1
|
Adeola AO, Paramo L, Fuoco G, Naccache R. Emerging hazardous chemicals and biological pollutants in Canadian aquatic systems and remediation approaches: A comprehensive status report. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176267. [PMID: 39278485 DOI: 10.1016/j.scitotenv.2024.176267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emerging contaminants can be natural or synthetic materials, as well as materials of a chemical, or biological origin; these materials are typically not controlled or monitored in the environment. Canada is home to nearly 7 % of the world's renewable water supply and a wide range of different kinds of water systems, including the Great Lake, rivers, canals, gulfs, and estuaries. Although the majority of these pollutants are present in trace amounts (μg/L - ng/L concentrations), several studies have reported their detrimental impact on both human health and the biota. In Canadian aquatic environments, concentrations of pharmaceuticals (as high as 115 μg/L), pesticides (as high as 1.95 μg/L), bioavailable heavy metals like dissolved mercury (as high as 135 ng/L), and hydrocarbon/crude oil spills (as high as 4.5 million liters) have been documented. Biological threats such as genetic materials of the contagious SARS-CoV-2 virus have been reported in the provinces of Québec, Ontario, Saskatchewan and Manitoba provinces, as well as in the Nunavut territory, with a need for more holistic research. These toxins and emerging pollutants are associated with nefarious short and long-term health effects, with the potential for bioaccumulation in the environment. Hence, this Canadian-focused report provides the footprints for water and environmental sustainability, in light of this emerging threat to the environment and society. Several remediation pathways/tools that have been explored by Canadian researchers, existing challenges and prospects are also discussed. The review concludes with preventive measures and strategies for managing the inventory of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Luis Paramo
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Gianluca Fuoco
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
2
|
Abosse JS, Megersa B, Zewge F, Eregno FE. Healthcare waste management and antimicrobial resistance: a critical review. JOURNAL OF WATER AND HEALTH 2024; 22:2076-2093. [PMID: 39611670 DOI: 10.2166/wh.2024.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
The rapid growth of populations and urbanization has led to a significant increase in healthcare waste, posing serious health risks. A search on Google Scholar identified seven relevant articles from Ethiopia that examine the relationship between improper waste management in healthcare facilities (HCFs) and the rise of antimicrobial resistance (AMR) genes. This review aims to highlight key concepts, evidence sources, and knowledge gaps specific to the Ethiopian context. The unsafe disposal of antibiotics through leaks and solid waste has contributed to what some are calling a 'silent pandemic,' raising concerns about emerging infectious diseases. Studies have revealed alarming rates of infectious agents and AMR in healthcare wastewater. Isolates of C. jejuni, Escherichia coli, Enterococcus faecalis, and Enterococcus faecium from various healthcare waste sites in Ethiopia demonstrate high levels of AMR genes. Additionally, research indicates that HCFs produce significant amounts of waste, with high per-person daily waste production rates. Leachate from landfills containing this waste can negatively affect soil health, biological activity, water quality, agriculture, animal health, and human well-being. To mitigate these risks, effective waste management practices and the promotion of alternative antimicrobial use are essential strategies for reducing the emergence of pandemic diseases in developing countries.
Collapse
Affiliation(s)
- Jirata Shiferaw Abosse
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia; Faculty of Engineering Science and Technology, Arctic University of Norway, Narvik, Norway E-mail: ;
| | - Bekele Megersa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Feleke Zewge
- College of Natural and Competitional Science, Africa Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fasil Ejigu Eregno
- Faculty of Engineering Science and Technology, Arctic University of Norway, Narvik, Norway
| |
Collapse
|
3
|
Ghahremani M, Danafar H, Afshari P, Fazli MM, Bahrami H. Removal of the nalidixic acid antibiotic from aqueous solutions using bovine serum albumin nanoparticles. Sci Rep 2024; 14:24105. [PMID: 39406798 PMCID: PMC11480412 DOI: 10.1038/s41598-024-74165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The presence of antibiotic pollutants in water and wastewater can cause significant risks to the environment in different aspects. Therefore, antibiotics need to be removed from water. This study investigates the adsorption of nalidixic acid (NA), a common antibiotic, using bovine serum albumin nanoparticles (BSA NPs). These NPs were synthesized via desolvation technique and characterized using SEM, DLS, FT-IR, and UV-Vis spectroscopy. The effects of adsorbent dosage (0.02-0.9 mg), initial NA concentration (30-80 mg L- 1) and contact time (0.5-24 h) on adsorption efficiency were considered. Adsorption isotherms and kinetics were determined experimentally. The Freundlich isotherm best described the adsorption equilibrium, while the pseudo-second-order kinetic model accurately represented the adsorption process. Thermodynamic parameters confirmed the spontaneous and exothermic nature of NA adsorption onto BSA NPs. Under optimal conditions, BSA NPs achieved a removal efficiency of 75% for NA with a maximum adsorption capacity of 240 mg g- 1. These results demonstrate the potential of BSA NPs as an effective adsorbent for removing NA from aqueous solutions.
Collapse
Affiliation(s)
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanootechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Parastoo Afshari
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | - Mehran Mohammadian Fazli
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Bahrami
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran.
| |
Collapse
|
4
|
Cela-Dablanca R, Barreiro A, Rodríguez-López L, Arias-Estévez M, Fernández-Sanjurjo M, Álvarez-Rodríguez E, Núñez-Delgado A. Azithromycin removal using pine bark, oak ash and mussel shell. ENVIRONMENTAL RESEARCH 2024; 252:119048. [PMID: 38697595 DOI: 10.1016/j.envres.2024.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 μmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 μmol kg-1, meaning >80% retention), followed by pine bark (8280 μmol kg-1, 69%) and mussel shell (between 3000 and 6000 μmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain.
| | - Lucía Rodríguez-López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - María Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
5
|
Allegrini M, Iocoli GA, Zabaloy MC. Combined use of digestate and inorganic fertilizer alleviates the burden of class 1 integrons in perennial ryegrass rhizosphere without compromising aerial biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47132-47143. [PMID: 38985425 DOI: 10.1007/s11356-024-34279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.
Collapse
Affiliation(s)
- Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario (UNR)-CONICET, Zavalla, Argentina
| | - Gastón Alejandro Iocoli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Almeida FS, Doria ACOC, Sant’Anna LB. Evaluation of the antimicrobial action of plasma activated water on amniotic membrane. RESEARCH ON BIOMEDICAL ENGINEERING 2024; 40:117-124. [DOI: 10.1007/s42600-023-00334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2025]
|
8
|
Ajayi AO, Odeyemi AT, Akinjogunla OJ, Adeyeye AB, Ayo-ajayi I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect Ecol Epidemiol 2024; 14:2312953. [PMID: 38371518 PMCID: PMC10868463 DOI: 10.1080/20008686.2024.2312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.
Collapse
Affiliation(s)
| | - Adebowale Toba Odeyemi
- Department of Microbiology, Landmark University SDG Groups 2 and 3, Omu-Aran, Kwara State, Nigeria
| | | | | | - Ibiwumi Ayo-ajayi
- Department of Computer Science, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
9
|
Desai A, Mahajan V, Ramabhadran RO, Mukherjee R. Binding order of substrate and cofactor in sulfonamide monooxygenase during sulfa drug degradation: in silico studies. J Biomol Struct Dyn 2024:1-15. [PMID: 38263732 DOI: 10.1080/07391102.2024.2306495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
For decades, sulfonamide antibiotics have been used across industries such as agriculture and animal husbandry. However, the use and inadvertent misuse of these antibiotics have resulted in the advent of sulfonamide-drug-resistant strains due to antibiotic pollution. Enzymatic bioremediation of antibiotics remains a potential emerging solution to combat antibiotic pollution. Here, we propose an enzymatic model for the degradation of sulfonamides by Microbacterium sp. We have employed a multi-pronged computational strategy involving - protein structure modelling, ligand docking and molecular dynamics simulations to decipher a plausible binding order for the enzymatic degradation of sulfonamides by the bacterial sulfonamide monooxygenase, SulX. Our results enable us to predict that this degradation is achieved through the sequential binding of the antibiotic sulfonamide followed by the reduced flavin cofactor FMNH2, thereby laying the computational foundation for further advancements in enzyme-mediated degradation of the antibiotic. We also provide a list of experiments which may be performed to verify and follow-up on our in-silico studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amogh Desai
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| | - Ved Mahajan
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
10
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
11
|
Ma Y, Gao Y, Xu R, Li D, Waiho K, Wang Y, Hu M. Combined toxic effects of nanoplastics and norfloxacin on antioxidant and immune genes in mussels. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106277. [PMID: 38040551 DOI: 10.1016/j.marenvres.2023.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Nanoplastics (NPs) and antibiotics (ABs) are two of the emerging marine contaminants that have drawn the most attention in recent years. Given the necessity of figuring out the effects of plastic and antibiotic contamination on marine organism life and population in the natural environment, it is essential to apply rapid and effective biological indicators to evaluate their comprehensive toxic effects. In this study, using mussel (Mytilus coruscus) as a model, we investigated the combined toxic effects of NP (80 nm polystyrene beads) and AB (Norfloxacin, NOR) at environmental-relevant concentrations on antioxidant and immune genes. In terms of the antioxidant genes, NPs significantly increased the relative expression of Cytochrome P450 3A-1 (CYP3A-1) under various concentrations of NOR conditions, but they only significantly increased the relative expression of CYP3A-2 in the high concentration (500 μg L-1 NOR) co-exposure group. In the NP-exposure group which exposed to no or low concentrations of NOR, nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated. In terms of the immune genes, interleukin-1 receptor-associated kinase (IRAK) -1 showed a significant increase in the low-concentration NOR group while a significant inhibition in the high-concentration NOR group. Due to the presence of NPs, exposure to NOR resulted in a significant increase in both IRAK-4 and heat shock protein (HSP) 70. Our findings indicate that polystyrene NPs can exacerbate the effects of NOR on the anti-oxidant and immune defense performance of mussels. This study delves into the toxic effects of NPs and ABs from a molecular perspective. Given the expected increase in environmental pollution due to NPs and ABs, future research is needed to investigate the potential synergistic effect of NPs and ABs on other organisms.
Collapse
Affiliation(s)
- Yichi Ma
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Yiming Gao
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Ran Xu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
12
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
13
|
Kim DY, Sharma SK, Rasool K, Koduru JR, Syed A, Ghodake G. Development of Novel Peptide-Modified Silver Nanoparticle-Based Rapid Biosensors for Detecting Aminoglycoside Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12883-12898. [PMID: 37603424 DOI: 10.1021/acs.jafc.3c03565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The detection and monitoring of aminoglycoside antibiotics (AGAs) have become of utmost importance due to their widespread use in human and animal therapy, as well as the associated risks of exposure, toxicity, and the emergence of antimicrobial resistance. In this study, we successfully synthesized casein hydrolysate peptides-functionalized silver nanoparticles (CHPs@AgNPs) and employed them as a novel colorimetric analytical platform to demonstrate remarkable specificity and sensitivity toward AGAs. The colorimetric and spectral response of the CHPs@AgNPs was observed at 405 and 520 nm, showing a linear correlation with the concentration of streptomycin, a representative AGA. The color changes from yellow to orange provided a visual indication of the analyte concentration, enabling quantitative determination for real-world samples. The AgNP assay exhibited excellent sensitivity with dynamic ranges of approximately 200-650 and 100-700 nM for streptomycin-spiked tap water and dairy whey with limits of detection found to be ∼98 and 56 nM, respectively. The mechanism behind the selective aggregation of CHPs@AgNPs in the presence of AGAs involves the amine groups of the target analytes acting as molecular bridges for electrostatic coupling with hydroxyl or carboxyl functionalities of adjacent NPs, driving the formation of stable NP aggregates. The developed assay offers several advantages, making it suitable for various practical applications. It is characterized by its simplicity, rapidity, specificity, sensitivity, and cost-effectiveness. These unique features make the method a promising tool for monitoring water quality, ensuring food safety, and dealing with emergent issues of antibiotic resistance.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sanjeev K Sharma
- Biomaterials and Sensors Laboratory, Department of Physics, CCS University, Meerut Campus, Meerut 250004, Uttar Pradesh, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Suwannaruang T, Pratyanuwat A, Sinthujariwat P, Wantala K, Chirawatkul P, Junlek N, Nijpanich S, Shahmoradi B, Shivaraju HP. Dynamically driven perovskite La-Fe-modified SrTiO 3 nanocubes and their improved photoresponsive activity under visible light: influence of alkaline environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90298-90317. [PMID: 36357757 DOI: 10.1007/s11356-022-23977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Visible-light active La-Fe-SrTiO3 (La0.01Sr0.99Fe0.01Ti0.99O3) photocatalysts were synthesized via a dynamic hydrothermal route under different NaOH concentrations (2, 3, 4, 5, and 6 M). The results showed that altering NaOH concentrations changed the physicochemical characteristics of the materials. Namely, the decrease in particle size was observed when the NaOH levels were increased. The specific surface area of the photocatalysts changed with an increased concentration of NaOH, and the maximum value was 17.10 m2/g in 5 M of NaOH. The crystal structure of all prepared samples remained unaffected when altered the NaOH concentration or when incorporated La and Fe in the lattice of SrTiO3. Namely, all samples synthesized under various NaOH concentrations crystallized and maintained in the standard cubic perovskite structure of SrTiO3. The increased NaOH concentration slightly altered the absorption wavelength towards a longer wavelength region. The La atom, replacing some Sr2+ in the structure of modified SrTiO3, was confirmed to be in the La3+ valence state. Simultaneously, Fe atoms demonstrating oxidation states of Fe3+ can also be incorporated into the SrTiO3 network. The photocatalytic degradation of ciprofloxacin antibiotic revealed that the highest performance was approximately 75% within 9 h over the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared at 5 M of NaOH via the dynamic hydrothermal process. Meanwhile, this photocatalyst also displayed greater activity than the pristine SrTiO3, the single-doped samples (SrFe0.01Ti0.99O3 and La0.01Sr0.99TiO3), and the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared through a static hydrothermal technique under the same synthesis condition.
Collapse
Affiliation(s)
- Totsaporn Suwannaruang
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Acapol Pratyanuwat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Putichot Sinthujariwat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Prae Chirawatkul
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Narong Junlek
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Behzad Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | |
Collapse
|
15
|
Yashwant CP, Rajendran V, Krishnamoorthy S, Nagarathinam B, Rawson A, Anandharaj A, Sivanandham V. Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Sci Biotechnol 2023; 32:863-874. [PMID: 37041804 PMCID: PMC10082887 DOI: 10.1007/s10068-022-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated antibiotic resistance (ABR) in bacteria isolated from different food wastes viz., meat slaughterhouses, dairy and restaurants. About 120 strains isolated from the food waste were subjected to ABR screening. More than 50% of all the strains were resistant to Vancomycin, Neomycin and Methicilin, which belong to third-generation antibiotics. Two lactic acid bacteria (LAB) free of ABR were chosen to be used as starter cultures in media formulated from food waste. Food waste combination (FWC-4) was found to be on par with the nutrient broth in biomass production. The non-ABR LAB strains showed excellent probiotic properties, and in the fed-batch fermentation process, adding a nitrogen source (soya protein) enhanced the microbial biomass (3.7 g/l). Additionally, exopolysaccharide production was found to be 2.3 g/l. This study highlights the ABR incidence in food waste medium and its economic advantage for starter culture biomass production. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01222-9.
Collapse
Affiliation(s)
- Chavan Priyanka Yashwant
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vijay Rajendran
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Srinivasan Krishnamoorthy
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Baskaran Nagarathinam
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Ashish Rawson
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Arunkumar Anandharaj
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vignesh Sivanandham
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| |
Collapse
|
16
|
Li B, Wang W, Zhao L, Yan D, Li X, Gao Q, Zheng J, Zhou S, Lai S, Feng Y, Zhang J, Jiang H, Long C, Gan W, Chen X, Wang D, Tang BZ, Liao Y. Multifunctional AIE Nanosphere-Based "Nanobomb" for Trimodal Imaging-Guided Photothermal/Photodynamic/Pharmacological Therapy of Drug-Resistant Bacterial Infections. ACS NANO 2023; 17:4601-4618. [PMID: 36826229 DOI: 10.1021/acsnano.2c10694] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Injudicious or inappropriate use of antibiotics has led to the prevalence of drug-resistant bacteria, posing a huge menace to global health. Here, a self-assembled aggregation-induced emission (AIE) nanosphere (AIE-PEG1000 NPs) that simultaneously possesses near-infrared region II (NIR-II) fluorescence emissive, photothermal, and photodynamic properties is prepared using a multifunctional AIE luminogen (AIE-4COOH). The AIE-PEG1000 NPs were encapsulated with teicoplanin (Tei) and ammonium bicarbonate (AB) into lipid nanovesicles to form a laser-activated "nanobomb" (AIE-Tei@AB NVs) for the multimodal theranostics of drug-resistant bacterial infections. In vivo experiments validate that the "nanobomb" enables high-performance NIR-II fluorescence, infrared thermal, and ultrasound (AB decomposition during the photothermal process to produce numerous CO2/NH3 bubbles, which is an efficient ultrasound contrast agent) imaging of multidrug-resistant bacteria-infected foci after intravenous administration of AIE-Tei@AB NVs followed by 660 nm laser stimulation. The highly efficient photothermal and photodynamic features of AIE-Tei@AB NVs, combined with the excellent pharmacological property of rapidly released Tei during bubble generation and NV disintegration, collectively promote broad-spectrum eradication of three clinically isolated multidrug-resistant bacteria strains and rapid healing of infected wounds. This multimodal imaging-guided synergistic therapeutic strategy can be extended for the theranostics of superbugs.
Collapse
Affiliation(s)
- Bin Li
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Lu Zhao
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Qiuxia Gao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Sitong Zhou
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Shanshan Lai
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Jie Zhang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Hang Jiang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Chengmin Long
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Wenjun Gan
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Xiaodong Chen
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Yuhui Liao
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
17
|
Recent advances of amino acid-based biosensors for the efficient food and water contamination detection in food samples and environmental resources: A technical and analytical overview towards advanced nanomaterials and biological receptor. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
18
|
Bao H, Liu M, Li X, Ren N, Li J. Removal of nutrients and veterinary antibiotics from manure-free piggery wastewater in a packed-bed A/O process at normal atmospheric temperature. ENVIRONMENTAL TECHNOLOGY 2023; 44:579-590. [PMID: 34503402 DOI: 10.1080/09593330.2021.1979107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
A packed-bed anaerobic-aerobic reactor (PBAOR) with two anaerobic and two aerobic compartments was constructed to treat manure-free piggery wastewater which was characterized by high ammonium (NH4+-N) and low ratio of chemical oxygen demand (COD) to total nitrogen (TN). Performed for 60 days at the normal atmospheric temperature of 25 °C with a constant hydraulic retention time of 32 h and reflux ratio of 2.0, a stable state in pollutants removal was obtained in the PBAOR. Within the next routine operation process, the removal of COD, NH4+-N and TN was above 85.7%, 98.2% and 85.8%, with a residual less than 81.7, 7.2 and 39.9 mg L-1 in effluent, respectively. Twelve veterinary antibiotics classified into tetracyclines (TCs), sulphonamides (SAs) and fluoroquinolones (FQs) were detected from the piggery wastewater. The PBAOR was effective in removing TCs and SAs with an average removal of 74.8% and 93.3%, respectively, but presented a negative removal for FQs. Most COD in the piggery wastewater was mainly removed in the first two anaerobic compartments along with an obvious removal of TCs and SAs, while the TN were mainly removed in the last two aerobic compartments with the negative removal of FQs.
Collapse
Affiliation(s)
- Hongxu Bao
- School of Environment, Liaoning University, Shenyang, People's Republic of China
| | - Min Liu
- School of Environment, Liaoning University, Shenyang, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
19
|
Sivarajan D, Ramachandran B. Antibiotics modulate frequency and early generation of epileptic seizures in zebrafish. Exp Brain Res 2023; 241:571-583. [PMID: 36625966 DOI: 10.1007/s00221-023-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Antibiotics have been used for decades to treat various bacterial infections. Apart from bactericidal activities, their potential side effects have not been much studied or evaluated. Neurotoxicity is a major concern in the case of β-lactam and fluoroquinolone families, which can result in convulsions or seizures. Here, we proposed a hypothesis to check whether antibiotic treatment can conclusively enhance anxiety-like behaviours and how seizure behavioural profile gets modulated in pentylenetetrazole (PTZ)-treated zebrafish. Zebrafish were treated with selected antibiotics such as 25 mg/L Penicillin G (PG) and Ciprofloxacin (CPFX), for 7 days and thereafter exposed to PTZ (7.5 mM) for 20 min. The data indicate that PG and CPFX-treated groups exhibited anxiety-like or stressed behavioural phenotypes in the novel tank test (6 min), and also, they were found to promote hyperactivity. Early onset of PTZ-induced seizure-like behavioural scores, the heightened intensity of seizure and reduced latency in different scores were found in PG and CPFX-administered groups. This study substantiates that PG and CPFX as potential seizure modulators in zebrafish. The zebrafish is a well-established and still expanding model organism in many fields. Here, we again reinforce zebrafish as a prominent model to investigate seizure-like neuro-behavioural entities and confirm that chronic antibiotic use has negative consequences that can exacerbate the circumstances of vertebrate species exhibiting seizure-related reactions.
Collapse
Affiliation(s)
- Dhanusha Sivarajan
- Department of Zoology, Christ College (Autonomous), Irinjalakuda, Thrissur, Kerala, 680125, India
| | - Binu Ramachandran
- Neuronal Plasticity Group, Department of Zoology, University of Calicut, Thenhipalam, Malappuram, Kerala, 673635, India.
| |
Collapse
|
20
|
Hamad MTMH, El-Sesy ME. Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. BIORESOUR BIOPROCESS 2023; 10:1. [PMID: 38647790 PMCID: PMC10992136 DOI: 10.1186/s40643-022-00616-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 01/10/2023] Open
Abstract
In the twenty-first century, water contamination with pharmaceutical residues is becoming a global phenomenon and a threat. Antibiotic residues and antibiotic resistance genes (ARGs) are recognized as new emerging water pollutants because they can negatively affect aquatic ecosystems and human health, thereby posing a complex environmental problem. These nano-adsorbents of the next generation can remove these pollutants at low concentrations. This study focuses on the chemical synthesis of copper oxide nanoparticles (CuONPs) and nano-zero-valent iron (nZVI) used as nano-adsorbents for levofloxacin removal from water samples and antibiotic-resistant genes. The CuONPs and nZVI are initially characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. The levofloxacin adsorption isotherm on the CuONPS and nZVI shows the best fit with the Langmuir isotherm model, exhibiting correlation coefficients (R2) of 0.993 and 0.999, respectively. The adsorption activities of CuONPS and nZVI were fitted to a pseudo-second-order kinetic model with correlation coefficients (R2) of 0.983 and 0.994, respectively. The maximum levofloxacin removal capacity was observed at (89%), (84%), (89%), (88%) and (71.6) at pH 7 and adsorbent dose(0.06 mg/L), initial LEV concentration (1 mg/L), temperature 25 °C, and contact time 120 min for CuONPs. Removal efficiency was (91%), (90.6%), (91%), (89%), and (80%), at pH 7, adsorbent dose(0.06), initial LEV concentration (1 mg/L), temperature 35 °C, and contact time 120 min. The levofloxacin adsorption is an exothermic process for nZVI and CuONPs, according to thermodynamic analysis. A thermodynamic analysis indicated that each adsorption process is spontaneous. Several genera, including clinically pathogenic bacteria (e.g., Acinetobacter_baumannii, Helicobacter_pylori, Escherichia_coli, Pseudomonas_aeruginosa, Clostridium_beijerinckii, Escherichia/Shigella_coli, Helicobacter_cetorum, Lactobacillus_gasseri, Bacillus_cereus, Deinococcus_radiodurans, Rhodobacter_sphaeroides, Propionibacterium_acnes, and Bacteroides_vulgatus) were relatively abundant in hospital wastewater. Furthermore, 37 antibiotic resistance genes (ARGs) were quantified in hospital wastewater. The results demonstrated that 95.01% of nZVI and 91.4% of CuONPs are effective adsorbents for removing antibiotic-resistant bacteria from hospital effluent. The synthesized nZVI and CuONPs have excellent reusability and can be considered cost effective and eco-friendly adsorbents.
Collapse
Affiliation(s)
| | - Marwa E El-Sesy
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt
| |
Collapse
|
21
|
Chen P, Yu X, Zhang J, Wang Y. New and traditional methods for antibiotic resistance genes removal: Constructed wetland technology and photocatalysis technology. Front Microbiol 2023; 13:1110793. [PMID: 36687588 PMCID: PMC9845729 DOI: 10.3389/fmicb.2022.1110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a new environmental contaminant that poses a major hazard to humans and the environment. This research discusses the methods and drawbacks of two ARG removal approaches, constructed wetlands (CWs) and photocatalysis. CWs primarily rely on the synergistic effects of substrate adsorption, plant uptake, and microbial processes to remove ARGs. The removal of ARGs can be influenced by wetland plants, substrate type, wetland type, and hydraulic conditions. The absolute abundance of ARGs in effluent decreased, but their relative abundance increased. Photocatalysis deactivates ARGs predominantly through reactive oxygen species, with removal effectiveness determined by catalyst type, radiation type, and radiation intensity. The drawback is that it exposes intracellular resistance genes, perhaps increasing the risk of ARG spread. To address the current shortcomings, this paper proposes the feasibility of combining a constructed wetland with photocatalysis technology, which provides a novel strategy for ARG removal.
Collapse
|
22
|
Wyrsch ER, Dolejska M, Djordjevic SP. Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife. Microorganisms 2022; 10:microorganisms10071387. [PMID: 35889108 PMCID: PMC9319951 DOI: 10.3390/microorganisms10071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic;
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, University Hospital Brno, 62500 Brno, Czech Republic
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Correspondence:
| |
Collapse
|
23
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
24
|
Profile of Bacterial Community and Antibiotic Resistance Genes in Typical Vegetable Greenhouse Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137742. [PMID: 35805398 PMCID: PMC9265268 DOI: 10.3390/ijerph19137742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
The use of vegetable greenhouse production systems has increased rapidly because of the increasing demand for food materials. The vegetable greenhouse production industry is confronted with serious environmental problems, due to their high agrochemical inputs and intensive utilization. Besides this, antibiotic-resistant bacteria, carrying antibiotic-resistance genes (ARGs), may enter into a vegetable greenhouse with the application of animal manure. Bacterial communities and ARGs were investigated in two typical vegetable-greenhouse-using counties with long histories of vegetable cultivation. The results showed that Proteobacteria, Firmicutes, Acidobacteria, Chloroflexi, and Gemmatimonadetes were the dominant phyla, while aadA, tetL, sul1, and sul2 were the most common ARGs in greenhouse vegetable soil. Heatmap and principal coordinate analysis (PCoA) demonstrated that the differences between two counties were more significant than those among soils with different cultivation histories in the same county, suggesting that more effects on bacterial communities and ARGs were caused by soil type and manure type than by the accumulation of cultivation years. The positive correlation between the abundance of the intI gene with specific ARGs highlights the horizontal transfer potential of these ARGs. A total of 11 phyla were identified as the potential hosts of specific ARGs. Based on redundancy analysis (RDA), Ni and pH were the most potent factors determining the bacterial communities, and Cr was the top factor affecting the relative abundance of the ARGs. These results might be helpful in drawing more attention to the risk of manure recycling in the vegetable greenhouse, and further developing a strategy for practical manure application and sustainable production of vegetable greenhouses.
Collapse
|
25
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
26
|
Breaking the Rebellion: Photodynamic Inactivation against Erwinia amylovora Resistant to Streptomycin. Antibiotics (Basel) 2022; 11:antibiotics11050544. [PMID: 35625188 PMCID: PMC9137749 DOI: 10.3390/antibiotics11050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Global crop production depends on strategies to counteract the ever-increasing spread of plant pathogens. Antibiotics are often used for large-scale treatments. As a result, Erwinia amylovora, causal agent of the contagious fire blight disease, has already evolved resistance to streptomycin (Sm). Photodynamic Inactivation (PDI) of microorganisms has been introduced as innovative method for plant protection. The aim of this study is to demonstrate that E. amylovora resistant to Sm (E. amylovoraSmR) can be killed by PDI. Two photosensitizers, the synthetic B17-0024, and the natural derived anionic sodium magnesium chlorophyllin (Chl) with cell-wall-permeabilizing agents are compared in terms of their photo-killing efficiency in liquid culture with or without 100 µg/mL Sm. In vitro experiments were performed at photosensitizer concentrations of 1, 10 or 100 µM and 5 or 30 min incubation in the dark, followed by illumination at 395 nm (radiant exposure 26.6 J/cm2). The highest inactivation of seven log steps was achieved at 100 µM B17-0024 after 30 min incubation. Shorter incubation (5 min), likely to represent field conditions, reduced the photo-killing to 5 log steps. Chlorophyllin at 100 µM in combination with 1.2% polyaspartic acid (PASA) reduced the number of bacteria by 6 log steps. While PASA itself caused some light independent toxicity, an antibacterial effect (3 log reduction) was achieved only in combination with Chl, even at concentrations as low as 10 µM. Addition of 100 µg/mL Sm to media did not significantly increase the efficacy of the photodynamic treatment. This study proves principle that PDI can be used to treat plant diseases even if causative bacteria are resistant to conventional treatment. Therefore, PDI based on natural photosensitizers might represent an eco-friendly treatment strategy especially in organic farming.
Collapse
|
27
|
Anand U, Li X, Sunita K, Lokhandwala S, Gautam P, Suresh S, Sarma H, Vellingiri B, Dey A, Bontempi E, Jiang G. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. ENVIRONMENTAL RESEARCH 2022; 203:111839. [PMID: 34358502 PMCID: PMC8332740 DOI: 10.1016/j.envres.2021.111839] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 05/18/2023]
Abstract
This review discusses the techniques available for detecting and inactivating of pathogens in municipal wastewater, landfill leachate, and solid waste. In view of the current COVID-19 pandemic, SARS-CoV-2 is being given special attention, with a thorough examination of all possible transmission pathways linked to the selected waste matrices. Despite the lack of works focused on landfill leachate, a systematic review method, based on cluster analysis, allows to analyze the available papers devoted to sewage sludge and wastewater, allowing to focalize the work on technologies able to detect and treat pathogens. In this work, great attention is also devoted to infectivity and transmission mechanisms of SARS-CoV-2. Moreover, the literature analysis shows that sewage sludge and landfill leachate seem to have a remote chance to act as a virus transmission route (pollution-to-human transmission) due to improper collection and treatment of municipal wastewater and solid waste. However due to the incertitude about virus infectivity, these possibilities cannot be excluded and need further investigation. As a conclusion, this paper shows that additional research is required not only on the coronavirus-specific disinfection, but also the regular surveillance or monitoring of viral loads in sewage sludge, wastewater, and landfill leachate. The disinfection strategies need to be optimized in terms of dosage and potential adverse impacts like antimicrobial resistance, among many other factors. Finally, the presence of SARS-CoV-2 and other pathogenic microorganisms in sewage sludge, wastewater, and landfill leachate can hamper the possibility to ensure safe water and public health in economically marginalized countries and hinder the realization of the United Nations' sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Snehal Lokhandwala
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - Pratibha Gautam
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Dhodar Ali, Titabar, 785630, Assam, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641-046, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
28
|
Köse K, Tüysüz M, Aksüt D, Uzun L. Modification of cyclodextrin and use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:182-209. [PMID: 34212318 DOI: 10.1007/s11356-021-15005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Water pollution, which has become a global problem in parallel with environmental pollution, is a problem that needs to be solved urgently, considering the gradual depletion of water resources. The inadequacy of the water treatment methods and the materials used somehow directed the researchers to look for dual character structures such as biocompatible and biodegradable β-cyclodextrin (β-CD). β-CD, which is normally insoluble in water, is used in demanding wastewater applications by being modified with the help of different agents to be water soluble or transformed into polymeric adsorbents as a result of co-polymerization via cross-linkers. In this way, in addition to the host-guest interactions offered by β-CD, secondary forces arising from these interactions provide advantages in terms of regeneration and reusability. However, the adsorption efficiency and synthesis steps need to be improved. Based on the current studies presented in this review, in which cross-linkers and modification methods are also mentioned, suggestions for novel synthesis methods of new-generation β-CD-based materials, criticisms, and recent methods of removal of micropollutants such as heavy metals, industrial dyes, harmful biomolecules, and pharmaceutics wastes are mentioned.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, 19040, Çorum, Turkey.
| | - Miraç Tüysüz
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Davut Aksüt
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
30
|
Jiang S, Wang F, Li Q, Sun H, Wang H, Yao Z. Environment and food safety: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54511-54530. [PMID: 34431060 PMCID: PMC8384557 DOI: 10.1007/s11356-021-16069-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 04/12/2023]
Abstract
Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
31
|
Xie Y, Li Q, Qin L, Zhou X, Fan Y. Multi-templates surface molecularly imprinted polymer for simultaneous and rapid determination of sulfonamides and quinolones in water: effect of carbon-carbon double bond. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54950-54959. [PMID: 34120285 DOI: 10.1007/s11356-021-14794-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, the effect of a carrier modified with a carbon-carbon double bond (C=C) on preparing multi-templates surface molecularly imprinted polymer MIP (C=C@MIP) for simultaneous detection of sulfonamides and quinolones was investigated. The results showed that the adsorption capacities of the C=C@MIP were obviously higher than those of MIP, which is the carrier without modified C=C, suggesting that C=C played a key role in preparing MIP with higher adsorption capacities. Then, C=C@MIP was used as adsorbents for solid-phase extraction (SPE) and coupled with high-performance liquid chromatography (HPLC) for the simultaneous determination of sulfonamides and quinolones in water. The method showed excellent applicability, with the adsorption capacities of 19.92, 16.38, 12.92, 18.37, 14.49, 12.01, 16.98, 23.33, and 14.29 mg/g for SDZ, STZ, SMZ, SMX, SDM, ENRO, OFL, LOME, and GATI, respectively. The spiked recoveries and relative standard deviations (RSDs) of sulfonamides and quinolones using C=C@MIP were 81.59-100.7 % and 3.75-7.37 %, respectively. The limits of detection (LODs) for SDZ, STZ, SMZ, SMX, SDM, ENRO, OFL, LOME, and GATI were 0.013, 0.012, 0.012, 0.013, 0.014, 0.012, 0.013, 0.015, and 0.015 μg/L, respectively.
Collapse
Affiliation(s)
- Yizhen Xie
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Qiuyi Li
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Lulu Qin
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Xiaobin Zhou
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Yinming Fan
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541000, China.
| |
Collapse
|
32
|
|
33
|
Vilela LAF, de Oliveira EC. Arbuscular Mycorrhizal Fungi and Remediation Potential of Soils Contaminated by Potentially Toxic Elements. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Álvarez SP, Ardisana EFH. Biotechnology of Beneficial Bacteria and Fungi Useful in Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|