1
|
Wagner KT, Lu RXZ, Landau S, Shawky SA, Zhao Y, Bodenstein DF, Jiménez Vargas LF, Jiang R, Okhovatian S, Wang Y, Liu C, Vosoughi D, Gustafson D, Fish JE, Cummins CL, Radisic M. Endothelial extracellular vesicles enhance vascular self-assembly in engineered human cardiac tissues. Biofabrication 2024; 16:045037. [PMID: 39226913 PMCID: PMC11409464 DOI: 10.1088/1758-5090/ad76d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis, including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs, the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast, supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly, enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization, illustrating the use of this approach in the engineering of enhanced, perfusable, microfluidic models of the myocardium.
Collapse
Affiliation(s)
- Karl T Wagner
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Rick X Z Lu
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Sarah A Shawky
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - David F Bodenstein
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Luis Felipe Jiménez Vargas
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital,University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
3
|
Vuorenpää H, Valtonen J, Penttinen K, Koskimäki S, Hovinen E, Ahola A, Gering C, Parraga J, Kelloniemi M, Hyttinen J, Kellomäki M, Aalto-Setälä K, Miettinen S, Pekkanen-Mattila M. Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes. Cytotechnology 2024; 76:483-502. [PMID: 38933872 PMCID: PMC11196475 DOI: 10.1007/s10616-024-00630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00630-5.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Joona Valtonen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi Penttinen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Koskimäki
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Hovinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christine Gering
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenny Parraga
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Arslan U, van den Hil FE, Mummery CL, Orlova V. Generation and Characterization of hiPSC-Derived Vascularized-, Perfusable Cardiac Microtissues-on-Chip. Curr Protoc 2024; 4:e1097. [PMID: 39036931 DOI: 10.1002/cpz1.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the heart in vivo, vasculature forms a semi-permeable endothelial barrier for selective nutrient and (immune) cell delivery to the myocardium and removal of waste products. Crosstalk between the vasculature and the heart cells regulates homeostasis in health and disease. To model heart development and disease in vitro it is important that essential features of this crosstalk are captured. Cardiac organoid and microtissue models often integrate endothelial cells (ECs) to form microvascular networks inside the 3D structure. However, in static culture without perfusion, these networks may fail to show essential functionality. Here, we describe a protocol to generate an in vitro model of human induced pluripotent stem cell (hiPSC)-derived vascularized cardiac microtissues on a microfluidic organ-on-chip platform (VMToC) in which the blood vessels are perfusable. First, prevascularized cardiac microtissues (MT) are formed by combining hiPSC-derived cardiomyocytes, ECs, and cardiac fibroblasts in a pre-defined ratio. Next, these prevascularized MTs are integrated in the chips in a fibrin hydrogel containing additional vascular cells, which self-organize into tubular structures. The MTs become vascularized through anastomosis between the pre-existing microvasculature in the MT and the external vascular network. The VMToCs are then ready for downstream structural and functional assays and basic characterization. Using this protocol, cardiac MTs can be efficiently and robustly vascularized and perfused within 7 days. In vitro vascularized organoid and MT models have the potential to transition current 3D cardiac models to more physiologically relevant organ models that allow the role of the endothelial barrier in drug and inflammatory response to be investigated. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Generation of VMToC Support Protocol 1: Functional Characterization of VMToC Support Protocol 2: Structural Characterization of VMToC.
Collapse
Affiliation(s)
- Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Valeria Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
5
|
Cofiño-Fabres C, Boonen T, Rivera-Arbeláez JM, Rijpkema M, Blauw L, Rensen PCN, Schwach V, Ribeiro MC, Passier R. Micro-Engineered Heart Tissues On-Chip with Heterotypic Cell Composition Display Self-Organization and Improved Cardiac Function. Adv Healthc Mater 2024; 13:e2303664. [PMID: 38471185 DOI: 10.1002/adhm.202303664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Advanced in vitro models that recapitulate the structural organization and function of the human heart are highly needed for accurate disease modeling, more predictable drug screening, and safety pharmacology. Conventional 3D Engineered Heart Tissues (EHTs) lack heterotypic cell complexity and culture under flow, whereas microfluidic Heart-on-Chip (HoC) models in general lack the 3D configuration and accurate contractile readouts. In this study, an innovative and user-friendly HoC model is developed to overcome these limitations, by culturing human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs), endothelial (ECs)- and smooth muscle cells (SMCs), together with human cardiac fibroblasts (FBs), underflow, leading to self-organized miniaturized micro-EHTs (µEHTs) with a CM-EC interface reminiscent of the physiological capillary lining. µEHTs cultured under flow display enhanced contractile performance and conduction velocity. In addition, the presence of the EC layer altered drug responses in µEHT contraction. This observation suggests a potential barrier-like function of ECs, which may affect the availability of drugs to the CMs. These cardiac models with increased physiological complexity, will pave the way to screen for therapeutic targets and predict drug efficacy.
Collapse
Affiliation(s)
- Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Tom Boonen
- River BioMedics B.V, Enschede, 7522 NB, The Netherlands
| | - José M Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Minke Rijpkema
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Lisanne Blauw
- River BioMedics B.V, Enschede, 7522 NB, The Netherlands
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Marcelo C Ribeiro
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
- River BioMedics B.V, Enschede, 7522 NB, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
6
|
Lu RXZ, Zhao Y, Radisic M. The emerging role of heart-on-a-chip systems in delineating mechanisms of SARS-CoV-2-induced cardiac dysfunction. Bioeng Transl Med 2024; 9:e10581. [PMID: 38818123 PMCID: PMC11135153 DOI: 10.1002/btm2.10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 06/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a major global health concern since its emergence in 2019, with over 680 million confirmed cases as of April 2023. While COVID-19 has been strongly associated with the development of cardiovascular complications, the specific mechanisms by which viral infection induces myocardial dysfunction remain largely controversial as studies have shown that the severe acute respiratory syndrome coronavirus-2 can lead to heart failure both directly, by causing damage to the heart cells, and indirectly, by triggering an inflammatory response throughout the body. In this review, we summarize the current understanding of potential mechanisms that drive heart failure based on in vitro studies. We also discuss the significance of three-dimensional heart-on-a-chip technology in the context of the current and future pandemics.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Yimu Zhao
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Milica Radisic
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
- Terence Donnelly Centre for Cellular & Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
7
|
Orlowska MK, Krycer JR, Reid JD, Mills RJ, Doran MR, Hudson JE. A miniaturized culture platform for control of the metabolic environment. BIOMICROFLUIDICS 2024; 18:024101. [PMID: 38434908 PMCID: PMC10908563 DOI: 10.1063/5.0169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The heart is a metabolic "omnivore" and adjusts its energy source depending on the circulating metabolites. Human cardiac organoids, a three-dimensional in vitro model of the heart wall, are a useful tool to study cardiac physiology and pathology. However, cardiac tissue naturally experiences shear stress and nutrient fluctuations via blood flow in vivo, whilst in vitro models are conventionally cultivated in a static medium. This necessitates the regular refreshing of culture media, which creates acute cellular disturbances and large metabolic fluxes. To culture human cardiac organoids in a more physiological manner, we have developed a perfused bioreactor for cultures in a 96-well plate format. The designed bioreactor is easy to fabricate using a common culture plate and a 3D printer. Its open system allows for the use of traditional molecular biology techniques, prevents flow blockage issues, and provides easy access for sampling and cell assays. We hypothesized that a perfused culture would create more stable environment improving cardiac function and maturation. We found that lactate is rapidly produced by human cardiac organoids, resulting in large fluctuations in this metabolite under static culture. Despite this, neither medium perfusion in bioreactor culture nor lactate supplementation improved cardiac function or maturation. In fact, RNA sequencing revealed little change across the transcriptome. This demonstrates that cardiac organoids are robust in response to fluctuating environmental conditions under normal physiological conditions. Together, we provide a framework for establishing an easily accessible perfusion system that can be adapted to a range of miniaturized cell culture systems.
Collapse
|
8
|
Chen X, Liu S, Han M, Long M, Li T, Hu L, Wang L, Huang W, Wu Y. Engineering Cardiac Tissue for Advanced Heart-On-A-Chip Platforms. Adv Healthc Mater 2024; 13:e2301338. [PMID: 37471526 DOI: 10.1002/adhm.202301338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Cardiovascular disease is a major cause of mortality worldwide, and current preclinical models including traditional animal models and 2D cell culture models have limitations in replicating human native heart physiology and response to drugs. Heart-on-a-chip (HoC) technology offers a promising solution by combining the advantages of cardiac tissue engineering and microfluidics to create in vitro 3D cardiac models, which can mimic key aspects of human microphysiological systems and provide controllable microenvironments. Herein, recent advances in HoC technologies are introduced, including engineered cardiac microtissue construction in vitro, microfluidic chip fabrication, microenvironmental stimulation, and real-time feedback systems. The development of cardiac tissue engineering methods is focused for 3D microtissue preparation, advanced strategies for HoC fabrication, and current applications of these platforms. Major challenges in HoC fabrication are discussed and the perspective on the potential for these platforms is provided to advance research and clinical applications.
Collapse
Affiliation(s)
- Xinyi Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sitian Liu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lanlan Hu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
9
|
Rama Varma A, Fathi P. Vascularized microfluidic models of major organ structures and cancerous tissues. BIOMICROFLUIDICS 2023; 17:061502. [PMID: 38074952 PMCID: PMC10703512 DOI: 10.1063/5.0159800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024]
Abstract
Organ-on-a-chip devices are powerful modeling systems that allow researchers to recapitulate the in vivo structures of organs as well as the physiological conditions those tissues are subject to. These devices are useful tools in modeling not only the behavior of a healthy organ but also in modeling disease pathology or the effects of specific drugs. The incorporation of fluidic flow is of great significance in these devices due to the important roles of physiological fluid flows in vivo. Recent developments in the field have led to the production of vascularized organ-on-a-chip devices, which can more accurately reproduce the conditions observed in vivo by recapitulating the vasculature of the organ concerned. This review paper will provide a brief overview of the history of organ-on-a-chip devices, before discussing developments in the production of vascularized organs-on-chips, and the implications these developments hold for the future of the field.
Collapse
Affiliation(s)
- Anagha Rama Varma
- Unit for NanoEngineering and MicroPhysiological Systems, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Parinaz Fathi
- Unit for NanoEngineering and MicroPhysiological Systems, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
11
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
12
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
13
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
15
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|