1
|
Moncada-Basualto M, Saavedra-Olavarría J, Rivero-Jerez PS, Rojas C, Maya JD, Liempi A, Zúñiga-Bustos M, Olea-Azar C, Lapier M, Pérez EG, Pozo-Martínez J. Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi. Molecules 2024; 29:2762. [PMID: 38930828 PMCID: PMC11207111 DOI: 10.3390/molecules29122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.
Collapse
Affiliation(s)
- Mauricio Moncada-Basualto
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile; (M.M.-B.); (C.R.); (M.Z.-B.)
| | - Jorge Saavedra-Olavarría
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquin 7820436, Chile; (J.S.-O.); (P.S.R.-J.)
| | - Paula S. Rivero-Jerez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquin 7820436, Chile; (J.S.-O.); (P.S.R.-J.)
| | - Cristian Rojas
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile; (M.M.-B.); (C.R.); (M.Z.-B.)
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Science, Universidad de Chile, Olivos 1007, Independencia 8380544, Chile;
| | - Juan D. Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Chile;
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Chile;
| | - Matías Zúñiga-Bustos
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile; (M.M.-B.); (C.R.); (M.Z.-B.)
| | - Claudio Olea-Azar
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Science, Universidad de Chile, Olivos 1007, Independencia 8380544, Chile;
| | - Michel Lapier
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos (CinBio), Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaiso 2360102, Chile;
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquin 7820436, Chile; (J.S.-O.); (P.S.R.-J.)
| | - Josué Pozo-Martínez
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Chile;
- Laboratorio de Química—Médica, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 777, Cuenca 010204, Ecuador
| |
Collapse
|
2
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
3
|
Silva ML, Sales FS, Levatti EVC, Antar GM, Tempone AG, Lago JHG, Jerz G. Evaluation of Anti- Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography. Molecules 2023; 29:212. [PMID: 38202795 PMCID: PMC10780275 DOI: 10.3390/molecules29010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Endemic in 21 countries, Chagas disease, also known as American Trypanosomiasis, is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi. The available drugs for the treatment of this disease, benznidazole and nifurtimox, are outdated and display severe side effects. Thus, the discovery of new drugs is crucial. Based on our continuous studies aiming towards the discovery of natural products with anti-T. cruzi potential, the MeOH extract from aerial parts of Baccharis sphenophylla Dusén ex. Malme (Asteraceae) displayed activity against this parasite and was subjected to high-performance countercurrent chromatography (HPCCC), to obtain one unreported syn-labdane diterpene - sphenophyllol (1) - as well as the known compounds gaudichaudol C (2), ent-kaurenoic acid (3), hispidulin (4), eupafolin (5), and one mixture of di-O-caffeoylquinic acids (6-8). Compounds 1-8 were characterized by analysis of nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. When tested against trypomastigote forms, isolated labdane diterpenes 1 and 2 displayed potent activity, with EC50 values of 20.1 μM and 2.9 μM, respectively. The mixture of chlorogenic acids 6-8, as well as the isolated flavones 4 and 5, showed significant activity against the clinically relevant amastigotes, with EC50 values of 24.9, 12.8, and 2.7 μM, respectively. Nonetheless, tested compounds 1-8 displayed no cytotoxicity against mammalian cells (CC50 > 200 μM). These results demonstrate the application of HPCCC as an important tool to isolate bioactive compounds from natural sources, including the antitrypanosomal extract from B. sphenophylla, allowing for the development of novel strategic molecular prototypes against tropical neglected diseases.
Collapse
Affiliation(s)
- Matheus L. Silva
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil; (M.L.S.); (F.S.S.)
| | - Felipe S. Sales
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil; (M.L.S.); (F.S.S.)
| | - Erica V. C. Levatti
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05508-040, Brazil; (E.V.C.L.); (A.G.T.)
| | - Guilherme M. Antar
- Department of Agrarian and Biological Sciences, Federal University of Espírito Santo, São Mateus 29932-540, Brazil;
| | - Andre G. Tempone
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05508-040, Brazil; (E.V.C.L.); (A.G.T.)
| | - João Henrique G. Lago
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil; (M.L.S.); (F.S.S.)
| | - Gerold Jerz
- Institute of Food Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Gonzaga BMDS, Ferreira RR, Coelho LL, Carvalho ACC, Garzoni LR, Araujo-Jorge TC. Clinical trials for Chagas disease: etiological and pathophysiological treatment. Front Microbiol 2023; 14:1295017. [PMID: 38188583 PMCID: PMC10768561 DOI: 10.3389/fmicb.2023.1295017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Chagas disease (CD) is caused by the flagellate protozoan Trypanosoma cruzi. It is endemic in Latin America. Nowadays around 6 million people are affected worldwide, and 75 million are still at risk. CD has two evolutive phases, acute and chronic. The acute phase is mostly asymptomatic, or presenting unspecific symptoms which makes it hard to diagnose. At the chronic phase, patients can stay in the indeterminate form or develop cardiac and/or digestive manifestations. The two trypanocide drugs available for the treatment of CD are benznidazole (BZ) and nifurtimox (NFX), introduced in the clinic more than five decades ago. WHO recommends treatment for patients at the acute phase, at risk of congenital infection, for immunosuppressed patients and children with chronic infection. A high cure rate is seen at the CD acute phase but better treatment schemes still need to be investigated for the chronic phase. There are some limitations within the use of the trypanocide drugs, with side effects occurring in about 40% of the patients, that can lead patients to interrupt treatment. In addition, patients with advanced heart problems should not be treated with BZ. This is a neglected disease, discovered 114 years ago that still has no drug effective for their chronic phase. Multiple social economic and cultural barriers influence CD research. The high cost of the development of new drugs, in addition to the low economical return, results in the lack of investment. More economic support is required from governments and pharmaceutical companies on the development of more research for CD treatment. Two approaches stand out: repositioning and combination of drugs, witch drastically decrease the cost of this process, when compared to the development of a new drug. Here we discuss the progress of the clinical trials for the etiological and pathophysiological treatment for CD. In summary, more studies are needed to propose a new drug for CD. Therefore, BZ is still the best option for CD. The trials in course should clarify more about new treatment regimens, but it is already possible to indicate that dosage and time of treatment need to be adjusted.
Collapse
Affiliation(s)
| | | | | | | | | | - Tania C. Araujo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Saayman M, Kannigadu C, Aucamp J, Janse van Rensburg HD, Joseph C, Swarts AJ, N'Da DD. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med Chem 2023; 14:2012-2029. [PMID: 37859713 PMCID: PMC10583827 DOI: 10.1039/d3md00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Chagas disease and leishmaniasis are vector-borne infectious diseases affecting both humans and animals. These neglected tropical diseases can be fatal if not treated. Hundreds to thousands of new Chagas disease and leishmaniasis cases are being reported by the WHO every year, and currently available treatments are insufficient. Severe adverse effects, impractical administrations and increased pathogen resistance against current clinical treatments underscore a serious need for the development of new drugs to curb these ailments. In search for such drugs, we investigated a series of nitrofuran-based azine derivatives. Herein, we report the design, synthesis, electrochemistry, and biological activity of these derivatives against promastigotes and amastigotes of Leishmania major, and L. donovani strains, as well as epimastigotes and trypomastigotes of Trypanosoma cruzi. Two leishmanicidal early leads and one trypanosomacidal hit with submicromolar activity were uncovered and stand for further in vivo investigation in the search for new antitrypanosomatid drugs. Future objective will focus on the identification of involved biological targets with the parasites.
Collapse
Affiliation(s)
- Maryna Saayman
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Cassiem Joseph
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - Andrew J Swarts
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| |
Collapse
|
6
|
Pathak S, Bhardwaj M, Agrawal N, Bhardwaj A. A comprehensive review on potential candidates for the treatment of chagas disease. Chem Biol Drug Des 2023; 102:587-605. [PMID: 37070386 DOI: 10.1111/cbdd.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Twenty different infectious disorders induced by bacteria, viruses, and parasites are categorized as neglected tropical diseases (NTDs) by WHO. The severity of chagas disease remains a major concern in endemic areas and an emerging public health hazard in nonendemic countries. Trypanosoma cruzi, the etiological agent of this NTD, is mostly transmitted by triatomine vectors and comprises a range of epidemiologically significant variants. Current chemotherapeutics are obsolete, and one of the primary reasons for treatment cessation is their poor safety and effectiveness. Due to the aforementioned challenges, researchers are now focusing on discovering alternative novel safe, and economically reachable therapies for the treatment of trypanosomiasis. Certain target-based drugs that target specific biochemical processes of the causative parasites have been described as potential antichagasic agents that possesses various types of heterocyclic scaffolds. These flexible molecules have a wide range of biological actions, and various synthesized compounds with strong activity have been documented. This review aims to discuss the available literature on synthetic anti-T. cruzi drugs that will give a food for thought to medicinal chemists thriving to design and develop such drugs. Furthermore, some of the studies discussed herein are concerned with the potential of novel drugs to block new viable sites in T. cruzi.
Collapse
Affiliation(s)
- Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Muskan Bhardwaj
- Hospital Administration, FCAM, SGT University, Gurugram, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Department of Healthcare Management, Chitkara Business School, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Thomas M, McGonagle K, Rowland P, Robinson DA, Dodd PG, Camino-Díaz I, Campbell L, Cantizani J, Castañeda P, Conn D, Craggs PD, Edwards D, Ferguson L, Fosberry A, Frame L, Goswami P, Hu X, Korczynska J, MacLean L, Martin J, Mutter N, Osuna-Cabello M, Paterson C, Peña I, Pinto EG, Pont C, Riley J, Shishikura Y, Simeons FRC, Stojanovski L, Thomas J, Wrobel K, Young RJ, Zmuda F, Zuccotto F, Read KD, Gilbert IH, Marco M, Miles TJ, Manzano P, De Rycker M. Structure-Guided Design and Synthesis of a Pyridazinone Series of Trypanosoma cruzi Proteasome Inhibitors. J Med Chem 2023; 66:10413-10431. [PMID: 37506194 PMCID: PMC10424187 DOI: 10.1021/acs.jmedchem.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 07/30/2023]
Abstract
There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.
Collapse
Affiliation(s)
- Michael
G. Thomas
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Kate McGonagle
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Paul Rowland
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - David A. Robinson
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Peter G. Dodd
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Isabel Camino-Díaz
- GlaxoSmithKline,
Discovery DMPK, IVIVT, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Lorna Campbell
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Juan Cantizani
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Pablo Castañeda
- GlaxoSmithKline,
Discovery DMPK, IVIVT, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Daniel Conn
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Peter D. Craggs
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Darren Edwards
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Liam Ferguson
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Andrew Fosberry
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Laura Frame
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Panchali Goswami
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Xiao Hu
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Justyna Korczynska
- GlaxoSmithKline,
Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage, U.K., SG1 2NY
| | - Lorna MacLean
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Julio Martin
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Nicole Mutter
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Maria Osuna-Cabello
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Christy Paterson
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Imanol Peña
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Erika G. Pinto
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Caterina Pont
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Jennifer Riley
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Yoko Shishikura
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Frederick R. C. Simeons
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Laste Stojanovski
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - John Thomas
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Karolina Wrobel
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | | | - Filip Zmuda
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Fabio Zuccotto
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Kevin D. Read
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Ian H. Gilbert
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| | - Maria Marco
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Timothy J. Miles
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Pilar Manzano
- GlaxoSmithKline,
Global Health R&D, Severo Ochoa 2, PTM, Tres Cantos, Madrid ES 28760, Spain
| | - Manu De Rycker
- Drug
Discovery Unit, University of Dundee, School
of Life Sciences, Dow Street, Dundee, U.K., DD1 5EH
| |
Collapse
|
8
|
Jimenez A, Winokur EJ. Chagas Disease Cardiomyopathy. Dimens Crit Care Nurs 2023; 42:202-210. [PMID: 37219474 DOI: 10.1097/dcc.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chagas disease is a prominent neglected tropical disease endemic to many countries in Latin America. Cardiomyopathy is the most serious manifestation due to the severity and complications of heart failure. As a result of expanded immigration and globalization, there is an increased number of patients with Chagas cardiomyopathy who are being admitted to hospitals in the United States. It is imperative as a critical care nurse to be educated on the nature of Chagas cardiomyopathy as it differs from the more commonly seen ischemic and nonischemic forms. This article provides an overview of the clinical course, management, and treatment options of Chagas cardiomyopathy.
Collapse
|
9
|
Peres RB, Batista MM, Bérenger ALR, Camillo FDC, Figueiredo MR, Soeiro MDNC. Antiparasitic Activity of Plumbago auriculata Extracts and Its Naphthoquinone Plumbagin against Trypanosoma cruzi. Pharmaceutics 2023; 15:pharmaceutics15051535. [PMID: 37242777 DOI: 10.3390/pharmaceutics15051535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) caused by the protozoan Trypanosoma cruzi affects more than six million people worldwide. Treatment is restricted to benznidazole (Bz) and nifurtimox (Nf) that display low activity in the later chronic stage besides triggering toxic events that result in treatment abandonment. Therefore, new therapeutic options are necessary. In this scenario, natural products emerge as promising alternatives to treat CD. In the family Plumbaginaceae, Plumbago sp. exhibits a broad spectrum of biological and pharmacological activities. Thus, our main objective was to evaluate, in vitro and in silico, the biological effect of crude extracts of root and of aerial parts of P. auriculata, as well as its naphthoquinone Plumbagin (Pb) against T. cruzi. The phenotypic assays revealed potent activity of the root extract against different forms (trypomastigote and intracellular forms) and strains (Y and Tulahuen), with a compound concentration that reduced 50% of the number of the parasite (EC50) values ranging from 1.9 to 3.9 µg/mL. In silico analysis showed that Pb is predicted to have good oral absorption and permeability in Caco2 cells, besides excellent probability of absorption by human intestinal cells, without toxic or mutagenic potential effects, not being predicted as a substrate or inhibitor of P-glycoprotein. Pb was as potent as Bz against intracellular forms and displayed a superior trypanosomicidal effect (about 10-fold) in bloodstream forms (EC50 = 0.8 µM) as compared to the reference drug (8.5 µM). The cellular targets of Pb on T. cruzi were evaluated using electron microscopy assays and the findings on bloodstream trypomastigotes showed several cellular insults related to the autophagic process. Regarding toxicity in mammalian cells, the root extracts and the naphthoquinone present a moderate toxic profile on fibroblasts and cardiac cell lines. Then, aiming to reduce host toxicity, the root extract and Pb were tested in combination with Bz, and the data showed additive profiles with the sum of the fractional inhibitory concentration indexes (ΣFICIs) being 1.45 and 0.87, respectively. Thus, our work reveals the promising antiparasitic activity of Plumbago auriculata crude extracts and its purified naphthoquinone Plumbagin against different forms and strains of Trypanosoma cruzi in vitro.
Collapse
Affiliation(s)
- Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 210360-040, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 210360-040, Brazil
| | - Ana Luíza Rangel Bérenger
- Laboratório de Tecnologia para Biodiversidade em Saúde-TecBio/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Flávia da Cunha Camillo
- Laboratório de Tecnologia para Biodiversidade em Saúde-TecBio/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Maria Raquel Figueiredo
- Laboratório de Tecnologia para Biodiversidade em Saúde-TecBio/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 210360-040, Brazil
| |
Collapse
|
10
|
Timm BL, da Gama ANS, Batista MM, Batista DDGJ, Boykin DW, De Koning HP, Correia Soeiro MDN. Arylimidamides Have Potential for Chemoprophylaxis against Blood-Transmitted Chagas Disease. Pathogens 2023; 12:pathogens12050701. [PMID: 37242371 DOI: 10.3390/pathogens12050701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) affects over 6 million people worldwide and can be transmitted iatrogenically. Crystal violet (CV) was previously used for pathogen reduction but has harmful side-effects. In the present study, three arylimidamides (AIAs) and CV were used to sterilize mice blood samples experimentally contaminated with bloodstream trypomastigotes (BT) of Trypanosoma cruzi, at non hemolytic doses. All AIAs were not toxic to mouse blood cells until the highest tested concentration (96 µM). The previous treatment of BT with the AIAs impaired the infection establishment of cardiac cell cultures. In vivo assays showed that pre-incubation of mouse blood samples with the AIAs and CV (96 µM) significantly suppressed the parasitemia peak, but only the AIA DB1831 gave ≥90% animal survival, while vehicle treated samples reached 0%. Our findings support further studies regarding the potential use of AIAs for blood bank purposes.
Collapse
Affiliation(s)
- Bruno Lisboa Timm
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, UK
| | | |
Collapse
|
11
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
12
|
Macaluso G, Grippi F, Di Bella S, Blanda V, Gucciardi F, Torina A, Guercio A, Cannella V. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023; 12:282. [PMID: 36839554 PMCID: PMC9964664 DOI: 10.3390/pathogens12020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease.
Collapse
Affiliation(s)
| | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | | | | | | | | |
Collapse
|
13
|
de Oliveira Rezende Júnior C, Martinez PDG, Ferreira RAA, Koovits PJ, Miranda Soares B, Ferreira LLG, Michelan-Duarte S, Chelucci RC, Andricopulo AD, Matheeussen A, Van Pelt N, Caljon G, Maes L, Campbell S, Kratz JM, Mowbray CE, Dias LC. Hit-to-lead optimization of a 2-aminobenzimidazole series as new candidates for chagas disease. Eur J Med Chem 2023; 246:114925. [PMID: 36459758 DOI: 10.1016/j.ejmech.2022.114925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Because current treatments present several limitations, including long duration, variable efficacy and serious side effects, there is an urgent need to explore new antitrypanosomal drugs. The present study describes the hit-to-lead optimization of a 2-aminobenzimidazole hit 1 identified through in vitro phenotypic screening of a chemical library against intracellular Trypanosoma cruzi amastigotes, which focused on optimizing potency, selectivity, microsomal stability and lipophilicity. Multiparametric Structure-Activity Relationships were investigated using a set of 277 derivatives. Although the physicochemical and biological properties of the initial hits were improved, a combination of low kinetic solubility and in vitro cytotoxicity against mammalian cells prevented progression of the best compounds to an efficacy study using a mouse model of Chagas disease.
Collapse
Affiliation(s)
| | | | | | - Paul John Koovits
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-861, Brazil
| | - Bruna Miranda Soares
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-861, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos, SP, 13563-120, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos, SP, 13563-120, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos, SP, 13563-120, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos, SP, 13563-120, Brazil
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Simon Campbell
- Drugs for Neglected Diseases Initiative (DNDi), 15 Chemin Camille-Vidart, 1202, Geneva, Switzerland
| | - Jadel M Kratz
- Drugs for Neglected Diseases Initiative (DNDi), 15 Chemin Camille-Vidart, 1202, Geneva, Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), 15 Chemin Camille-Vidart, 1202, Geneva, Switzerland
| | - Luiz Carlos Dias
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-861, Brazil.
| |
Collapse
|
14
|
Matthews S, Tannis A, Puchner KP, Bottazzi ME, Cafferata ML, Comandé D, Buekens P. Estimation of the morbidity and mortality of congenital Chagas disease: A systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010376. [PMID: 36342961 PMCID: PMC9671465 DOI: 10.1371/journal.pntd.0010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi which can be transmitted from mother to baby during pregnancy. There is no consensus on the proportion of infected infants with clinical signs of congenital Chagas disease (cCD). The objective of this systematic review is to determine the burden of cCD. Articles from journal inception to 2020 reporting morbidity and mortality associated with cCD were retrieved from academic search databases. Observational studies, randomized-control trials, and studies of babies diagnosed with cCD were included. Studies were excluded if they were case reports or series, without original data, case-control without cCD incidence estimates, and/or did not report number of participants. Two reviewers screened articles for inclusion. To determine pooled proportion of infants with cCD with clinical signs, individual clinical signs, and case-fatality, random effects meta-analysis was performed. We identified 4,531 records and reviewed 4,301, including 47 articles in the narrative summary and analysis. Twenty-eight percent of cCD infants showed clinical signs (95% confidence interval (CI) = 19.0%, 38.5%) and 2.2% of infants died (95% CI = 1.3%, 3.5%). The proportion of infected infants with hepatosplenomegaly was 12.5%, preterm birth 6.0%, low birth weight 5.8%, anemia 4.9%, and jaundice 4.7%. Although most studies did not include a comparison group of non-infected infants, the proportion of infants with cCD with clinical signs at birth are comparable to those with congenital toxoplasmosis (10.0%-30.0%) and congenital cytomegalovirus (10.0%-15.0%). We conclude that cCD burden appears significant, but more studies comparing infected mother-infant dyads to non-infected ones are needed to determine an association of this burden to cCD.
Collapse
Affiliation(s)
- Sarah Matthews
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Ayzsa Tannis
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | | | - Maria Elena Bottazzi
- National School of Tropical Medicine, Department of Pediatrics, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Maria Luisa Cafferata
- Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
- Unidad de Investigación Clínica y Epidemiológica Montevideo (UNICEM), Montevideo, Uruguay
| | - Daniel Comandé
- Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | - Pierre Buekens
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
15
|
Drug Repurposing in Chagas Disease: Chloroquine Potentiates Benznidazole Activity against Trypanosoma cruzi
In Vitro
and
In Vivo. Antimicrob Agents Chemother 2022; 66:e0028422. [PMID: 36314800 PMCID: PMC9664849 DOI: 10.1128/aac.00284-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit
Trypanosoma cruzi
infection in host cells, could boost the anti-
T. cruzi
effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity.
Collapse
|
16
|
Francisco AF, Saade U, Jayawardhana S, Pottel H, Scandale I, Chatelain E, Liehl P, Kelly JM, Zrein M. Comparing in vivo bioluminescence imaging and the Multi-Cruzi immunoassay platform to develop improved Chagas disease diagnostic procedures and biomarkers for monitoring parasitological cure. PLoS Negl Trop Dis 2022; 16:e0010827. [PMID: 36190992 PMCID: PMC9560623 DOI: 10.1371/journal.pntd.0010827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/13/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is a serious public health problem throughout Latin America. With 6 million people infected, there is a major international effort to develop new drugs. In the chronic phase of the disease, the parasite burden is extremely low, infections are highly focal at a tissue/organ level, and bloodstream parasites are only intermittently detectable. As a result, clinical trials are constrained by difficulties associated with determining parasitological cure. Even highly sensitive PCR methodologies can be unreliable, with a tendency to produce "false-cure" readouts. Improved diagnostic techniques and biomarkers for cure are therefore an important medical need. METHODOLOGY/PRINCIPAL FINDINGS Using an experimental mouse model, we have combined a multiplex assay system and highly sensitive bioluminescence imaging to evaluate serological procedures for diagnosis of T. cruzi infections and confirmation of parasitological cure. We identified a set of three antigens that in the context of the multiplex serology system, provide a rapid, reactive and highly accurate read-out of both acute and chronic T. cruzi infection. In addition, we describe specific antibody responses where down-regulation can be correlated with benznidazole-mediated parasite reduction and others where upregulation is associated with persistent infection. One specific antibody (IBAG39) highly correlated with the bioluminescence flux and represents a promising therapy monitoring biomarker in mice. CONCLUSIONS/SIGNIFICANCE Robust, high-throughput methodologies for monitoring the efficacy of anti-T. cruzi drug treatment are urgently required. Using our experimental systems, we have identified markers of infection or parasite reduction that merit assessing in a clinical setting for the longitudinal monitoring of drug-treated patients.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Hans Pottel
- Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | | | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- * E-mail:
| | | |
Collapse
|
17
|
McGonagle K, Tarver GJ, Cantizani J, Cotillo I, Dodd PG, Ferguson L, Gilbert IH, Marco M, Miles T, Naylor C, Osuna-Cabello M, Paterson C, Read KD, Pinto EG, Riley J, Scullion P, Shishikura Y, Simeons F, Stojanovski L, Svensen N, Thomas J, Wyatt PG, Manzano P, De Rycker M, Thomas MG. Identification and development of a series of disubstituted piperazines for the treatment of Chagas disease. Eur J Med Chem 2022; 238:114421. [PMID: 35594652 PMCID: PMC11458808 DOI: 10.1016/j.ejmech.2022.114421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
Approximately 6-7 million people around the world are estimated to be infected with Trypanosoma cruzi, the causative agent of Chagas disease. The current treatments are inadequate and therefore new medical interventions are urgently needed. In this paper we describe the identification of a series of disubstituted piperazines which shows good potency against the target parasite but is hampered by poor metabolic stability. We outline the strategies used to mitigate this issue such as lowering logD, bioisosteric replacements of the metabolically labile piperazine ring and use of plate-based arrays for quick diversity scoping. We discuss the success of these strategies within the context of this series and highlight the challenges faced in phenotypic programs when attempting to improve the pharmacokinetic profile of compounds whilst maintaining potency against the desired target.
Collapse
Affiliation(s)
- Kate McGonagle
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Gary J Tarver
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Juan Cantizani
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Ignacio Cotillo
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Peter G Dodd
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Tim Miles
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Claire Naylor
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Christy Paterson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Erika G Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul Scullion
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Yoko Shishikura
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Frederick Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Nina Svensen
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Pilar Manzano
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain.
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK.
| | - Michael G Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
18
|
Novel Tyrosine Kinase Inhibitors to Target Chronic Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103220. [PMID: 35630697 PMCID: PMC9143943 DOI: 10.3390/molecules27103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a–j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.
Collapse
|
19
|
Leite GR, Batista DDGJ, Mazzeti AL, Silva RA, Lugão AB, Soeiro MDNC. The Impact of the CTHRSSVVC Peptide Upon Experimental Models of Trypanosoma cruzi Infection. Front Cell Infect Microbiol 2022; 12:882555. [PMID: 35601101 PMCID: PMC9121062 DOI: 10.3389/fcimb.2022.882555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD), caused by the hemoflagellate protozoan Trypanosoma cruzi, affects more than six million people worldwide and presents an unsatisfactory therapy, based on two nitroderivatives, introduced in clinical medicine for decades. The synthetic peptide, with CTHRSSVVC sequence (PepA), mimics the CD163 and TNF-α tripeptide "RSS" motif and binds to atheromatous plaques in carotid biopsies of human patients, spleen tissues, and a low-density lipoprotein receptor knockout (LDLr-/-) mouse model of atherosclerosis. CD163 receptor is present on monocytes, macrophages, and neutrophils, acting as a regulator of acute-phase processes and modulating aspects of the inflammatory response and the establishment of infections. Due to the potential theranostic role of PepA, our aim was to investigate its effect upon T. cruzi infection in vitro and in vivo. PepA and two other peptides with shuffled sequences were assayed upon different binomials of host cell/parasite, including professional [as peritoneal mouse macrophages (PMM)] and non-professional phagocytes [primary cultures of cardiac cells (CM)], under different protocols. Also, their impact was further addressed in vivo using a mouse model of acute experimental Chagas disease. Our in-vitro findings demonstrate that PepA and PepB (the peptide with random sequence retaining the "RS" sequence) reduced the intracellular parasitism of the PMM but were inactive during the infection of cardiac cells. Another set of in-vitro and in-vivo studies showed that they do not display a trypanocidal effect on bloodstream trypomastigotes nor exhibit in-vivo efficacy when administered after the parasite inoculation. Our data report the in-vitro activity of PepA and PepB upon the infection of PMM by T. cruzi, possibly triggering the microbicidal arsenal of the host professional phagocytes, capable of controlling parasitic invasion and proliferation.
Collapse
Affiliation(s)
- Gabriela Rodrigues Leite
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lia Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade do Estado de Minas Gerais (UEMG), Laboratório de Parasitologia Aplicada, Unidade Passos, Belo Horizonte, Brazil
| | - Rosemeire Aparecida Silva
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | | | | |
Collapse
|
20
|
Nihei J, Cardillo F, Mengel J. The Blockade of Interleukin-2 During the Acute Phase of Trypanosoma cruzi Infection Reveals Its Dominant Regulatory Role. Front Cell Infect Microbiol 2021; 11:758273. [PMID: 34869064 PMCID: PMC8635756 DOI: 10.3389/fcimb.2021.758273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanosoma cruzi infection causes Chagas’ disease in humans. The infection activates the innate and adaptative immunity in an orchestrated immune response to control parasite growth, guaranteeing host survival. Despite an effective immune response to the parasite in the acute phase, the infection progresses to a chronic stage. The parasite infects different tissues such as peripheral neurons, the brain, skeletal muscle, and heart muscle, among many others. It is evident now that tissue-specific immune responses may develop along with anti-parasite immunity. Therefore, mechanisms to regulate immunity and to ensure tissue-specific tolerance are operating during the infection. Studying those immunoregulatory mechanisms is fundamental to improve host protection or control inflammatory reactions that may lead to pathology. The role of IL-2 during T. cruzi infection is not established. IL-2 production by T cells is strongly down-modulated early in the disease by unknown mechanisms and remains low during the chronic phase of the disease. IL-2 activates NK cells, CD4, and CD8 T cells and may be necessary to immunity development. Also, the expansion and maintenance of regulatory T cells require IL-2. Thus, IL-2 may be a key cytokine involved in promoting or down-regulating immune responses, probably in a dose-dependent manner. This study blocked IL-2 during the acute T. cruzi infection by using a neutralizing monoclonal antibody. The results show that parasitemia and mortality rate was lower in animals treated with anti-IL-2. The percentages and total numbers of CD4+CD25+Foxp3+ T cells diminished within three weeks of infection. The numbers of splenic activated/memory CD4 and CD8 splenic T cells increased during the acute infection. T cells producing IFN-γ, TNF-α and IL-10 also augmented in anti-IL-2-treated infected mice. The IL-2 blockade also increased the numbers of inflammatory cells in the heart and skeletal muscles and the amount of IL-17 produced by heart T cells. These results suggest that IL-2 might be involved in the immune regulatory response during the acute T. cruzi infection, dampening T cell activation through the expansion/maintenance of regulatory T cells and regulating IL-17 production. Therefore, the IL-2 pathway is an attractive target for therapeutic purposes in acute and chronic phases of Chagas’ disease.
Collapse
Affiliation(s)
- Jorge Nihei
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Brazil.,Center of Health Sciences, Federal University of Recôncavo da Bahia (UFRP), Santo Antonio de Jesus, Brazil
| | - Fabiola Cardillo
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Brazil
| | - Jose Mengel
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Petropolis Medical School, University Faculties Arthur Sa Earp Neto (FMP/UNIFASE), Petropolis, Brazil
| |
Collapse
|
21
|
IgG Subclass Analysis in Patients with Chagas Disease 4 Years After Benznidazole Treatment. Acta Parasitol 2021; 66:1499-1509. [PMID: 34115282 DOI: 10.1007/s11686-021-00430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND In humans, Trypanosoma cruzi infection is controlled by a complex immune response. Immunoglobulin G (IgG) is important for opsonizing blood trypomastigotes, activating the classic complement pathway, and reducing parasitemia. The trypanocidal activity of benznidazole is recognized, but its effects on the prevention and progression of Chagas disease is not well understood OBJECTIVE: We aimed to evaluate the levels of total IgG and cross-specific IgG subclasses in patients with chronic Chagas disease of different clinical forms before and after 4 years of benznidazole treatment. METHODS Eight individuals with the indeterminate form and nine with the cardiac form who completed the treatment protocol were evaluated. The levels of total IgG and IgG1, IgG2, IgG3, and IgG4 isotypes were quantified in the serum of each individual using the fluorescent immunosorbent assay. The results are expressed as relative fluorescence unit. RESULTS Patients with chronic Chagas disease presented decreased levels of total IgG at 48 months after benznidazole treatment. Increased IgG1 and decreased IgG3 levels were observed in patients with the cardiac form and those with exacerbated clinical forms. In addition, a decrease in the IgG3/IgG1 ratio was observed in individuals with the cardiac form of Chagas disease. CONCLUSIONS Benznidazole administration in the chronic phase differentially changes IgG subclasses in patients with cardiac and indeterminate forms, and monitoring the IgG3 level may indicate the possible prognosis to the cardiac form or worsening of the already established clinical form.
Collapse
|
22
|
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021; 6:e0036621. [PMID: 34468164 PMCID: PMC8550152 DOI: 10.1128/msphere.00366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.
Collapse
|
23
|
Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021; 20:1395-1406. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA
| |
Collapse
|
24
|
The Chagas disease study landscape: A systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform. PLoS Negl Trop Dis 2021; 15:e0009697. [PMID: 34398888 PMCID: PMC8428795 DOI: 10.1371/journal.pntd.0009697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Chagas disease (CD), caused by the parasite Trypanosoma cruzi, affects ~6–7 million people worldwide. Significant limitations still exist in our understanding of CD. Harnessing individual participant data (IPD) from studies could support more in-depth analyses to address the many outstanding research questions. This systematic review aims to describe the characteristics and treatment practices of clinical studies in CD and assess the breadth and availability of research data for the potential establishment of a data-sharing platform. Methodology/Principal findings This review includes prospective CD clinical studies published after 1997 with patients receiving a trypanocidal treatment. The following electronic databases and clinical trial registry platforms were searched: Cochrane Library, PubMed, Embase, LILACS, Scielo, Clintrials.gov, and WHO ICTRP. Of the 11,966 unique citations screened, 109 (0.9%) studies (31 observational and 78 interventional) representing 23,116 patients were included. Diagnosis for patient enrolment required 1 positive test result in 5 (4.6%) studies (2 used molecular method, 1 used molecular and serology, 2 used serology and parasitological methods), 2 in 60 (55.0%), 3 in 14 (12.8%) and 4 or more in 4 (3.7%) studies. A description of treatment regimen was available for 19,199 (83.1%) patients, of whom 14,605 (76.1%) received an active treatment and 4,594 (23.9%) were assigned to a placebo/no-treatment. Of the 14,605 patients who received an active treatment, benznidazole was administered in 12,467 (85.4%), nifurtimox in 825 (5.6%), itraconazole in 284 (1.9%), allopurinol in 251 (1.7%) and other drugs in 286 (1.9%). Assessment of efficacy varied largely and was based primarily on biological outcome; parasitological efficacy relied on serology in 67/85 (78.8%) studies, molecular methods in 52/85 (61.2%), parasitological in 34/85 (40.0%), microscopy in 3/85 (3.5%) and immunohistochemistry in 1/85 (1.2%). The median time at which parasitological assessment was carried out was 79 days [interquartile range (IQR): 30–180] for the first assessment, 180 days [IQR: 60–500] for second, and 270 days [IQR: 18–545] for the third assessment. Conclusions/Significance This review demonstrates the heterogeneity of clinical practice in CD treatment and in the conduct of clinical studies. The sheer volume of potential IPD identified demonstrates the potential for development of an IPD platform for CD and that such efforts would enable in-depth analyses to optimise the limited pharmacopoeia of CD and inform prospective data collection. Chagas disease, also known as American trypanosomiasis, is a neglected tropical disease transmitted by triatomine insects, first identified in 1909. Chagas disease affects approximately 6–7 million people globally and is highly prevalent in Latin America where most cases are reported. However, there is increasing evidence that Chagas disease is now an important public health issue outside the “classical” endemic countries due to population migration. Our understanding of Chagas disease, including its pathologies and factors relating to progression, remains to date limited, and is also challenged by lack of diagnosis and highly effective treatment. This systematic review aims to describe studies with Chagas patients receiving antiparasitic treatment. Databases were searched for relevant studies published after 1997, and the results of these searches were screened. Although a large volume of studies was identified in the review, heterogeneity was observed in study design, diagnostic methods, outcome assessment, and treatment regimens. While this aspect will be a limitation in pooling individual patient data, the volume of data available should allow sufficient comparison to form the basis of guidelines for future studies. The results of this review demonstrate that development of a Chagas disease data platform for clinical research would enable optimisation of existing data to strengthen evidence for the treatment and diagnosis of Chagas disease.
Collapse
|
25
|
Rincón-Acevedo CY, Parada-García AS, Olivera MJ, Torres-Torres F, Zuleta-Dueñas LP, Hernández C, Ramírez JD. Clinical and Epidemiological Characterization of Acute Chagas Disease in Casanare, Eastern Colombia, 2012-2020. Front Med (Lausanne) 2021; 8:681635. [PMID: 34368188 PMCID: PMC8343227 DOI: 10.3389/fmed.2021.681635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is considered a public health problem in Latin America. In Colombia, it affects more than 437,000 inhabitants, mainly in Casanare, an endemic region with eco-epidemiological characteristics that favor its transmission. The objective of this study was to describe the clinical and epidemiological characteristics of the cases of acute CD in Casanare, eastern Colombia, in the period 2012–2020. Methods: In the present study, 103 medical records of confirmed cases of acute CD were reviewed. The departmental/national incidence and fatality were compared by year; the climatological data of mean temperature, relative humidity, and precipitation per year were reviewed and plotted at IDEAM (Colombian Meteorology Institute) concerning the number of cases of acute CD per month, and it was compared with the frequency of triatomines collected in infested houses by community surveillance. Univariate, bivariate, and multivariate analyses were performed, comparing symptoms and signs according to transmission routes, complications, and age groups. Results: The incidence was 3.16 cases per 100,000 inhabitants, and the fatality rate was 20% in the study period. The most frequent symptoms included: fever 98.1%, myalgia 62.1%, arthralgia 60.2%, and headache 49.5%. There were significant differences in the frequency of myalgia, abdominal pain, and periorbital edema in oral transmission. The main complications were pericardial effusion, myocarditis, and heart failure in the group over 18 years of age. In Casanare, TcI Discrete Typing Unit (DTU) has mainly been identified in humans, triatomines, and reservoirs such as opossums and dogs and TcBat in bats. An increase in the number of acute CD cases was evidenced in March, a period when precipitation increases due to the beginning of the rainy season. Conclusions: The results corroborate the symptomatic heterogeneity of the acute phase of CD, which delays treatment, triggering possible clinical complications. In endemic regions, clinical suspicion, diagnostic capacity, detection, and surveillance programs should be strengthened, including intersectoral public health policies for their prevention and control.
Collapse
Affiliation(s)
- Claudia Yaneth Rincón-Acevedo
- Centro de Investigaciones en Microbiología y Biotecnología-UR, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Maestría en Salud Pública, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Andrea Stella Parada-García
- Centro de Investigaciones en Microbiología y Biotecnología-UR, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Maestría en Salud Pública, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
26
|
Alice JI, Bellera CL, Benítez D, Comini MA, Duchowicz PR, Talevi A. Ensemble learning application to discover new trypanothione synthetase inhibitors. Mol Divers 2021; 25:1361-1373. [PMID: 34264440 DOI: 10.1007/s11030-021-10265-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is considered one of the most attractive drug targets within the thiol-polyamine metabolism of typanosomatids, being unique, essential and druggable. Here, we have compiled a dataset of 401 T. brucei TryS inhibitors that includes compounds with inhibitory data reported in the literature, but also in-house acquired data. QSAR classifiers were derived and validated from such dataset, using publicly available and open-source software, thus assuring the portability of the obtained models. The performance and robustness of the resulting models were substantially improved through ensemble learning. The performance of the individual models and the model ensembles was further assessed through retrospective virtual screening campaigns. At last, as an application example, the chosen model-ensemble has been applied in a prospective virtual screening campaign on DrugBank 5.1.6 compound library. All the in-house scripts used in this study are available on request, whereas the dataset has been included as supplementary material.
Collapse
Affiliation(s)
- Juan I Alice
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina L Bellera
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pablo R Duchowicz
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina.
| |
Collapse
|
27
|
Silva ML, Costa-Silva TA, Antar GM, Tempone AG, Lago JHG. Chemical Constituents from Aerial Parts of Baccharis sphenophylla and Effects against Intracellular Forms of Trypanosoma cruzi. Chem Biodivers 2021; 18:e2100466. [PMID: 34263530 DOI: 10.1002/cbdv.202100466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
The hexane extract from aerial parts Baccharis sphenophylla Dusén ex Malme (Asteraceae) displayed activity against amastigote forms of Trypanossoma cruzi and was subjected to chromatographic steps to afford one unreported - 7α-hydroxy-ent-abieta-8(14),13(15)-dien-16,12β-olide (1) and three known diterpenes - ent-kaur-16-en-19-oic acid, (2), grandifloric acid (3), and 15β-tiglinoyloxy-ent-kaur-16-en-19-oic acid (4), two sesquiterpenes - spathulenol (5) and oplopanone (6) - as well as hexacosyl p-coumarate (7). Isolated compounds were characterized by NMR and ESI-HR-MS spectra and were evaluated in vitro for activity against amastigote forms of the parasite T. cruzi - the relevant clinical form in the chronic phase of Chagas disease. In addition, the activity of compounds 1-7 against NCTC cells was evaluated. Compounds 1 and 7 showed effectiveness with EC50 values of 21.3 and 16.9 μM, respectively. Both compounds also exhibited reduced toxicity against NCTC cells (CC50 >200 μM) with SI values higher than 9.4 and 11.9. Obtained results suggest that the new ent-abietane diterpene 1 and alkyl coumarate 7 could be used as prototypes for the development of novel and selective semisynthetic derivatives against intracellular forms of T. cruzi.
Collapse
Affiliation(s)
- Matheus L Silva
- Center of Natural Sciences and Humanities, Federal University of ABC, SP 09210-580, Santo André, Brazil
| | - Thais A Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC, SP 09210-580, Santo André, Brazil
| | - Guilherme M Antar
- Department of Botany, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Andre G Tempone
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, SP 01246-000, São Paulo, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, SP 09210-580, Santo André, Brazil
| |
Collapse
|
28
|
SARs for the Antiparasitic Plant Metabolite Pulchrol. 3. Combinations of New Substituents in A/B-Rings and A/C-Rings. Molecules 2021; 26:molecules26133944. [PMID: 34203527 PMCID: PMC8271509 DOI: 10.3390/molecules26133944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The natural products pulchrol and pulchral, isolated from the roots of the Mexican plant Bourreria pulchra, have previously been shown to possess antiparasitic activity towards Trypanosoma cruzi, Leishmania braziliensis and L. amazonensis, which are protozoa responsible for Chagas disease and leishmaniasis. These infections have been classified as neglected diseases, and still require the development of safer and more efficient alternatives to their current treatments. Recent SARs studies, based on the pulchrol scaffold, showed which effects exchanges of its substituents have on the antileishmanial and antitrypanosomal activity. Many of the analogues prepared were shown to be more potent than pulchrol and the current drugs used to treat leishmaniasis and Chagas disease (miltefosine and benznidazole, respectively), in vitro. Moreover, indications of some of the possible interactions that may take place in the binding sites were also identified. In this study, 12 analogues with modifications at two or three different positions in two of the three rings were prepared by synthetic and semi-synthetic procedures. The molecules were assayed in vitro towards T. cruzi epimastigotes, L. braziliensis promastigotes, and L. amazonensis promastigotes. Some compounds had higher antiparasitic activity than the parental compound pulchrol, and in some cases even benznidazole and miltefosine. The best combinations in this subset are with carbonyl functionalities in the A-ring and isopropyl groups in the C-ring, as well as with alkyl substituents in both the A- and C-rings combined with a hydroxyl group in position 1 (C-ring). The latter corresponds to cannabinol, which indeed was shown to be potent towards all the parasites.
Collapse
|
29
|
Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi. Pharmaceutics 2021; 13:pharmaceutics13050705. [PMID: 34065993 PMCID: PMC8151848 DOI: 10.3390/pharmaceutics13050705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this work was to explore new therapeutic options against Chagas disease by the in vitro analysis of the biocidal activities of several tambjamine and prodiginine derivatives, against the Trypanosoma cruzi CLB strain (DTU TcVI). The compounds were initially screened against epimastigotes. The five more active compounds were assayed in intracellular forms. The tambjamine MM3 and both synthetic and natural prodigiosins displayed the highest trypanocidal profiles, with IC50 values of 4.52, 0.46, and 0.54 µM for epimastigotes and 1.9, 0.57, and 0.1 µM for trypomastigotes/amastigotes, respectively. Moreover, the combination treatment of these molecules with benznidazole showed no synergism. Finally, oxygen consumption inhibition determinations performed using high-resolution respirometry, revealed a potent effect of prodigiosin on parasite respiration (73% of inhibition at ½ IC50), suggesting that its mode of action involves the mitochondria. Moreover, its promising selectivity index (50) pointed out an interesting trypanocidal potential and highlighted the value of prodigiosin as a new candidate to fight Chagas disease.
Collapse
|
30
|
Pandey RP, Nascimento MS, Moore CE, Raj VS, Kalil J, Cunha-Neto E. New Approaches for the Treatment of Chagas Disease. Curr Drug Targets 2021; 22:835-841. [PMID: 33238855 DOI: 10.2174/1389450121999201124122643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi is a neglected tropical disease with high prevalence (5.7 million in Latin America, WHO 2015), significant burden, and significant morbimortality mostly due to severe heart disorders during the chronic phase of infection. Chagas disease is endemic in Latin America, and medical care for the disease is the major expense for Brazil's Universal Healthcare System (Sistema Único de Saúde (SUS). The efficacy of the available drugs benznidazole and nifurtimox are low for the chronic phase of Chagas disease, the phase in which most patients are diagnosed, and there are frequent side effects, and drug resistance occurs. The rapid deployment of new drug regimens that are effective for the chronic phase treatment is low-cost and less toxic than the currently available therapy, which is a global priority. Repurposing drugs already in clinical use with other combinations would be the fastest and safest strategy for treating Chagas disease patients. We hypothesize that the combined treatment using repurposing drugs with benznidazole will be more efficacious than benznidazole alone. This needs to be tested further both in vitro and in animal models to understand the efficacy of the treatment before performing human clinical trials. We further hypothesize that producing nanoparticle formulation of the drugs can reduce their toxicity and improve therapeutic use.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, DelhiNCR, Rajiv Gandhi Education City, Sonepat - 131 029, Haryana, India
| | - Marilda Savoia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Catrin E Moore
- Nuffield Department of Medicine, University of Oxford, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery Old Road Campus, Headington, Oxford, OX3 7LF, United Kingdom
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, DelhiNCR, Rajiv Gandhi Education City, Sonepat - 131 029, Haryana, India
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
31
|
Pino-Marín A, Medina-Rincón GJ, Gallo-Bernal S, Duran-Crane A, Arango Duque ÁI, Rodríguez MJ, Medina-Mur R, Manrique FT, Forero JF, Medina HM. Chagas Cardiomyopathy: From Romaña Sign to Heart Failure and Sudden Cardiac Death. Pathogens 2021; 10:505. [PMID: 33922366 PMCID: PMC8145478 DOI: 10.3390/pathogens10050505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Despite nearly a century of research and accounting for the highest disease burden of any parasitic disease in the Western Hemisphere, Chagas disease (CD) is still a challenging diagnosis, primarily due to its poor recognition outside of Latin America. Although initially considered endemic to Central and South America, globalization, urbanization, and increased migration have spread the disease worldwide in the last few years, making it a significant public health threat. The international medical community's apparent lack of interest in this disease that was previously thought to be geographically restricted has delayed research on the complex host-parasite relationship that determines myocardial involvement and its differential behavior from other forms of cardiomyopathy, particularly regarding treatment strategies. Multiple cellular and molecular mechanisms that contribute to degenerative, inflammatory, and fibrotic myocardial responses have been identified and warrant further research to expand the therapeutic arsenal and impact the high burden attributed to CD. Altogether, cardiac dysautonomia, microvascular disturbances, parasite-mediated myocardial damage, and chronic immune-mediated injury are responsible for the disease's clinical manifestations, ranging from asymptomatic disease to severe cardiac and gastrointestinal involvement. It is crucial for healthcare workers to better understand CD transmission and disease dynamics, including its behavior on both its acute and chronic phases, to make adequate and evidence-based decisions regarding the disease. This review aims to summarize the most recent information on the epidemiology, pathogenesis, clinical presentation, diagnosis, screening, and treatment of CD, emphasizing on Chagasic cardiomyopathy's (Ch-CMP) clinical presentation and pathobiological mechanisms leading to sudden cardiac death.
Collapse
Affiliation(s)
- Antonia Pino-Marín
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 110131, Colombia; (G.J.M.-R.); (S.G.-B.); (M.J.R.); (J.F.F.); (H.M.M.)
| | - Germán José Medina-Rincón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 110131, Colombia; (G.J.M.-R.); (S.G.-B.); (M.J.R.); (J.F.F.); (H.M.M.)
| | - Sebastian Gallo-Bernal
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 110131, Colombia; (G.J.M.-R.); (S.G.-B.); (M.J.R.); (J.F.F.); (H.M.M.)
- Division of Cardiology, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia; (R.M.-M.); (F.T.M.)
| | - Alejandro Duran-Crane
- Internal Medicine Residency Program, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Álvaro Ignacio Arango Duque
- Department of Infectious Diseases, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia;
| | - María Juliana Rodríguez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 110131, Colombia; (G.J.M.-R.); (S.G.-B.); (M.J.R.); (J.F.F.); (H.M.M.)
- Division of Cardiology, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia; (R.M.-M.); (F.T.M.)
| | - Ramón Medina-Mur
- Division of Cardiology, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia; (R.M.-M.); (F.T.M.)
| | - Frida T. Manrique
- Division of Cardiology, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia; (R.M.-M.); (F.T.M.)
| | - Julian F. Forero
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 110131, Colombia; (G.J.M.-R.); (S.G.-B.); (M.J.R.); (J.F.F.); (H.M.M.)
- Division of Radiology, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia
| | - Hector M. Medina
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 110131, Colombia; (G.J.M.-R.); (S.G.-B.); (M.J.R.); (J.F.F.); (H.M.M.)
- Division of Cardiology, Fundación Cardio-Infantil-Instituto de Cardiología, Bogotá 110131, Colombia; (R.M.-M.); (F.T.M.)
| |
Collapse
|
32
|
J B, M BM, Chanda K. An Overview on the Therapeutics of Neglected Infectious Diseases-Leishmaniasis and Chagas Diseases. Front Chem 2021; 9:622286. [PMID: 33777895 PMCID: PMC7994601 DOI: 10.3389/fchem.2021.622286] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Neglected tropical diseases (NTDs) as termed by WHO include twenty different infectious diseases that are caused by bacteria, viruses, and parasites. Among these NTDs, Chagas disease and leishmaniasis are reported to cause high mortality in humans and are further associated with the limitations of existing drugs like severe toxicity and drug resistance. The above hitches have rendered researchers to focus on developing alternatives and novel therapeutics for the treatment of these diseases. In the past decade, several target-based drugs have emerged, which focus on specific biochemical pathways of the causative parasites. For leishmaniasis, the targets such as nucleoside analogs, inhibitors targeting nucleoside phosphate kinases of the parasite’s purine salvage pathway, 20S proteasome of Leishmania, mitochondria, and the associated proteins are reviewed along with the chemical structures of potential drug candidates. Similarly, in case of therapeutics for Chagas disease, several target-based drug candidates targeting sterol biosynthetic pathway (C14-ademethylase), L-cysteine protease, heme peroxidation, mitochondria, farnesyl pyrophosphate, etc., which are vital and unique to the causative parasite are discussed. Moreover, the use of nano-based formulations towards the therapeutics of the above diseases is also discussed.
Collapse
Affiliation(s)
- Brindha J
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Balamurali M M
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
33
|
Pyrazol(in)e derivatives of curcumin analogs as a new class of anti- Trypanosoma cruzi agents. Future Med Chem 2021; 13:701-714. [PMID: 33648346 DOI: 10.4155/fmc-2020-0349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: We report the synthesis and biological evaluation of a small library of 15 functionalized 3-styryl-2-pyrazolines and pyrazoles, derived from curcuminoids, as trypanosomicidal agents. Methods & results: The compounds were prepared via a cyclization reaction between the corresponding curcuminoids and the appropriate hydrazines. All of the derivatives synthesized were investigated for their trypanosomicidal activities. Compounds 4a and 4e showed significant activity against epimastigotes of Trypanosoma cruzi, with IC50 values of 5.0 and 4.2 μM, respectively, accompanied by no toxicity to noncancerous mammalian cells. Compound 6b was found to effectively inhibit T. cruzi triosephosphate isomerase. Conclusion: The up to 16-fold higher potency of these derivatives compared with their curcuminoid precursors makes them a promising new family of T. cruzi inhibitors.
Collapse
|
34
|
Bouton J, Furquim d'Almeida A, Maes L, Caljon G, Van Calenbergh S, Hulpia F. Synthesis and evaluation of 3'-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. Eur J Med Chem 2021; 216:113290. [PMID: 33667845 DOI: 10.1016/j.ejmech.2021.113290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites are the causative agents of neglected tropical diseases with an unmet medical need. These parasites are unable to synthesize the purine ring de novo, and therefore rely on purine salvage to meet their purine demand. Evaluating purine nucleoside analogs is therefore an attractive strategy to identify antikinetoplastid agents. Several anti-Trypanosoma cruzi and anti-Trypanosoma brucei 7-deazapurine nucleosides were previously discovered, with the removal of the 3'-hydroxyl group resulting in a significant boost in activity. In this work we therefore decided to assess the effect of the introduction of a 3'-fluoro substituent in 7-deazapurine nucleosides on the anti-kinetoplastid activities. Hence, we synthesized two series of 3'-deoxy-3'-fluororibofuranosyl and 3'-deoxy-3'-fluoroxylofuranosyl nucleosides comprising 7-deazaadenine and -hypoxanthine bases and assayed these for antiparasitic activity. Several analogs with potent activity against T. cruzi and T. brucei were discovered, indicating that a fluorine atom in the 3'-position is a promising modification for the discovery of antiparasitic nucleosides.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Arno Furquim d'Almeida
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| |
Collapse
|
35
|
Castillo-Garit JA, Barigye SJ, Pham-The H, Pérez-Doñate V, Torrens F, Pérez-Giménez F. Computational identification of chemical compounds with potential anti-Chagas activity using a classification tree. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:71-83. [PMID: 33455460 DOI: 10.1080/1062936x.2020.1863857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Chagas disease is endemic to 21 Latin American countries and is a great public health problem in that region. Current chemotherapy remains unsatisfactory; consequently the need to search for new drugs persists. Here we present a new approach to identify novel compounds with potential anti-chagasic action. A large dataset of 584 compounds, obtained from the Drugs for Neglected Diseases initiative, was selected to develop the computational model. Dragon software was used to calculate the molecular descriptors and WEKA software to obtain the classification tree. The best model shows accuracy greater than 93.4% for the training set; the tree was also validated using a 10-fold cross-validation procedure and through a test set, achieving accuracy values over 90.5% and 92.2%, correspondingly. The values of sensitivity and specificity were around 90% in all series; also the false alarm rate values were under 10.5% for all sets. In addition, a simulated ligand-based virtual screening for several compounds recently reported as promising anti-chagasic agents was carried out, yielding good agreement between predictions and experimental results. Finally, the present work constitutes an example of how this rational computer-based method can help reduce the cost and increase the rate in which novel compounds are developed against Chagas disease.
Collapse
Affiliation(s)
- J A Castillo-Garit
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara , Villa Clara, Cuba
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València , Valencia, Spain
| | - S J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM) , Madrid, Spain
| | - H Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy , Hanoi, Viet-nam
| | - V Pérez-Doñate
- Departamento de Microbiología, Hospital Universitario de la Ribera , Valencia, Spain
| | - F Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna , València, Spain
| | - F Pérez-Giménez
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València , Valencia, Spain
| |
Collapse
|
36
|
de Almeida Fiuza LF, Batista DDGJ, Nunes DF, Moreira OC, Cascabulho C, Soeiro MDNC. Benznidazole modulates release of inflammatory mediators by cardiac spheroids infected with Trypanosoma cruzi. Exp Parasitol 2020; 221:108061. [PMID: 33383023 DOI: 10.1016/j.exppara.2020.108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Chagas disease (CD) caused by Trypanosoma cruzi remains a serious public health problem in Latin America. The available treatment is limited to two old drugs, benznidazole (Bz) and nifurtimox, which exhibit limited efficacy and trigger side effects, justifying the search for new therapies. Also, more accurate and sensitive experimental protocols for drug discovery programs are necessary to shrink the translational gaps found among pre-clinical and clinical trials. Presently, cardiac spheroids were used to evaluate host cell cytotoxicity and anti-T.cruzi activity of benznidazole, exploring its effect on the release of inflammatory mediators. Bz presented low toxic profile on 3D matrices (LC50 > 200 μM) and high potency in vitro (EC50 = 0.99 μM) evidenced by qPCR analysis of T.cruzi-infected cardiac spheroids. Flow cytometry appraisal of inflammatory mediators released at the cellular supernatant showed increases in IL - 6 and TNF contents (≈190 and ≈ 25-fold) in parasitized spheroids as compared to uninfected cultures. Bz at 10 μM suppressed parasite load (92%) concomitantly decreasing in IL-6 (36%) and TNF (68%). Our findings corroborate the successful use of 3D cardiac matrices for in vitro identification of novel anti-parasitic agents and potential impact in host cell physiology.
Collapse
Affiliation(s)
| | - Denise da Gama Jaen Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Ferreira Nunes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Cascabulho
- Laboratório de Inovações Em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
37
|
Quijia CR, Bonatto CC, Silva LP, Andrade MA, Azevedo CS, Lasse Silva C, Vega M, de Santana JM, Bastos IMD, Carneiro MLB. Liposomes Composed by Membrane Lipid Extracts from Macrophage Cell Line as a Delivery of the Trypanocidal N, N'-Squaramide 17 towards Trypanosoma cruzi. MATERIALS 2020; 13:ma13235505. [PMID: 33276688 PMCID: PMC7730638 DOI: 10.3390/ma13235505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N’-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and −61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 μM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 μM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 μM towards VERO cells and of 1973.97 ± 5.98 μM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Rafael Quijia
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Cínthia Caetano Bonatto
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Luciano Paulino Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Milene Aparecida Andrade
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Clenia Santos Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Camila Lasse Silva
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Manel Vega
- Department of Chemistry, University of the Balearic Islands, Palma on the Island of Majorca, Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain;
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| | - Marcella Lemos Brettas Carneiro
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| |
Collapse
|
38
|
Repositioned Drugs for Chagas Disease Unveiled via Structure-Based Drug Repositioning. Int J Mol Sci 2020; 21:ijms21228809. [PMID: 33233837 PMCID: PMC7699892 DOI: 10.3390/ijms21228809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, affects millions of people in South America. The current treatments are limited, have severe side effects, and are only partially effective. Drug repositioning, defined as finding new indications for already approved drugs, has the potential to provide new therapeutic options for Chagas. In this work, we conducted a structure-based drug repositioning approach with over 130,000 3D protein structures to identify drugs that bind therapeutic Chagas targets and thus represent potential new Chagas treatments. The screening yielded over 500 molecules as hits, out of which 38 drugs were prioritized following a rigorous filtering process. About half of the latter were already known to have trypanocidal activity, while the others are novel to Chagas disease. Three of the new drug candidates—ciprofloxacin, naproxen, and folic acid—showed a growth inhibitory activity in the micromolar range when tested ex vivo on T. cruzi trypomastigotes, validating the prediction. We show that our drug repositioning approach is able to pinpoint relevant drug candidates at a fraction of the time and cost of a conventional screening. Furthermore, our results demonstrate the power and potential of structure-based drug repositioning in the context of neglected tropical diseases where the pharmaceutical industry has little financial interest in the development of new drugs.
Collapse
|
39
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
40
|
Gulin JEN, Bisio M, García-Bournissen F. Refining drug administration in a murine model of acute infection with Trypanosoma cruzi. Lab Anim Res 2020; 36:37. [PMID: 33094096 PMCID: PMC7576763 DOI: 10.1186/s42826-020-00071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background In animal research, “refinement” refers to modifications of husbandry or experimental procedures to enhance animal well-being and minimize or eliminate pain and distress. Evaluation of drug efficacy in mice models, such as those used to study Trypanosoma cruzi infection, require prolonged drug administration by the oral route (e.g. for 20 consecutive days). However, the orogastric gavage method can lead to significant discomfort, upper digestive or respiratory tract lesions, aspiration pneumonia and even accidental death. The aim of this work was to evaluate the effect of two administration methods (conventional oral gavage vs. a refined method using a disposable tip and automatic pipette) on the efficacy of benznidazole in a murine model of T. cruzi infection. Results Both administration methods led to a rapid and persistent reduction in parasitaemia. Absence of T. cruzi DNA (evaluated by real-time PCR) in blood, cardiac and skeletal muscle confirmed that treatment efficacy was not influenced by the administration method used. Conclusions The proposed refined method for long-term oral drug administration may be a suitable strategy for assessing drug efficacy in mice models of Chagas disease and can be applied to similar murine infection models to reduce animal discomfort.
Collapse
Affiliation(s)
- Julián Ernesto Nicolás Gulin
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Hospital de Niños "Dr. Ricardo Gutiérrez", CONICET- GCBA, Gallo 1330, 1425 Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez". Ministerio de Salud. GCBA, Buenos Aires, Argentina
| | - Margarita Bisio
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Hospital de Niños "Dr. Ricardo Gutiérrez", CONICET- GCBA, Gallo 1330, 1425 Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez". Ministerio de Salud. GCBA, Buenos Aires, Argentina
| | - Facundo García-Bournissen
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Hospital de Niños "Dr. Ricardo Gutiérrez", CONICET- GCBA, Gallo 1330, 1425 Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez". Ministerio de Salud. GCBA, Buenos Aires, Argentina
| |
Collapse
|
41
|
SARs for the Antiparasitic Plant Metabolite Pulchrol. Part 2: B- and C-Ring Substituents. Molecules 2020; 25:molecules25194510. [PMID: 33019678 PMCID: PMC7582507 DOI: 10.3390/molecules25194510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Neglected tropical diseases affect most of the underprivileged populations in tropical countries. Among these are chagas and leishmaniasis, present mainly in South and Central America, Africa and East Asia. Current treatments are long and have severe adverse effects, therefore there is a strong need to develop alternatives. In this study, we base our research on the plant metabolite pulchrol, a natural benzochromene which has been shown to possess antiparasitic activity against Trypanosoma and Leishmania species. In a recent study, we investigated how changes in the benzyl alcohol functionality affected the antiparasitic activity, but the importance of B- and C-ring substituents is not understood. Fifteen derivatives of pulchrol with different substituents in positions 1, 2, 3, and 6 while leaving the A-ring intact, were therefore prepared by total synthesis, assayed, and compared with pulchrol and positive controls. The generated series and parental molecule were tested in vitro for antiparasitic activity against Trypanosoma cruzi, Leishmania braziliensis, and L. amazonensis, and cytotoxicity using RAW cells. Substantial differences in the activity of the compounds synthesized were observed, of which some were more potent towards Trypanosoma cruzi than the positive control benznidazole. A general tendency is that alkyl substituents improve the potency, especially when positioned on C-2.
Collapse
|
42
|
Scarim CB, Chin CM. Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances. Comb Chem High Throughput Screen 2020; 22:509-520. [PMID: 31608837 DOI: 10.2174/1386207322666191010144111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. OBJECTIVE Current approaches to drug discovery for Chagas disease. METHOD This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. RESULTS Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. CONCLUSION There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.
Collapse
Affiliation(s)
- Cauê B Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| | - Chung M Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| |
Collapse
|
43
|
Chatelain E, Scandale I. Animal models of Chagas disease and their translational value to drug development. Expert Opin Drug Discov 2020; 15:1381-1402. [PMID: 32812830 DOI: 10.1080/17460441.2020.1806233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION American trypanosomiasis, better known as Chagas disease, is a global public health issue. Current treatments targeting the causative parasite, Trypanosoma cruzi, are limited to two old nitroheterocyclic compounds; new, safer drugs are needed. New tools to identify compounds suitable for parasitological cure in humans have emerged through efforts in drug discovery. AREAS COVERED Animal disease models are an integral part of the drug discovery process. There are numerous experimental models of Chagas disease described and in use; rather than going through each of these and their specific features, the authors focus on developments in recent years, in particular the imaging technologies that have dramatically changed the Chagas R&D landscape, and provide a critical view on their value and limitations for moving compounds forward into further development. EXPERT OPINION The application of new technological advances to the field of drug development for Chagas disease has led to the implementation of new and robust/standardized in vivo models that contributed to a better understanding of host/parasite interactions. These new models should also build confidence in their translational value for moving compounds forward into clinical development.
Collapse
Affiliation(s)
- Eric Chatelain
- R&D Department, Drugs for Neglected Diseases Initiative (DNDi) , Geneva, Switzerland
| | - Ivan Scandale
- R&D Department, Drugs for Neglected Diseases Initiative (DNDi) , Geneva, Switzerland
| |
Collapse
|
44
|
Abstract
Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of <20 parasites, we showed that in the colon, smooth muscle myocytes in the circular muscle layer are the most common infected host cell type. Typically, during chronic infections, the entire colon of a mouse contains only a few hundred parasites, often concentrated in a small number of cells each containing >200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.IMPORTANCE Trypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do not usually appear until decades after infection. Research has been hampered by the complex nature of the disease and technical difficulties in locating the extremely low number of parasites. Here, using highly sensitive imaging technology, we reveal the sites of parasite persistence during chronic-stage infections of experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle cells in the circular muscle layer of the colon and that skeletal muscle cells and the skin can also be important reservoirs. This information provides a framework for investigating how the parasite is able to survive as a lifelong infection, despite a vigorous immune response. It also informs drug development strategies by identifying tissue sites that must be accessed to achieve a curative outcome.
Collapse
|
45
|
Villanueva-Lizama LE, Cruz-Chan JV, Versteeg L, Teh-Poot CF, Hoffman K, Kendricks A, Keegan B, Pollet J, Gusovsky F, Hotez PJ, Bottazzi ME, Jones KM. TLR4 agonist protects against Trypanosoma cruzi acute lethal infection by decreasing cardiac parasite burdens. Parasite Immunol 2020; 42:e12769. [PMID: 32592180 DOI: 10.1111/pim.12769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/11/2023]
Abstract
E6020 is a synthetic agonist of Toll-like receptor-4 (TLR4). The purpose of this study was to evaluate the effect of different doses of E6020-SE on Trypanosoma cruzi-specific immune responses and its ability to confer protection against acute lethal infection in mice. Forty female BALB/c were infected with 500 trypomastigotes of T cruzi H1 strain, divided into four groups (n = 10) and treated at 7- and 14-day post-infection (dpi) with different doses of E6020-SE or PBS (control). Survival was followed for 51 days, mice were euthanized and hearts were collected to evaluate parasite burden, inflammation and fibrosis. We found significantly higher survival and lower parasite burdens in mice injected with E6020-SE at all doses compared to the control group. However, E6020-SE treatment did not significantly reduce cardiac inflammation or fibrosis. On the other hand, E6020-SE modulated Th1 and Th2 cytokines, decreasing IFN-γ and IL-4 in a dose-dependent manner after stimulation with parasite antigens. We conclude that E6020-SE alone increased survival by decreasing cardiac parasite burdens in BALB/c mice acutely infected with T cruzi but failed to prevent cardiac damage. Our results suggest that for optimal protection, a vaccine antigen is necessary to balance and orient a protective immune response.
Collapse
Affiliation(s)
- Liliana E Villanueva-Lizama
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Julio V Cruz-Chan
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Leroy Versteeg
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian F Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Kristyn Hoffman
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - April Kendricks
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Brian Keegan
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | | | - Peter J Hotez
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Department of Biology, Baylor University, Waco, TX, USA.,James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Department of Biology, Baylor University, Waco, TX, USA
| | - Kathryn M Jones
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
46
|
Branco Santos JC, de Melo JA, Maheshwari S, de Medeiros WMTQ, de Freitas Oliveira JW, Moreno CJ, Mario Amzel L, Gabelli SB, Sousa Silva M. Bisphosphonate-Based Molecules as Potential New Antiparasitic Drugs. Molecules 2020; 25:E2602. [PMID: 32503272 PMCID: PMC7321420 DOI: 10.3390/molecules25112602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Neglected tropical diseases such as Chagas disease and leishmaniasis affect millions of people around the world. Both diseases affect various parts of the globe and drugs traditionally used in therapy against these diseases have limitations, especially with regard to low efficacy and high toxicity. In this context, the class of bisphosphonate-based compounds has made significant advances regarding the chemical synthesis process as well as the pharmacological properties attributed to these compounds. Among this spectrum of pharmacological activity, bisphosphonate compounds with antiparasitic activity stand out, especially in the treatment of Chagas disease and leishmaniasis caused by Trypanosoma cruzi and Leishmania spp., respectively. Some bisphosphonate compounds can inhibit the mevalonate pathway, an essential metabolic pathway, by interfering with the synthesis of ergosterol, a sterol responsible for the growth and viability of these parasites. Therefore, this review aims to present the information about the importance of these compounds as antiparasitic agents and as potential new drugs to treat Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- Joice Castelo Branco Santos
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Jonathas Alves de Melo
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Sweta Maheshwari
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.M.); (L.M.A.)
| | - Wendy Marina Toscano Queiroz de Medeiros
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Johny Wysllas de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Cláudia Jassica Moreno
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.M.); (L.M.A.)
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.M.); (L.M.A.)
- Department of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcelo Sousa Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, New University of Lisbon, 1800-166 Lisbon, Portugal
| |
Collapse
|
47
|
Drug-cured experimental Trypanosoma cruzi infections confer long-lasting and cross-strain protection. PLoS Negl Trop Dis 2020; 14:e0007717. [PMID: 32302312 PMCID: PMC7190179 DOI: 10.1371/journal.pntd.0007717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/29/2020] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The long term and complex nature of Chagas disease in humans has restricted studies on vaccine feasibility. Animal models also have limitations due to technical difficulties in monitoring the extremely low parasite burden that is characteristic of chronic stage infections. Advances in imaging technology offer alternative approaches that circumvent these problems. Here, we describe the use of highly sensitive whole body in vivo imaging to assess the efficacy of recombinant viral vector vaccines and benznidazole-cured infections to protect mice from challenge with Trypanosoma cruzi. METHODOLOGY/PRINCIPAL FINDINGS Mice were infected with T. cruzi strains modified to express a red-shifted luciferase reporter. Using bioluminescence imaging, we assessed the degree of immunity to re-infection conferred after benznidazole-cure. Those infected for 14 days or more, prior to the onset of benznidazole treatment, were highly protected from challenge with both homologous and heterologous strains. There was a >99% reduction in parasite burden, with parasites frequently undetectable after homologous challenge. This level of protection was considerably greater than that achieved with recombinant vaccines. It was also independent of the route of infection or size of the challenge inoculum, and was long-lasting, with no significant diminution in immunity after almost a year. When the primary infection was benznidazole-treated after 4 days (before completion of the first cycle of intracellular infection), the degree of protection was much reduced, an outcome associated with a minimal T. cruzi-specific IFN-γ+ T cell response. CONCLUSIONS/SIGNIFICANCE Our findings suggest that a protective Chagas disease vaccine must have the ability to eliminate parasites before they reach organs/tissues, such as the GI tract, where once established, they become largely refractory to the induced immune response.
Collapse
|
48
|
Sykes ML, Hilko DH, Kung LI, Poulsen SA, Avery VM. Investigation of pyrimidine nucleoside analogues as chemical probes to assess compound effects on the proliferation of Trypanosoma cruzi intracellular parasites. PLoS Negl Trop Dis 2020; 14:e0008068. [PMID: 32163414 PMCID: PMC7112222 DOI: 10.1371/journal.pntd.0008068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 04/01/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 μM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi. Chagas disease occurs within 21 countries in the Americas, causes over 10, 000 deaths per year and a further 25 million people are at risk of being infected. The cause of Chagas disease is Trypanosoma cruzi, a single celled protozoan parasite, which enters the bloodstream of a host by the bite of a “kissing bug”. In advanced disease stages, the parasite hides in heart and gut tissue and is difficult to treat. Identifying the replicative ability of these parasites is important to understanding Chagas disease progression and the effectiveness of compounds and drugs for treatment. By testing a panel of nucleoside analogues that may incorporate into DNA during synthesis, we developed an image-based method with a fluorescently-labelled DNA probe to identify replicating parasites. This method has effectively shown that drugs used to treat the parasite are able to clear intracellular infection, whilst a compound that was not efficacious in clinical trials leaves replicating T. cruzi behind. This methodology can be used to understand the action of further compounds and supports the identification of new, less toxic probes to assess intracellular parasite replication.
Collapse
Affiliation(s)
- Melissa Louise Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - David Hugh Hilko
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Livia Isabella Kung
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.,Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Sally-Ann Poulsen
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky Marie Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
49
|
Sulleiro E, Silgado A, Serre-Delcor N, Salvador F, Tavares de Oliveira M, Moure Z, Sao-Aviles A, Oliveira I, Treviño B, Goterris L, Sánchez-Montalvá A, Pou D, Molina I, Pumarola T. Usefulness of real-time PCR during follow-up of patients treated with Benznidazole for chronic Chagas disease: Experience in two referral centers in Barcelona. PLoS Negl Trop Dis 2020; 14:e0008067. [PMID: 32069287 PMCID: PMC7048293 DOI: 10.1371/journal.pntd.0008067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/28/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Antitrypanosomal treatment with Benznidazole (BZ) or Nifurtimox may be recommended for patients with chronic Chagas disease (CD) to reduce the onset or progression of symptoms. However, such treatment has limited efficacy and high level of toxic effects. In addition, the current cure biomarker (serology conversion) precludes any treatment assessment unless a prolonged follow-up is arranged. PCR is thus the most useful, alternative surrogate marker for evaluating responses to treatment. The aim of this study is to describe the usefulness of real-time PCR in monitoring BZ treatment within a large cohort of chronic CD cases in Barcelona. METHODOLOGY/PRINCIPAL FINDINGS A total of 370 chronic CD patients were monitored with real-time PCR post-BZ treatment. The median follow-up was 4 years (IQR 2.2-5.3y), with a median of 3 clinical visits (IQR 2-4). Only 8 patients (2.2%) presented with at least one incident of positive real-time PCR after treatment and were therefore considered as treatment failure. Four of those failure patients had completed full course treatment, whereas the remaining cases had defaulted with a statistical difference between both groups (p = 0.02). Half of the failure patients had undergone less than 4 years of follow-up monitoring all presented with parasitemia before treatment. CONCLUSIONS/SIGNIFICANCE BZ treatment failure was highly infrequent in our cohort. BZ discontinuation was a risk factor for positive real-time PCR results during clinical follow-up. Regular testing with real-time PCR during follow-up allows for early detection of treatment failure in patients with chronic CD.
Collapse
Affiliation(s)
- Elena Sulleiro
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Aroa Silgado
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Núria Serre-Delcor
- Tropical Medicine Unit Vall d´Hebron-Drassanes, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Fernando Salvador
- Department of Infectious Diseases, Universitat Autònoma de Barcelona, Vall d’Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Maykon Tavares de Oliveira
- Departamento de Clínica médica, Unidade de Cardiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Zaira Moure
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Augusto Sao-Aviles
- Department of Infectious Diseases, Universitat Autònoma de Barcelona, Vall d’Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Inés Oliveira
- Tropical Medicine Unit Vall d´Hebron-Drassanes, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Begoña Treviño
- Tropical Medicine Unit Vall d´Hebron-Drassanes, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Lidia Goterris
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Department of Infectious Diseases, Universitat Autònoma de Barcelona, Vall d’Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Diana Pou
- Tropical Medicine Unit Vall d´Hebron-Drassanes, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| | - Israel Molina
- Department of Infectious Diseases, Universitat Autònoma de Barcelona, Vall d’Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Tomàs Pumarola
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona PROSICS, Barcelona, Spain
| |
Collapse
|
50
|
Pérez-Antón E, Egui A, Thomas MC, Simón M, Segovia M, López MC. Immunological exhaustion and functional profile of CD8 + T lymphocytes as cellular biomarkers of therapeutic efficacy in chronic Chagas disease patients. Acta Trop 2020; 202:105242. [PMID: 31669531 DOI: 10.1016/j.actatropica.2019.105242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
The lack of useful tools for detection the impact of treatment during the follow-up of chronic Chagas disease treated patients difficult the adequate care to the affected population. The objective of this study was to evaluate the functional response of CD8+ T lymphocyte population, critical for the control of Trypanosoma cruzi infection, as a possible cellular biomarker of treated Chagas disease patients. Thus, we analyzed the antigen-specific CD8+ T-cell response before and after benznidazole treatment in asymptomatic (indeterminate) and cardiac chronic Chagas disease patients. A marked dysfunctional process of the CD8+ T cell population was found in patients with an advanced pathology. Thus, the cardiac patients have a higher co-expression of inhibitory receptors and a lower antigen-specific multifunctional capacity compared with that of asymptomatic patients. Remarkably, benznidazole treatment partially reverses this functional exhaustion process of CD8+ T cells in both asymptomatic and cardiac Chagas disease patients. Thus, the co-expression of inhibitory molecules tends to be reduced after benznidazole treatment, mainly in asymptomatic patients, finding a significant drop in the expression of inhibitory receptors such as PD-1 and 2B4. In addition, the multifunctional antigen-specific response of CD8+ T cells is enhanced after treatment in chronic patients. An increase in the subset of cells with cytotoxic capacity and production of the IFN-γ cytokine was also observed in both treated asymptomatic and cardiac chronic Chagas disease patients. The results derived from this study show the improvement of the functional capacity of CD8+ T cells after treatment which could be have a positive effect on parasitic control. In addition, the phenotypic and functional profile of the CD8+ T cells described could serve as a tool for monitoring the impact of benznidazole treatment.
Collapse
Affiliation(s)
- Elena Pérez-Antón
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Mª Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Marina Simón
- Unidad Regional de Medicina Tropical, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Segovia
- Unidad Regional de Medicina Tropical, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|