1
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae134. [PMID: 39436782 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Scavo NA, Juarez JG, Chaves LF, Fernández-Santos NA, Carbajal E, Perkin J, Londono-Renteria B, Hamer GL. Little disease but lots of bites: social, urbanistic, and entomological risk factors of human exposure to Aedes aegypti in South Texas, U.S. PLoS Negl Trop Dis 2024; 18:e0011953. [PMID: 39432539 DOI: 10.1371/journal.pntd.0011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/31/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Aedes aegypti presence, human-vector contact rates, and Aedes-borne virus transmission are highly variable through time and space. The Lower Rio Grande Valley (LRGV), Texas, is one of the few regions in the U.S. where local transmission of Aedes-borne viruses occurs, presenting an opportunity to evaluate social, urbanistic, entomological, and mobility-based factors that modulate human exposure to Ae. aegypti. METHODOLOGY & PRINCIPAL FINDINGS Mosquitoes were collected using BG-Sentinel 2 traps during November 2021 as part of an intervention trial, with knowledge, attitudes, and practices (KAP) and housing quality surveys to gather environmental and demographic data. Human blood samples were taken from individuals and a Bitemark Assay (ELISA) was conducted to quantify human antibodies to the Ae. aegypti Nterm-34kDa salivary peptide as a measure of human exposure to bites. In total, 64 houses were surveyed with 142 blood samples collected. More than 80% of participants had knowledge of mosquito-borne diseases and believed mosquitoes to be a health risk in their community. Our best fit generalized linear mixed effects model found four fixed effects contributed significantly to explaining the variation in exposure to Ae. aegypti bites: higher annual household income, younger age, larger lot area, and higher female Ae. aegypti abundance per trap night averaged over 5 weeks prior to human blood sampling. CONCLUSIONS Most surveyed residents recognized mosquitoes and the threat they pose to individual and public health. Urbanistic (i.e., lot size), social (i.e., income within a low-income community and age), and entomological (i.e., adult female Ae. aegypti abundance) factors modulate the risk of human exposure to Ae. aegypti bites. The use of serological biomarker assays, such as the Bitemark Assay, are valuable tools for surveillance and risk assessment of mosquito-borne disease, especially in areas like the LRGV where the transmission of target pathogens is low or intermittent.
Collapse
Affiliation(s)
- Nicole A Scavo
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Ecology & Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
| | - Jose G Juarez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health and Department of Geography, Indiana University, Bloomington Indiana, United States of America
| | - Nadia A Fernández-Santos
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Instituto Politecnico Nacional, Centro de Biotecnologia Genomica, Reynosa, Mexico
| | - Ester Carbajal
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Joshuah Perkin
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United States of America
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, Louisiana, United States of America
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Otter K, Gomidova S, Katz PS. Social predation by a nudibranch mollusc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.600874. [PMID: 39005425 PMCID: PMC11244926 DOI: 10.1101/2024.07.01.600874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Social predation is a common strategy used by predators to subdue and consume prey. Animals that use this strategy have many ways of finding each other, organizing behaviors and consuming prey. There is wide variation in the extent to which these behaviors are coordinated and the stability of individual roles. This study characterizes social predation by the nudibranch mollusc, Berghia stephanieae, which is a specialist predator that eats only the sea anemone, Exaiptasia diaphana. A combination of experimental and modeling approaches showed that B. stephanieae does predate upon E. diaphana in groups. The extent of social feeding was not altered by length of food deprivation, suggesting that animals are not shifting strategies based on internal state. It was unclear what cues the individual Berghia used to find each other; choice assays testing whether they followed slime trails, were attracted to injured anemones, or preferred conspecifics feeding did not reveal any cues. Individuals did not exhibit stable roles, such as leader or follower, rather the population exhibited fission-fusion dynamics with temporary roles during predation. Thus, the Berghia provides an example of a specialist predator of dangerous prey that loosely organizes social feeding, which persists across hunger states and uses temporary individual roles; however, the cues that it uses for aggregation are unknown.
Collapse
Affiliation(s)
- Kate Otter
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA, USA
| | - Saida Gomidova
- Department of Biology, University of Massachusetts Amherst, Amherst MA, USA
| | - Paul S. Katz
- Neuroscience and Behavior Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst MA, USA
| |
Collapse
|
4
|
Benz U, Traore MM, Revay EE, Traore AS, Prozorov AM, Traoré I, Junnila A, Cui L, Saldaitis A, Kone AS, Yakovlev RV, Ziguime Y, Gergely P, Samake S, Keita A, Müller GC, Weitzel T, Rothe C. Effect of textile colour on vector mosquito host selection: a simulated field study in Mali, West Africa. J Travel Med 2024; 31:taae049. [PMID: 38498330 DOI: 10.1093/jtm/taae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The effect of clothing colour on the biting rates of different vector mosquito species is not well understood. Studies under tropical field conditions are lacking. This study aimed to determine the influence of clothing colours on mosquito biting rates in rural and suburban settings in West Africa. METHODS We performed a simulated field study in a suburban and a rural site in Mali using Mosquito-Magnet traps utilizing CO2 and other attractants, which were covered with black, white, and black/white striped textile sheets covers. These targets operated continuously for 10 consecutive days with bright nights (around full moon) and 10 consecutive days with dark nights (around new moon). Trapped mosquitoes were collected and catch rates counted hourly. Mosquitoes were morphologically identified to the species complex level (Anopheles gambiae s.l. and Culex pipiens s.l.) or species level (Aedes aegypti). A subset of Anopheles specimens were further identified by molecular methods. RESULTS Under bright-night conditions, An. gambiae s.l. was significantly more attracted to black targets than to white and striped targets; during dark nights, no target preference was noted. During bright nights, Cx. pipiens s.l. was significantly more attracted to black and striped targets than to white targets; a similar trend was noted during dark nights (not significant). For day-active Ae. aegypti, striped targets were more attractive than the other targets and black were more attractive than white targets. CONCLUSIONS The study firstly demonstrated that under field conditions in Mali, West Africa, mosquito catch rates were influenced by different clothing colours, depending on mosquito species and light conditions. Overall, light colours were least attractive to host-seeking mosquitoes. Using white or other light-coloured clothing can potentially reduce bite exposure and risk of disease transmission in endemic tropical regions.
Collapse
Affiliation(s)
- Ursula Benz
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, Munich, Germany
| | - Mohamad M Traore
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Edita E Revay
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Amadou S Traore
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Alexey M Prozorov
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Issa Traoré
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Amy Junnila
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Aidas Saldaitis
- Department of Entomology, State Nature Research Centre, Institute of Ecology, Vilnius, Lithuania
| | - Aboubakr S Kone
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Roman V Yakovlev
- Department of Ecology, Altai State University, Barnaul, Russian Federation
| | - Younoussa Ziguime
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Petrányi Gergely
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Siriman Samake
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Alou Keita
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Günter C Müller
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Thomas Weitzel
- Travel Medicine Program, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, Munich, Germany
| |
Collapse
|
5
|
Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors 2024; 17:227. [PMID: 38755646 PMCID: PMC11100076 DOI: 10.1186/s13071-024-06299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.
Collapse
Affiliation(s)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Banerjee N, Gang SS, Castelletto ML, Ruiz F, Hallem EA. Carbon dioxide shapes parasite-host interactions in a human-infective nematode. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587273. [PMID: 38585813 PMCID: PMC10996684 DOI: 10.1101/2024.03.28.587273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking, intra-host development, and intra-host navigation - three crucial steps of the parasite-host interaction - remains poorly understood. Here, we investigate the role of carbon dioxide (CO2) in promoting parasite-host interactions in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific preferences for CO2: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO2 repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO2 attraction in iL3as may direct worms toward high-CO2 areas of the body such as the lungs and intestine. We also identify sensory neurons that detect CO2; these neurons are depolarized by CO2 in iL3s and iL3as. In addition, we demonstrate that the receptor guanylate cyclase Ss-GCY-9 is expressed specifically in CO2-sensing neurons and is required for CO2-evoked behavior. Ss-GCY-9 also promotes activation, indicating that a single receptor can mediate both behavioral and physiological responses to CO2. Our results illuminate chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO2-sensing pathway.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Spencer S. Gang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle L. Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Lead contact
| |
Collapse
|
7
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
8
|
Da Silva AG, Bach E, Ellwanger JH, Chies JAB. Tips and tools to obtain and assess mosquito viromes. Arch Microbiol 2024; 206:132. [PMID: 38436750 DOI: 10.1007/s00203-023-03813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.
Collapse
Affiliation(s)
- Amanda Gonzalez Da Silva
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evelise Bach
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Matope A, Lees RS, Spiers A, Foster GM. A bioassay method validation framework for laboratory and semi-field tests used to evaluate vector control tools. Malar J 2023; 22:289. [PMID: 37770855 PMCID: PMC10540336 DOI: 10.1186/s12936-023-04717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Vector control interventions play a fundamental role in the control and elimination of vector-borne diseases. The evaluation of vector control products relies on bioassays, laboratory and semi-field tests using live insects to assess the product's effectiveness. Bioassay method development requires a rigorous validation process to ensure that relevant methods are used to capture appropriate entomological endpoints which accurately and precisely describe likely efficacy against disease vectors as well as product characteristics within the manufacturing tolerance ranges for insecticide content specified by the World Health Organization. Currently, there are no standardized guidelines for bioassay method validation in vector control. This report presents a framework for bioassay validation that draws on accepted validation processes from the chemical and healthcare fields and which can be applied for evaluating bioassays and semi-field tests in vector control. The validation process has been categorized into four stages: preliminary development; feasibility experiments; internal validation, and external validation. A properly validated method combined with an appropriate experimental design and data analyses that account for both the variability of the method and the product is needed to generate reliable estimates of product efficacy to ensure that at-risk communities have timely access to safe and reliable vector control products.
Collapse
Affiliation(s)
- Agnes Matope
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rosemary S Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Angus Spiers
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Geraldine M Foster
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
10
|
Ray G, Huff RM, Castillo JS, Bellantuono AJ, DeGennaro M, Pitts RJ. Carboxylic acids that drive mosquito attraction to humans activate ionotropic receptors. PLoS Negl Trop Dis 2023; 17:e0011402. [PMID: 37339129 DOI: 10.1371/journal.pntd.0011402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
The mosquito, Aedes aegypti, is highly anthropophilic and transmits debilitating arboviruses within human populations and between humans and non-human primates. Female mosquitoes are attracted to sources of blood by responding to odor plumes that are emitted by their preferred hosts. Acidic volatile compounds, including carboxylic acids, represent particularly salient odors driving this attraction. Importantly, carboxylic acids are major constituents of human sweat and volatiles generated by skin microbes. As such, they are likely to impact human host preference, a dominant factor in disease transmission cycles. A more complete understanding of mosquito host attraction will necessitate the elucidation of molecular mechanisms of volatile odor detection that function in peripheral sensory neurons. Recent studies have shown that members of the variant ionotropic glutamate receptor gene family are necessary for physiological and behavioral responses to acidic volatiles in Aedes. In this study, we have identified a subfamily of variant ionotropic receptors that share sequence homology across several important vector species and are likely to be activated by carboxylic acids. Moreover, we demonstrate that selected members of this subfamily are activated by short-chain carboxylic acids in a heterologous cell expression system. Our results are consistent with the hypothesis that members of this receptor class underlie acidic volatile sensitivity in vector mosquitoes and provide a frame of reference for future development of novel mosquito attractant and repellent technologies.
Collapse
Affiliation(s)
- Garrett Ray
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Robert M Huff
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - John S Castillo
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida United States of America
| | - Anthony J Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida United States of America
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida United States of America
| | - R Jason Pitts
- Department of Biology, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
11
|
Long J, Maskell K, Gries R, Nayani S, Gooding C, Gries G. Synergistic attraction of Western black-legged ticks, Ixodes pacificus, to CO 2 and odorant emissions from deer-associated microbes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230084. [PMID: 37206969 PMCID: PMC10189596 DOI: 10.1098/rsos.230084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Foraging ticks reportedly exploit diverse cues to locate their hosts. Here, we tested the hypothesis that host-seeking Western black-legged ticks, Ixodes pacificus, and black-legged ticks, I. scapularis, respond to microbes dwelling in sebaceous gland secretions of white-tailed deer, Odocoileus virginianus, the ticks' preferred host. Using sterile wet cotton swabs, microbes were collected from the pelage of a sedated deer near forehead, preorbital, tarsal, metatarsal and interdigital glands. Swabs were plated on agar, and isolated microbes were identified by 16S rRNA amplicon sequencing. Of 31 microbial isolates tested in still-air olfactometers, 10 microbes induced positive arrestment responses by ticks, whereas 10 others were deterrent. Of the 10 microbes prompting arrestment by ticks, four microbes-including Bacillus aryabhattai (isolates A4)-also attracted ticks in moving-air Y-tube olfactometers. All four of these microbes emitted carbon dioxide and ammonia as well as volatile blends with overlapping blend constituents. The headspace volatile extract (HVE) of B. aryabhattai (HVE-A4) synergistically enhanced the attraction of I. pacificus to CO2. A synthetic blend of HVE-A4 headspace volatiles in combination with CO2 synergistically attracted more ticks than CO2 alone. Future research should aim to develop a least complex host volatile blend that is attractive to diverse tick taxa.
Collapse
Affiliation(s)
- Justin Long
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Keiran Maskell
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Saif Nayani
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Claire Gooding
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
12
|
Wang P, Cheng G. Mosquito-borne pathogens hijack human body odors to promote transmission. SCIENCE CHINA. LIFE SCIENCES 2023; 66:180-182. [PMID: 36346549 DOI: 10.1007/s11427-022-2231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Penghua Wang
- Department of Immunology, UConn Health, Farmington, 06030, USA.
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|