1
|
Thomas SM, Veerabathiran R. Evaluating the impact of LHCGR gene polymorphism on polycystic ovary syndrome: a comprehensive meta-analysis and power assessment. J Turk Ger Gynecol Assoc 2024; 25:207-218. [PMID: 39658874 PMCID: PMC11632634 DOI: 10.4274/jtgga.galenos.2024.2024-6-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/11/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Polycystic ovary syndrome (PCOS) is prevalent among reproductive-aged women and is categorized by hormonal imbalances, irregular menstrual cycles, and challenges with fertility. PCOS affects approximately 3.6% of women globally, with prevalence varying by region. The luteinizing hormone/choriogonadotropin receptor (LHCGR) gene, which encodes the LHCGR, has been implicated in PCOS pathophysiology. This study investigated the association between the LHCGR gene polymorphism rs2293275 and PCOS through a meta-analysis. Material and Methods An extensive literature review was carried out using Embase, PubMed, and Google Scholar databases to identify research studies exploring the association between LHCGR gene variants and PCOS. The review was conducted based on the PRISMA checklist. Eligible case-control studies from 2016 to 2024 were chosen based on predefined criteria. Quantitative data analysis was performed using MetaGenyo software, employing a significance threshold of p<0.05. Odds ratios (OR) and confidence intervals (CI) were calculated to evaluate the relationships. G*Power 3.1 software was employed for statistical power analysis to assess the study's strength. The meta-analysis explored the link between LHCGR gene variant rs2293275 and PCOS across diverse ethnic groups and genetic models. Results Analyzing data from 10 studies involving 1,431 PCOS cases and 1,317 controls, the findings revealed no significant associations in most genetic models: allele (OR: 0.89, 95% CI: 0.54-1.49), dominant (OR: 0.74, 95% CI: 0.47-1.18), recessive (OR: 0.80, 95% CI: 0.41-1.57), and over-dominant (OR: 1.13, 95% CI: 0.69-1.85). Subgroup analyses by ethnicity (Arabs, Asians, Caucasians) consistently showed no significant correlations, except a protective effect in Caucasians (OR: 0.57, 95% CI: 0.34-0.95) in the AA vs. aa comparison. Sensitivity analyses confirmed robustness, and there was no indication of publication bias. Power analysis validated adequate sample sizes, and protein-protein interaction networks underscored biological relevance. Conclusion The meta-analysis concluded that no significant connection was observed between the LHCGR gene variant rs2293275 and the risk of PCOS among different populations. This suggests a complexity in PCOS etiology and indicating that LHCGR may not be a significant genetic marker for PCOS. Future research should explore other genetic and environmental factors contributing to PCOS, emphasizing the importance of genetic and ethnic variability in such studies.
Collapse
Affiliation(s)
- Sheena Mariam Thomas
- Human Cytogenetics and Genomics Laboratory Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
2
|
Zhu Y, Lin S, Zhang Y, Yu J, Fu J, Li Y, Shan C, Cai J, Liu W, Tao T. Altered bile acids profile is a risk factor for hyperandrogenism in lean women with PCOS: a case control study. Sci Rep 2024; 14:26215. [PMID: 39482365 PMCID: PMC11528117 DOI: 10.1038/s41598-024-77645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
The levels of fasting-state serum bile acids (BAs) in individuals with polycystic ovary syndrome (PCOS) differ from those of control subjects. However, there is a lack of research on the BAs profile in lean women with PCOS and whether these changes are linked to the host metabolism. Therefore, our objective was to investigate the synthesis and metabolism of serum BAs in lean women with PCOS and assess the correlation between BAs and clinical characteristics. This study employed a cross-sectional design of lean women with PCOS (n = 240) in comparison to a control group (n = 80) consisting of healthy lean women. The findings revealed significant increases in the levels of non-12-OH BAs and chenodeoxycholic acid (CDCA)% (both P < 0.05) in lean women with PCOS. Additionally, a positive correlation was observed between CDCA% and total testosterone (T) (r = 0.130, P = 0.044) and free androgen index (FAI) (r = 0.153, P = 0.019). Furthermore, a decreased ratio of cholic acid/chenodeoxycholic acid (CA/CDCA) (P < 0.001) was observed in lean women with PCOS, suggesting the depletion or downregulation of CYP8B1. Receiver operating characteristic curve analysis indicated that the combination of CDCA/CA and DHEAS could potentially be used as a characteristic factor for PCOS in lean women. It is possible that enzymatic modifications in the liver could play a role in regulating hyperandrogenism in this specific subgroup of lean women with PCOS.
Collapse
Affiliation(s)
- Yuchen Zhu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Lin
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JiaRong Fu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yushan Li
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Shan
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Cai
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Tao
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Azumah R, Hummitzsch K, Anderson RA, Rodgers RJ. Expression of transforming growth factor β signalling molecules and their correlations with genes in loci linked to polycystic ovary syndrome in human foetal and adult tissues. Reprod Fertil Dev 2024; 36:RD23174. [PMID: 38894494 DOI: 10.1071/rd23174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Context Altered signalling of androgens, anti-Müllerian hormone or transforming growth factor beta (TGFβ) during foetal development have been implicated in the predisposition to polycystic ovary syndrome (PCOS) in later life, aside from its genetic predisposition. In foetal ovarian fibroblasts, TGFβ1 has been shown to regulate androgen signalling and seven genes located in loci associated with PCOS. Since PCOS exhibits a myriad of symptoms, it likely involves many different organs. Aims To identify the relationships between TGFβ signalling molecules and PCOS candidate genes in different tissues associated with PCOS. Methods Using RNA sequencing data, we examined the expression patterns of TGFβ signalling molecules in the human ovary, testis, heart, liver, kidney, brain tissue, and cerebellum from 4 to 20weeks of gestation and postnatally. We also examined the correlations between gene expression of TGFβ signalling molecules and PCOS candidate genes. Key results TGFβ signalling molecules were dynamically expressed in most tissues prenatally and/or postnatally. FBN3 , a PCOS candidate gene involved in TGFβ signalling, was expressed during foetal development in all tissues. The PCOS candidate genes HMGA2, YAP1 , and RAD50 correlated significantly (P TGFBR1 in six out of the seven tissues examined. Conclusions This study suggests that possible crosstalk occurs between genes in loci associated with PCOS and TGFβ signalling molecules in multiple tissues, particularly during foetal development. Implications Thus, alteration in TGFβ signalling during foetal development could affect many tissues contributing to the multiple phenotypes of PCOS in later life.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Katja Hummitzsch
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Chen W, Yang Q, Hu L, Wang M, Yang Z, Zeng X, Sun Y. Shared diagnostic genes and potential mechanism between PCOS and recurrent implantation failure revealed by integrated transcriptomic analysis and machine learning. Front Immunol 2023; 14:1175384. [PMID: 37261354 PMCID: PMC10228695 DOI: 10.3389/fimmu.2023.1175384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine metabolic disorder that affects 5-10% of women of reproductive age. The endometrium of women with PCOS has altered immune cells resulting in chronic low-grade inflammation, which attribute to recurrent implantation failure (RIF). In this study, we obtained three PCOS and RIF datasets respectively from the Gene Expression Omnibus (GEO) database. By analyzing differentially expressed genes (DEGs) and module genes using weighted gene co-expression networks (WGCNA), functional enrichment analysis, and three machine learning algorithms, we identified twelve diseases shared genes, and two diagnostic genes, including GLIPR1 and MAMLD1. PCOS and RIF validation datasets were assessed using the receiver operating characteristic (ROC) curve, and ideal area under the curve (AUC) values were obtained for each disease. Besides, we collected granulosa cells from healthy and PCOS infertile women, and endometrial tissues of healthy and RIF patients. RT-PCR was used to validate the reliability of GLIPR1 and MAMLD1. Furthermore, we performed gene set enrichment analysis (GSEA) and immune infiltration to explore the underlying mechanism of PCOS and RIF cooccurrence. Through the functional enrichment of twelve shared genes and two diagnostic genes, we found that both PCOS and RIF patients had disturbances in metabolites related to the TCA cycle, which eventually led to the massive activation of immune cells.
Collapse
Affiliation(s)
- Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linli Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyao Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Azumah R, Hummitzsch K, Anderson RA, Rodgers RJ. Genes in loci genetically associated with polycystic ovary syndrome are dynamically expressed in human fetal gonadal, metabolic and brain tissues. Front Endocrinol (Lausanne) 2023; 14:1149473. [PMID: 37223019 PMCID: PMC10201802 DOI: 10.3389/fendo.2023.1149473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, affecting around 10% of women of reproductive age, with infertility, depression or anxiety, obesity, insulin resistance and type 2 diabetes as risk factors. The cause of PCOS is not known but there is a predisposition to developing PCOS in adult life that arises during fetal or perinatal life. PCOS also has a genetic predisposition and a number of genetic loci associated with PCOS have been identified. These loci contain 25 candidate genes which are currently being studied to define the syndrome. Although the name PCOS suggests a syndrome of the ovary, PCOS has also been associated with the central nervous system and other organ systems in the body due to the wide variety of symptoms it presents. Methods Here, we examined the expression patterns of PCOS candidate genes in gonadal (ovary and testis), metabolic (heart, liver and kidney) and brain (brain and cerebellum) tissues during the first half of human fetal development and postnatally until adulthood using public RNA sequencing data. This study is an initial step for more comprehensive and translational studies to define PCOS. Results We found that the genes were dynamically expressed in the fetal tissues studied. Some genes were significantly expressed in gonadal tissues, whilst others were expressed in metabolic or brain tissues at different time points prenatally and/or postnatally. HMGA2, FBN3 and TOX3 were highly expressed during the early stages of fetal development in all tissues but least during adulthood. Interestingly, correlation between expression of HMGA2/YAP1 and RAD50/YAP1 were significant in at least 5 of the 7 fetal tissues studied. Notably, DENND1A, THADA, MAPRE1, RAB5B, ARL14EP, KRR1, NEIL2 and RAD50 were dynamically expressed in all postnatal tissues studied. Conclusions These findings suggest that these genes have tissue- or development-specific roles in multiple organs, possibly resulting in the various symptoms associated with PCOS. Thus the fetal origin of a predisposition to PCOS in adulthood could arise via the effects of PCOS candidate genes in the development of multiple organs.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Sahoo SM. Exploring the natural history of polycystic ovary syndrome: still a long road to traverse. Hum Reprod 2023; 38:191-192. [PMID: 36433770 DOI: 10.1093/humrep/deac252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sushree Monika Sahoo
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Dumuduma, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Curcumin Inhibits Hyperandrogen-Induced IRE1α-XBP1 Pathway Activation by Activating the PI3K/AKT Signaling in Ovarian Granulosa Cells of PCOS Model Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2113293. [PMID: 36062194 PMCID: PMC9433213 DOI: 10.1155/2022/2113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Hyperandrogenism is a common characteristic of polycystic ovary syndrome (PCOS). Long-term, continuous exposure to hyperandrogenic environments may cause excessive endoplasmic reticulum (ER) stress in ovarian granulosa cells (GCs). Curcumin is a polyphenol extracted from turmeric rhizomes which has several pharmacological effects that may benefit patients with PCOS. To explore whether curcumin can inhibit hyperandrogen-induced ER stress in ovarian GCs of PCOS rats and to elucidate the possible underlying mechanisms. Methods We developed PCOS model rats by exposure to hyperandrogenic conditions and divided the rats into control, PCOS, and PCOS+curcumin (200 mg/kg, for 8 weeks) groups. The levels of ER stress-related proteins and PI3K/AKT phosphorylation were measured in the ovarian tissue of all experimental groups by real-time quantitative PCR, western blotting, immunohistochemistry, and immunofluorescence. Subsequent in vitro analysis on primary cultured GCs was performed to confirm the influence of curcumin on ER stress inhibition by immunofluorescence and western blotting. Results Curcumin protects GCs from hyperandrogen-induced apoptosis in PCOS model rats by inhibiting the ER stress-related IRE1α-XBP1 pathway and activating the PI3K/AKT signaling pathway. Conclusions These observations indicate that curcumin might be a safe and useful supplement for PCOS patients.
Collapse
|
8
|
De Silva K, Demmer RT, Jönsson D, Mousa A, Forbes A, Enticott J. Highly perturbed genes and hub genes associated with type 2 diabetes in different tissues of adult humans: a bioinformatics analytic workflow. Funct Integr Genomics 2022; 22:1003-1029. [PMID: 35788821 PMCID: PMC9255467 DOI: 10.1007/s10142-022-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes (T2D) has a complex etiology which is not yet fully elucidated. The identification of gene perturbations and hub genes of T2D may deepen our understanding of its genetic basis. We aimed to identify highly perturbed genes and hub genes associated with T2D via an extensive bioinformatics analytic workflow consisting of five steps: systematic review of Gene Expression Omnibus and associated literature; identification and classification of differentially expressed genes (DEGs); identification of highly perturbed genes via meta-analysis; identification of hub genes via network analysis; and downstream analysis of highly perturbed genes and hub genes. Three meta-analytic strategies, random effects model, vote-counting approach, and p value combining approach, were applied. Hub genes were defined as those nodes having above-average betweenness, closeness, and degree in the network. Downstream analyses included gene ontologies, Kyoto Encyclopedia of Genes and Genomes pathways, metabolomics, COVID-19-related gene sets, and Genotype-Tissue Expression profiles. Analysis of 27 eligible microarrays identified 6284 DEGs (4592 downregulated and 1692 upregulated) in four tissue types. Tissue-specific gene expression was significantly greater than tissue non-specific (shared) gene expression. Analyses revealed 79 highly perturbed genes and 28 hub genes. Downstream analyses identified enrichments of shared genes with certain other diabetes phenotypes; insulin synthesis and action-related pathways and metabolomics; mechanistic associations with apoptosis and immunity-related pathways; COVID-19-related gene sets; and cell types demonstrating over- and under-expression of marker genes of T2D. Our approach provided valuable insights on T2D pathogenesis and pathophysiological manifestations. Broader utility of this pipeline beyond T2D is envisaged.
Collapse
Affiliation(s)
- Kushan De Silva
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, 3168, Australia.
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Daniel Jönsson
- Department of Periodontology, Faculty of Odontology, Malmö University, 21119, Malmö, Sweden.,Department of Clinical Sciences, Lund University, 21428, Malmö, Sweden
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, 3168, Australia
| | - Andrew Forbes
- Biostatistics Unit, Division of Research Methodology, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, 3004, Australia
| | - Joanne Enticott
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, 3168, Australia
| |
Collapse
|
9
|
Azumah R, Hummitzsch K, Hartanti MD, St. John JC, Anderson RA, Rodgers RJ. Analysis of Upstream Regulators, Networks, and Pathways Associated With the Expression Patterns of Polycystic Ovary Syndrome Candidate Genes During Fetal Ovary Development. Front Genet 2022; 12:762177. [PMID: 35197999 PMCID: PMC8860493 DOI: 10.3389/fgene.2021.762177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifactorial syndrome with reproductive, endocrine, and metabolic symptoms, affecting about 10% women of reproductive age. Pathogenesis of the syndrome is poorly understood with genetic and fetal origins being the focus of the conundrum. Genetic predisposition of PCOS has been confirmed by candidate gene studies and Genome-Wide Association Studies (GWAS). Recently, the expression of PCOS candidate genes across gestation has been studied in human and bovine fetal ovaries. The current study sought to identify potential upstream regulators and mechanisms associated with PCOS candidate genes. Using RNA sequencing data of bovine fetal ovaries (62-276 days, n = 19), expression of PCOS candidate genes across gestation was analysed using Partek Flow. A supervised heatmap of the expression data of all 24,889 genes across gestation was generated. Most of the PCOS genes fell into one of four clusters according to their expression patterns. Some genes correlated negatively (early genes; C8H9orf3, TOX3, FBN3, GATA4, HMGA2, and DENND1A) and others positively (late genes; FDFT1, LHCGR, AMH, FSHR, ZBTB16, and PLGRKT) with gestational age. Pathways associated with PCOS candidate genes and genes co-expressed with them were determined using Ingenuity pathway analysis (IPA) software as well as DAVID Bioinformatics Resources for KEGG pathway analysis and Gene Ontology databases. Genes expressed in the early cluster were mainly involved in mitochondrial function and oxidative phosphorylation and their upstream regulators included PTEN, ESRRG/A and MYC. Genes in the late cluster were involved in stromal expansion, cholesterol biosynthesis and steroidogenesis and their upstream regulators included TGFB1/2/3, TNF, ERBB2/3, VEGF, INSIG1, POR, and IL25. These findings provide insight into ovarian development of relevance to the origins of PCOS, and suggest that multiple aetiological pathways might exist for the development of PCOS.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Justin C. St. John
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Ren J, Tan G, Ren X, Lu W, Peng Q, Tang J, Wang Y, Xie B, Wang M. The PNA mouse may be the best animal model of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:950105. [PMID: 36004354 PMCID: PMC9393894 DOI: 10.3389/fendo.2022.950105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) exerts negative effects on females of childbearing age. It is important to identify more suitable models for fundamental research on PCOS. We evaluated animal models from a novel perspective with the aim of helping researchers select the best model for PCOS. RNA sequencing was performed to investigate the mRNA expression profiles in the ovarian tissues of mice with dehydroepiandrosterone (DHEA) plus high-fat diet (HFD)-induced PCOS. Meanwhile, 14 datasets were obtained from the Gene Expression Omnibus (GEO), including eight studies on humans, three on rats and three on mice, and genes associated with PCOS were obtained from the PCOSKB website. We compared the consistency of each animal model and human PCOS in terms of DEGs and pathway enrichment analysis results. There were 239 DEGs shared between prenatally androgenized (PNA) mice and PCOS patients. Moreover, 1113 genes associated with PCOS from the PCOSKB website were identified among the DEGs of PNA mice. A total of 134 GO and KEGG pathways were shared between PNA mice and PCOS patients. These findings suggest that the PNA mouse model is the best animal model to simulate PCOS.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
- Department of Bioinformatics, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Biao Xie, ; Meijiao Wang,
| | - Meijiao Wang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Biao Xie, ; Meijiao Wang,
| |
Collapse
|
11
|
Sutaji Z, Elias MH, Ahmad MF, Karim AKA, Abu MA. A Systematic Review and Integrated Bioinformatic Analysis of Candidate Genes and Pathways in the Endometrium of Patients With Polycystic Ovary Syndrome During the Implantation Window. Front Endocrinol (Lausanne) 2022; 13:900767. [PMID: 35860699 PMCID: PMC9289743 DOI: 10.3389/fendo.2022.900767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder with wide-ranging clinical heterogeneity that causes infertility. However, the comprehensive molecular mechanisms of PCOS in causing infertility is remaining unclear. Hence, a comprehensive literature search was conducted using PubMed, Scopus, EBSCOhost, and Science Direct. Medical Subject Heading (MeSH) terms like PCOS, gene expression, implantation window and endometrium were used as the keywords. From 138 studies retrieved, original articles with RNA profiling on human endometrial tissues in PCOS women during the implantation window were included. Study design, sample size, sample type, method, and differentially expressed genes (DEGs) were identified from all publications. The DEGs were analyzed using the software packages DAVID, STRING, and Cytoscape. Three studies that met inclusion criteria were included, and 368 DEGs were identified. Twelve significant clusters from the protein-protein interaction network (PPI) complex were found, and cluster 1 showed very high intermolecular interactions. Five candidate genes (AURKA, CDC25C, KIF23, KIF2C, and NDC80) were identified from the systematic review and integrated bioinformatics analysis. It is concluded that cell cycle is the fundamental biological processes that were dysregulated in the endometrium of PCOS women, affecting decidualization progression in the endometrium during the implantation window.
Collapse
Affiliation(s)
- Zulazmi Sutaji
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia
| | - Marjanu Hikmah Elias
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia
| | - Mohd Faizal Ahmad
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Azrai Abu
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Muhammad Azrai Abu,
| |
Collapse
|
12
|
McIlvenna LC, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK, Moreno-Asso A. Transforming Growth Factor Beta 1 Alters Glucose Uptake but Not Insulin Signalling in Human Primary Myotubes From Women With and Without Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:732338. [PMID: 34707569 PMCID: PMC8544291 DOI: 10.3389/fendo.2021.732338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal muscle insulin resistance which can worsen other clinical features. The heterogeneity of the condition has made it challenging to identify the precise mechanisms that cause this insulin resistance. A possible explanation for the underlying insulin resistance may be the dysregulation of Transforming Growth Factor-beta (TGFβ) signalling. TGFβ signalling contributes to the remodelling of reproductive and hepatic tissues in women with PCOS. Given the systemic nature of TGFβ signalling and its role in skeletal muscle homeostasis, it may be possible that these adverse effects extend to other peripheral tissues. We aimed to determine if TGFβ1 could negatively regulate glucose uptake and insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes from women with PCOS and healthy women displayed an increase in glucose uptake, independent of changes in insulin signalling, following short term (16 hr) TGFβ1 treatment. This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and connective tissue growth factor in both groups following treatment with TGFβ1. Collectively, our findings show that short-term treatment with TGFβ1 does not appear to influence insulin signalling or promote insulin resistance in myotubes. These findings suggest that aberrant TGFβ signalling is unlikely to directly contribute to skeletal muscle insulin resistance in women with PCOS in the short term but does not rule out indirect or longer-term effects.
Collapse
Affiliation(s)
- Luke C. McIlvenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Rhiannon K. Patten
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nigel K. Stepto
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- *Correspondence: Alba Moreno-Asso,
| |
Collapse
|