTCs of selected cases were characterized for Merkel cell polyomavirus (MCPyV), chromosomal aberrations, and programed death ligand 1 (PD-L1) production. RESULTS Fifty-one patients were tested at first blood draw (baseline), and 16 patients had 2 or 3 consecutive measurements to detect CTCs. At baseline, ≥1 CTC (range, 1-790), >1, or ≥5 CTCs/7.5 mL were detected in 21 (41%), 17 (33%), and 6 (12%) patients, respectively. After a median follow-up of 21.1 months for 50 patients, detection of CTCs correlated with overall survival (≥1, P = 0.030; >1, P < 0.020; and ≥5 CTCs/7.5 mL, P < 0.0001). In multivariate Cox regression analysis, the detection of ≥5 CTCs/7.5 mL adjusted to age and sex compared to that of <5 was associated with a reduced overall survival (P = 0.001, hazard ratio = 17.8; 95% CI, 4.0-93.0). MCPyV DNA and genomic aberrations frequently found in MCC tissues could also be detected in single CTCs. Analyzed CTCs were PD-L1 negative or only weakly positive. CONCLUSIONS The presence of CTCs is a prognostic factor of impaired clinical outcome, with the potential to monitor the progression of the disease in real time. Molecular characterization of CTCs might provide new insights into the biology of MCC.
Collapse
Affiliation(s)
- Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;
| | - Lina Hildebrandt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, University of Graz, Graz, Austria
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mauermann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julie Waldispühl-Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, University of Graz, Graz, Austria
| | - Cornelia Coith
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, University of Graz, Graz, Austria
| | - Ingrid Moll
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Tenea D, Dinkel J, Becker JC, van der Walt E. Merkel Cell Carcinoma of the Head in a Young African Albino Woman with HIV/HTLV-1 Coinfection Associated with Multiple Squamous Cell Carcinomas. Case Rep Dermatol 2019; 11:113-122. [PMID: 31143109 PMCID: PMC6528093 DOI: 10.1159/000499898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare cutaneous neoplasm of presumed neuroendocrine origin, with aggressive behavior and poor prognosis, that tends to have an increased incidence among elderly Caucasians and immunosuppressed individuals. MCC is either associated with a clonal integration of the Merkel cell polyoma virus into the host genome or with genomic alterations caused by chronic UV exposure. Tumors of either carcinogenesis show epithelial, neuroendocrine, and B-lymphoid lineage markers. HIV-infected African albinos have a higher risk of developing skin cancers, including MCC, in comparison with the general population. We report a case of MCC of the head in a young albino woman with a HIV/HTLV-1 coinfection. The patient also suffered from multiple squamous cell carcinomas of the scalp, face, lip, and ears, suggesting an UV carcinogenesis of MCC. The purpose of this case report is to emphasize the relationship between immunosuppression (HIV/HTLV-1 coinfection, chronic sun exposure, ocular-cutaneous albinism, pregnancy) and MCC. It highlights the importance of early diagnosis, dermatological screening with a risk-stratified surveillance, particularly in immunosuppressed albino patients in sub-Saharan Africa, and multidisciplinary management of this biologically unique cutaneous cancer.
Collapse
Affiliation(s)
- Daniela Tenea
- Department of Dermatology, Steve Biko Academic Hospital, Pretoria University of Pretoria, Pretoria, South Africa
| | - Jurgen Dinkel
- Division of Anatomical Pathology, University of Pretoria, Pretoria, South Africa
| | - Jurgen C. Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- West German Cancer Center, Dermatology, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabeth van der Walt
- Department of Radiology, Steve Biko Academic Hospital, Pretoria, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Johansson B, Sahi H, Koljonen V, Böhling T. The expression of terminal deoxynucleotidyl transferase and paired box gene 5 in Merkel cell carcinomas and its relation to the presence of Merkel cell polyomavirus DNA. J Cutan Pathol 2018; 46:26-32. [PMID: 30315594 DOI: 10.1111/cup.13372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/22/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) tumor samples frequently express B-lymphoid lineage markers. However, the reasons for expression of specific B-lymphoid lineage markers are still unclear. We studied the expression of TdT and PAX5 (two B-cell lymphoid lineage markers) in a large pool of MCC tissue microarray samples. METHODS Immunoexpression and staining intensities of TdT and Pax-5 were statistically correlated with patient, tumor, Merkel cell polyomavirus (MCV), and disease-specific parameters. RESULTS In a cohort of 117 MCC patients and their corresponding tumor samples, TdT was expressed in 37 (31.6%) samples and PAX5 in 26 (22.2%). Simultaneous immunostaining for TdT and PAX5 was observed in 13 (11.1%) samples. A statistically significant relationship was observed between MCV virus copy number and positive TdT expression (P = 0.0056). Similarly, a significant relationship was also observed between positive TdT and tumor MCV virus positivity (P = 0.000495). CONCLUSION We observed frequent TdT and PAX5 immunoexpression in MCC tumor samples. However, simultaneous immunoexpression of these markers was scarce. TdT expression was statistically significantly associated with MCV positivity. The absence of a statistically significant association between tumor parameters and disease progression markers undermines the systemic use of these markers in clinical practice.
Collapse
Affiliation(s)
- Benjamin Johansson
- Department of Pathology, Helsinki University and HUSLAB, Helsinki, Finland
| | - Helka Sahi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Virve Koljonen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Tom Böhling
- Department of Pathology, Helsinki University and HUSLAB, Helsinki, Finland
| |
Collapse
|
37
|
Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia 2018; 20:1227-1235. [PMID: 30414538 PMCID: PMC6226622 DOI: 10.1016/j.neo.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive non-melanoma skin cancer of the elderly which is associated with the Merkel cell polyomavirus (MCPyV). MCC reveals a trilinear differentiation characterized by neuroendocrine, epithelial and pre/pro B-cell lymphocytic gene expression disguising the cellular origin of MCC. Here we investigated the expression of the neuroendocrine key regulators RE1 silencing transcription factor (REST), neurogenic differentiation 1 (NeuroD1) and the Achaete-scute homolog 1 (ASCL1) in MCC. All MCCs were devoid of REST and were positive for NeuroD1 expression. Only one MCC tissue revealed focal ASCL1 expression. This was confirmed in MCPyV-positive MCC cell lines. Of interest, MCPyV-negative cell lines did express REST. The introduction of REST expression in REST-negative, MCPyV-positive MCC cells downregulated the neuroendocrine gene expression. The lack of the neuroendocrine master regulator ASCL1 in almost all tested MCCs points to an important role of the absence of the negative regulator REST towards the MCC neuroendocrine phenotype. This is underlined by the expression of the REST-regulated microRNAs miR-9/9* in REST-negative MCC cell lines. These data might provide the basis for the understanding of neuroendocrine gene expression profile which is expected to help to elucidate the cellular origin of MCC.
Collapse
|
38
|
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 2018; 73:e558s. [PMID: 30328951 PMCID: PMC6157077 DOI: 10.6061/clinics/2018/e558s] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
The name of the family Polyomaviridae, derives from the early observation that cells infected with murine polyomavirus induced multiple (poly) tumors (omas) in immunocompromised mice. Subsequent studies showed that many members of this family exhibit the capacity of mediating cell transformation and tumorigenesis in different experimental models. The transformation process mediated by these viruses is driven by viral pleiotropic regulatory proteins called T (tumor) antigens. Similar to other viral oncoproteins T antigens target cellular regulatory factors to favor cell proliferation, immune evasion and downregulation of apoptosis. The first two human polyomaviruses were isolated over 45 years ago. However, recent advances in the DNA sequencing technologies led to the rapid identification of additional twelve new polyomaviruses in different human samples. Many of these viruses establish chronic infections and have been associated with conditions in immunosuppressed individuals, particularly in organ transplant recipients. This has been associated to viral reactivation due to the immunosuppressant therapy applied to these patients. Four polyomaviruses namely, Merkel cell polyomavirus (MCPyV), Trichodysplasia spinulosa polyomavirus (TSPyV), John Cunningham Polyomavirus (JCPyV) and BK polyomavirus (BKPyV) have been associated with the development of specific malignant tumors. However, present evidence only supports the role of MCPyV as a carcinogen to humans. In the present review we present a summarized discussion on the current knowledge concerning the role of MCPyV, TSPyV, JCPyV and BKPyV in human cancers.
Collapse
Affiliation(s)
- José Carlos Mann Prado
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Alves Monezi
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aline Teixeira Amorim
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vanesca Lino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andressa Paladino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
39
|
Krump NA, Liu W, You J. Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 2018; 32:71-79. [PMID: 30278284 DOI: 10.1016/j.coviro.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Virus infection contributes to nearly 15% of human cancers worldwide. Many of the oncogenic viruses tend to cause cancer in immunosuppressed individuals, but maintain asymptomatic, persistent infection for decades in the general population. In this review, we discuss the tactics employed by two small DNA tumor viruses, Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV), to establish persistent infection. We will also highlight recent key findings as well as outstanding questions regarding the mechanisms by which HPV and MCPyV evade host immune control to promote their survival. Since persistent infection enables virus-induced tumorigenesis, identifying the mechanisms by which small DNA tumor viruses achieve latent infection may inform new approaches for preventing and treating their respective human cancers.
Collapse
Affiliation(s)
- Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
MicroRNAs as Potential Biomarkers in Merkel Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19071873. [PMID: 29949882 PMCID: PMC6073391 DOI: 10.3390/ijms19071873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive type of skin cancer associated with a poor prognosis. This carcinoma was named after its presumed cell of origin, the Merkel cell, which is a mechanoreceptor cell located in the basal epidermal layer of the skin. Merkel cell polyomavirus seems to be the major causal factor for MCC because approximately 80% of all MCCs are positive for viral DNAs. UV exposure is the predominant etiological factor for virus-negative MCCs. Intracellular microRNA analysis between virus-positive and virus-negative MCC cell lines and tumor samples have identified differentially expressed microRNAs. Comparative microRNA profiling has also been performed between MCCs and other non-MCC tumors, but not between normal Merkel cells and malignant Merkel cells. Finally, Merkel cell polyomavirus encodes one microRNA, but its expression in virus-positive MCCs is low, or non-detectable or absent, jeopardizing its biological relevance in tumorigenesis. Here, we review the results of microRNA studies in MCCs and discuss the potential application of microRNAs as biomarkers for the diagnosis, progression and prognosis, and treatment of MCC.
Collapse
|
41
|
Callaghan CM, Amornmarn R. Merkel cell carcinoma in the community setting: a case report. Radiat Oncol J 2018; 36:163-170. [PMID: 29627970 PMCID: PMC6074072 DOI: 10.3857/roj.2017.00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 11/03/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine tumor of the skin initially believed to arise from the Merkel cells. In the community setting a general radiation oncologist may only encounter this pathology in a handful of cases over the course of their career. Due to the low incidence of this malignancy, few prospective randomized controlled trials have ever been conducted and therefore guidelines are based on relatively lower levels of evidence upon which the clinical recommendations are made. We discuss the case of a female in her 90s presenting with a classic MCC primary lesion, as well as satellite lesions proximal to both the primary and the draining regional lymph nodes with no evidence of nodal involvement. Here we discuss the presentation, management, treatment planning, underlying pathology, results and sequelae of treatment. We also review new treatment modalities, and the most current staging systems and guidelines.
Collapse
Affiliation(s)
- Cameron M. Callaghan
- Department of Radiation Oncology, Carver College of Medicine,
The University of Iowa, Iowa City, IA, USA
| | - Rumpa Amornmarn
- Department of Radiation Oncology, Osceola Cancer Center,
Kissimmee, FL, USA
| |
Collapse
|
42
|
Gambichler T, Segert MH, Höxtermann S, Stockfleth E, Doerler M. Absence of immunoglobulin heavy chain rearrangement in primary Merkel cell carcinomas. Clin Exp Dermatol 2018; 43:947. [PMID: 29797735 DOI: 10.1111/ced.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2017] [Indexed: 11/26/2022]
Affiliation(s)
- T Gambichler
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - M H Segert
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - S Höxtermann
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - E Stockfleth
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - M Doerler
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| |
Collapse
|
43
|
Velásquez C, Amako Y, Harold A, Toptan T, Chang Y, Shuda M. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1. Front Microbiol 2018; 9:713. [PMID: 29696010 PMCID: PMC5905237 DOI: 10.3389/fmicb.2018.00713] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.
Collapse
Affiliation(s)
- Celestino Velásquez
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States
| | - Yutaka Amako
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States
| | - Tuna Toptan
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma. Incidence of MCC continues to rise, and risk factors include advanced age, pale skin, chronic sun exposure, and immune suppression. Diagnosing MCC utilizes a combination of morphology and immunohistochemistry. Merkel cell polyomavirus (MCPyV) is present in approximately 70-80% of MCCs and represents a key pathogenic driver in those MCCs. In contrast, MCPyV-negative MCCs arise through progressive accumulation of ultraviolet-light induced somatic mutations. Staging of MCC proceeds according to the American Joint Commission on Cancer (AJCC) 8th Edition, which utilizes features of the primary tumor together with regional lymph node(s) (clinically and/or pathologically detected) and/or distant metastases. Many potentially useful biomarkers have been studied to refine risk stratification in MCC. In recent years, the host immune infiltrate has been leveraged as immune checkpoint blockade has emerged as an efficacious mode of treatment for patients with advanced MCC.
Collapse
Affiliation(s)
- Michael T. Tetzlaff
- 0000 0001 2291 4776grid.240145.6Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 85, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 85, Houston, TX 77030 USA
| | - Priyadharsini Nagarajan
- 0000 0001 2291 4776grid.240145.6Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 85, Houston, TX 77030 USA
| |
Collapse
|
45
|
van der Meijden E, Feltkamp M. The Human Polyomavirus Middle and Alternative T-Antigens; Thoughts on Roles and Relevance to Cancer. Front Microbiol 2018; 9:398. [PMID: 29568287 PMCID: PMC5852106 DOI: 10.3389/fmicb.2018.00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Approximately 15–20% of human cancer is related to infection, which renders them potentially preventable by antimicrobial or antiviral therapy. Human polyomaviruses (PyVs) are relevant in this regard, as illustrated by the involvement of Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma. The polyomavirus Small and Large tumor antigen (ST and LT) have been extensively studied with respect to their role in oncogenesis. Recently it was shown that a number of human PyVs, including MCPyV and the trichodysplasia spinulosa polyomavirus (TSPyV), express additional T-antigens called Middle T (MT) and alternative T (ALT). ALT is encoded by ORF5, also known as the alternative T open reading frame (ALTO), which also encodes the second exon of MT, and overlaps out-of-frame with the second exon of LT. Previously, MT was considered unique for oncogenic rodent polyomaviruses, and ALT was still unknown. In this mini-review, we want to point out there are important reasons to explore the involvement of MT and ALT in human cellular transformation. First, just like their rodent equivalents, MT and ALT probably disrupt cellular pathways that control signaling and proliferation. Second, expression of the MT and ALT-encoding ORF5/ALTO characterizes a monophyletic polyomavirus clade that includes human and animal PyVs with known oncogenic potential. And third, ORF5/ALTO is subject to strong positive selection aimed specifically at a short linear motif within MT and ALT that overlaps completely with the RB-binding motif in LT. The latter suggests tight interplay between these T-antigens with possible consequences for cell transformation.
Collapse
Affiliation(s)
- Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
46
|
Uchi H. Merkel Cell Carcinoma: An Update and Immunotherapy. Front Oncol 2018; 8:48. [PMID: 29560342 PMCID: PMC5845720 DOI: 10.3389/fonc.2018.00048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/19/2018] [Indexed: 01/30/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer with frequent metastasis and death. MCC has a mortality rate of 30%, making it more lethal than malignant melanoma, and incidence of MCC has increased almost fourfold over the past 20 years in the USA. MCC has long been considered to be an immunogenic cancer because it occurs more frequently in immunosuppressed patients from organ transplant and HIV infection than in those with immunocompetent. Chronic UV light exposure and clonal integration of Merkel cell polyomavirus (MCPyV) are two major causative factors of MCC. Approximately 80% of MCC are associated with MCPyV, and T cells specific for MCPyV oncoproteins are present in the blood and tumors of patients. Several studies have shown that a subset of MCCs express PD-1 on tumor-infiltrating lymphocytes and express PD-L1 on tumor cells, which suggests an endogenous tumor-reactive immune response that might be unleashed by anti-PD-1 or anti-PD-L1 drugs.
Collapse
Affiliation(s)
- Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Sunshine JC, Jahchan NS, Sage J, Choi J. Are there multiple cells of origin of Merkel cell carcinoma? Oncogene 2018; 37:1409-1416. [PMID: 29321666 PMCID: PMC5854515 DOI: 10.1038/s41388-017-0073-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare but lethal cancer with the highest case-by-case fatality rate among all skin cancers. Eighty percent of cancers are associated with the Merkel cell polyomavirus (MCPyV). Twenty percent of MCCs are virus negative. Recent epidemiological data suggest that there are important, clinically relevant differences between these two subtypes of MCC. Recent studies in cancer genomics, mouse genetics, and virology experiments have transformed our understanding of MCC pathophysiology. Importantly, dramatic differences in the genetics of these two MCC subtypes suggest fundamental differences in their pathophysiology. We review these recent works and find that they provocatively suggest that MCPyV-positive and MCPyV-negative MCCs arise from two different cells of origin: the MCPyV-negative MCC from epidermal keratinocytes and the MCPyV-positive MCC from dermal fibroblasts. If true, this would represent the first cancer that we are aware of that evolves from cells of origin from two distinct germ layers: MCPyV-negative MCCs from ectodermal keratinocytes and MCPyV-positive MCCs from mesodermal fibroblasts. Future epigenetic experiments may prove valuable in confirming these distinct lineages for these MCC subtypes, especially for the clinical importance the cell of origin has on MCC treatment and prevention.
Collapse
Affiliation(s)
- J C Sunshine
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - N S Jahchan
- Departments of Genetics and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - J Sage
- Departments of Genetics and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - J Choi
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry, Molecular Genetics, and the Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
48
|
Patel P, Galoian K. Molecular challenges of neuroendocrine tumors. Oncol Lett 2017; 15:2715-2725. [PMID: 29456718 DOI: 10.3892/ol.2017.7680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine tumors (NETs) are a very heterogeneous group that are thought to originate from the cells of the endocrine and nervous systems. These tumors develop in a number of organs, predominantly in the gastrointestinal and pulmonary systems. Clinical detection and diagnosis are reliable at the late stages when metastatic spread has occurred. However, traditional conventional therapies such as radiation and chemotherapy are not effective. In the majority of cases even surgical resection at that stage is unlikely to produce promising reusults. NETs present a serious clinical challenge, as the survival rates remain low, and as these rare tumors are very difficult to study, novel approaches and therapies are required. This review will highlight the important points of accumulated knowledge covering the molecular aspects of the role of neuroendocrine cells, hormonal peptides, the reasons for ectopic hormone production in NET, neuropeptides and epigenetic regulation as well as the other challenging questions that require further understanding.
Collapse
Affiliation(s)
- Parthik Patel
- Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karina Galoian
- Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
49
|
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer with neuroendocrine features. MCC pathogenesis is associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet light (UV), which can cause a characteristic pattern of multiple DNA mutations. Notably, in the Northern hemisphere, the majority of MCC cases are of viral aetiology; by contrast, in areas with high UV exposure, UV-mediated carcinogenesis is predominant. The two aetiologies share similar clinical, histopathological and prognostic characteristics. MCC presents with a solitary cutaneous or subcutaneous nodule, most frequently in sun-exposed areas. In fact, UV exposure is probably involved in both viral-mediated and non-viral-mediated carcinogenesis, by contributing to immunosuppression or DNA damage, respectively. Confirmation of diagnosis relies on analyses of histological features and immunological marker expression profiles of the lesion. At primary diagnosis, loco-regional metastases are already present in ∼30% of patients. Excision of the tumour is the first-line therapy; if not feasible, radiotherapy can often effectively control the disease. Chemotherapy was the only alternative in advanced-stage or refractory MCC until several clinical trials demonstrated the efficacy of immune-checkpoint inhibitors.
Collapse
|