1
|
Yu R, Huang K, He X, Zhang J, Ma Y, Liu H. ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis. Medicine (Baltimore) 2025; 104:e41180. [PMID: 39792760 DOI: 10.1097/md.0000000000041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR. The aim of this research is to elucidate the correlation between ATRX mutations and GBM. Dataset obtained from TCGA-GBM were conducted an analysis on the genomic features, biological characteristics, immunopathological markers, and clinical prognosis of patients carrying ATRX mutations. Our findings revealed a significantly elevated level of microsatellite instability in individuals with ATRX mutants, along with significant alterations in the receptor-tyrosine kinase (RTK)-ras pathway among patients exhibiting combined ATRX mutations. TCGA-GBM patients with concurrent ATRX mutations exhibited sensitivity to 26 chemotherapeutic and anticancer drugs, which exerted their effects by modulating the DDR of tumor cells through highly correlated mechanisms involving the RTK-ras pathway. Additionally, we observed an enrichment of ATRX mutations in specific pathways associated with DDR among TCGA-GBM patients. Our model also demonstrated prolonged overall survival in patients carrying ATRX mutations, particularly showing strong predictive value for 3- and 5-year survival rates. Furthermore, additional protective factors such as younger age, female gender, combined IDH mutations, and TP53 mutations were identified. The results underscore the protective role and prognostic significance of ATRX mutations in GBM as a potential therapeutic target and biomarker for patient survival.
Collapse
Affiliation(s)
- Rou Yu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xinyan He
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
- West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Jingwen Zhang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yushan Ma
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Hui Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| |
Collapse
|
2
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Yi C, Chen J, She X. The emerging role of the gut virome in necrotizing enterocolitis. Heliyon 2024; 10:e30496. [PMID: 38711648 PMCID: PMC11070903 DOI: 10.1016/j.heliyon.2024.e30496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in neonates, particularly preterm infants. Many factors can lead to NEC, but microbial dysbiosis is one of the most important risk factors that can induce this disease. Given the major role of the gut virome in shaping bacterial homeostasis, virome research is a fledgling but rapidly evolving area in the field of microbiome that is increasingly connected to human diseases, including NEC. This review provides an overview of the development of the gut virome in newborns, discusses its emerging role in NEC, and explores promising therapeutic applications, including phage therapy and fecal virome transplantation.
Collapse
Affiliation(s)
- Cong Yi
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jia Chen
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Xiang She
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| |
Collapse
|
6
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Tun HM, Peng Y, Massimino L, Sin ZY, Parigi TL, Facoetti A, Rahman S, Danese S, Ungaro F. Gut virome in inflammatory bowel disease and beyond. Gut 2024; 73:350-360. [PMID: 37949638 PMCID: PMC10850733 DOI: 10.1136/gutjnl-2023-330001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The gut virome is a dense community of viruses inhabiting the gastrointestinal tract and an integral part of the microbiota. The virome coexists with the other components of the microbiota and with the host in a dynamic equilibrium, serving as a key contributor to the maintenance of intestinal homeostasis and functions. However, this equilibrium can be interrupted in certain pathological states, including inflammatory bowel disease, causing dysbiosis that may participate in disease pathogenesis. Nevertheless, whether virome dysbiosis is a causal or bystander event requires further clarification. DESIGN This review seeks to summarise the latest advancements in the study of the gut virome, highlighting its cross-talk with the mucosal microenvironment. It explores how cutting-edge technologies may build upon current knowledge to advance research in this field. An overview of virome transplantation in diseased gastrointestinal tracts is provided along with insights into the development of innovative virome-based therapeutics to improve clinical management. RESULTS Gut virome dysbiosis, primarily driven by the expansion of Caudovirales, has been shown to impact intestinal immunity and barrier functions, influencing overall intestinal homeostasis. Although emerging innovative technologies still need further implementation, they display the unprecedented potential to better characterise virome composition and delineate its role in intestinal diseases. CONCLUSIONS The field of gut virome is progressively expanding, thanks to the advancements of sequencing technologies and bioinformatic pipelines. These have contributed to a better understanding of how virome dysbiosis is linked to intestinal disease pathogenesis and how the modulation of virome composition may help the clinical intervention to ameliorate gut disease management.
Collapse
Affiliation(s)
- Hein Min Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Peng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Luca Massimino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Zhen Ye Sin
- JC School of Public Health and Primary Care, Faculty of medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele Facoltà di Medicina e Chirurgia, Milano, Italy
| | - Amanda Facoetti
- Università Vita-Salute San Raffaele Facoltà di Medicina e Chirurgia, Milano, Italy
| | | | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele Facoltà di Medicina e Chirurgia, Milano, Italy
| | - Federica Ungaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele Facoltà di Medicina e Chirurgia, Milano, Italy
| |
Collapse
|
8
|
Mathlouthi NEH, Belguith I, Yengui M, Oumarou Hama H, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. The Archaeome's Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures. Microorganisms 2023; 11:2742. [PMID: 38004753 PMCID: PMC10673094 DOI: 10.3390/microorganisms11112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea's role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. METHODS We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. RESULTS Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. CONCLUSIONS The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea's role in CRC dynamics.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Mariem Yengui
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Ghiles Grine
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
- Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| |
Collapse
|
9
|
Massimino L, Palmieri O, Facoetti A, Fuggetta D, Spanò S, Lamparelli LA, D'Alessio S, Cagliani S, Furfaro F, D'Amico F, Zilli A, Fiorino G, Parigi TL, Noviello D, Latiano A, Bossa F, Latiano T, Pirola A, Mologni L, Piazza RG, Abbati D, Perri F, Bonini C, Peyrin-Biroulet L, Malesci A, Jairath V, Danese S, Ungaro F. Gut virome-colonising Orthohepadnavirus genus is associated with ulcerative colitis pathogenesis and induces intestinal inflammation in vivo. Gut 2023; 72:1838-1847. [PMID: 36788014 PMCID: PMC10511988 DOI: 10.1136/gutjnl-2022-328375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. DESIGN HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors.C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo. RESULTS HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo. HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo. CONCLUSION This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.
Collapse
Affiliation(s)
- Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Amanda Facoetti
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Davide Fuggetta
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Salvatore Spanò
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Luigi Antonio Lamparelli
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Stefania Cagliani
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandra Zilli
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Daniele Noviello
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Fabrizio Bossa
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | | | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Rocco Giovanni Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Danilo Abbati
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Laurent Peyrin-Biroulet
- Inserm NGERE, University of Lorraine, Nancy, France
- Department of Hepato-Gastroenterology, University Hospital Centre Nancy, Nancy, France
| | - Alberto Malesci
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, Ontario, Canada
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
10
|
Zhuang YP, Zhou HL, Chen HB, Zheng MY, Liang YW, Gu YT, Li WT, Qiu WL, Zhou HG. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed Pharmacother 2023; 165:115040. [PMID: 37364479 DOI: 10.1016/j.biopha.2023.115040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Bin Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Yue Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Liang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Tian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Li G, Jin Y, Chen B, Lin A, Wang E, Xu F, Hu G, Xiao C, Liu H, Hou X, Zhang B, Song J. Exploring the Relationship between the Gut Mucosal Virome and Colorectal Cancer: Characteristics and Correlations. Cancers (Basel) 2023; 15:3555. [PMID: 37509218 PMCID: PMC10376985 DOI: 10.3390/cancers15143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The fecal virome has been reported to be associated with CRC. However, little is known about the mucosal virome signature in CRC. This study aimed to determine the viral community within CRC tissues and their contributions to colorectal carcinogenesis. Colonic mucosal biopsies were harvested from patients with CRC (biopsies of both neoplasia and adjacent normal tissue (CRC-A)) and healthy controls (HC). The shot-gun metagenomic sequencing of virus-like particles (VLPs) was performed on the biopsies. Viral community, functional pathways, and their correlations to clinical data were analyzed. Fluorescence in situ hybridizations (FISH) for the localization of viruses in the intestine was performed, as well as quantitative PCR for the detection of Torque teno virus load in human mucosal VLP DNA. A greater number and proportion of core species were found in CRC tissues than in CRC-A and HC tissues. The diversity of the mucosal virome in CRC tissues was significantly increased compared to that in HC and CRC-A tissues. The mucosal virome signature of CRC tissues were significantly different from those of HC and CRC-A tissues at the species level. The abundances of eukaryotic viruses from the Anelloviridae family and its sub-species Torque teno virus (TTV) were significantly higher in CRC patients than in HC. Furthermore, increased levels of TTV in the intestinal lamina propria were found in the CRC group. Multiple viral functions of TTV associated with carcinogenesis were enriched in CRC tissues. We revealed for the first time that the mucosal virobiota signature of CRC is characterized by a higher diversity and more eukaryotic viruses. The enrichment of TTV species in CRC tissues suggests that they may play an oncogenic role in CRC. Targeting eukaryotic viruses in the gut may provide novel strategies for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baolong Chen
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China
| | - Aiqiang Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China
| | - Erchuan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fenghua Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengcheng Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanxing Xiao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bangzhou Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Kato I. Bacterial, Viral and Parasitic Pathogens and Colorectal Cancer. Cancers (Basel) 2023; 15:3353. [PMID: 37444463 DOI: 10.3390/cancers15133353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Several viral, bacterial, and parasitic pathogens have been designated as human carcinogens by the World Health Organization [...].
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
15
|
Lasagna A, Cassaniti I, Sacchi P, Figini S, Baldanti F, Bruno R, Pedrazzoli P. The 'hit-and-run' strategy and viral carcinogenesis. Future Oncol 2023; 19:341-344. [PMID: 36919920 DOI: 10.2217/fon-2022-1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy
| | - Irene Cassaniti
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy
| | - Paolo Sacchi
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy
| | - Simone Figini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy
| | - Fausto Baldanti
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy.,Department of Clinical Surgical Diagnostic & Pediatric Sciences, University of Pavia, Viale Camillo Golgi 19, Pavia, 27100, Italy
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy.,Department of Clinical Surgical Diagnostic & Pediatric Sciences, University of Pavia, Viale Camillo Golgi 19, Pavia, 27100, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, 27100, Italy.,Deptartment of Internal Medicine & Medical Therapy, University of Pavia, Viale Camillo Golgi 19, Pavia, 27100, Italy
| |
Collapse
|
16
|
Ezzatpour S, Mondragon Portocarrero ADC, Cardelle-Cobas A, Lamas A, López-Santamarina A, Miranda JM, Aguilar HC. The Human Gut Virome and Its Relationship with Nontransmissible Chronic Diseases. Nutrients 2023; 15:977. [PMID: 36839335 PMCID: PMC9960951 DOI: 10.3390/nu15040977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The human gastrointestinal tract contains large communities of microorganisms that are in constant interaction with the host, playing an essential role in the regulation of several metabolic processes. Among the gut microbial communities, the gut bacteriome has been most widely studied in recent decades. However, in recent years, there has been increasing interest in studying the influences that other microbial groups can exert on the host. Among them, the gut virome is attracting great interest because viruses can interact with the host immune system and metabolic functions; this is also the case for phages, which interact with the bacterial microbiota. The antecedents of virome-rectification-based therapies among various diseases were also investigated. In the near future, stool metagenomic investigation should include the identification of bacteria and phages, as well as their correlation networks, to better understand gut microbiota activity in metabolic disease progression.
Collapse
Affiliation(s)
- Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alexandre Lamas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Aroa López-Santamarina
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T, Lan P. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022; 81:104113. [PMID: 35753153 PMCID: PMC9240800 DOI: 10.1016/j.ebiom.2022.104113] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
The human gastrointestinal tract harbours an abundance of viruses, collectively known as the gut virome. The gut virome is highly heterogeneous across populations and is linked to geography, ethnicity, diet, lifestyle, and urbanisation. The currently known function of the gut virome varies greatly across human populations, and much remains unknown. We review current literature on the human gut virome, and the intricate trans-kingdom interplay among gut viruses, bacteria, and the mammalian host underlying health and diseases. We summarise evidence on the use of the gut virome as diagnostic markers and a therapeutic target. We shed light on novel avenues of microbiome-inspired diagnosis and therapies. We also review pre-clinical and clinical studies on gut virome-rectification-based therapies, including faecal microbiota transplantation, faecal virome transplantation, and refined phage therapy. Our review suggests that future research effort should focus on unravelling the mechanisms exerted by gut viruses/phages in human pathophysiology, and on developing phage-prompted precision therapies.
Collapse
Affiliation(s)
- Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naoki Sugimura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; DKFZ-Hector Cancer Institute, Mannheim, Germany; Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Sharma T, Gupta A, Chauhan R, Bhat AA, Nisar S, Hashem S, Akhtar S, Ahmad A, Haris M, Singh M, Uddin S. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer Metastasis Rev 2022; 41:281-299. [PMID: 35511379 PMCID: PMC9363391 DOI: 10.1007/s10555-022-10026-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, PA, Philadelphia, USA.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
19
|
Coker OO. Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer. J Gastroenterol Hepatol 2022; 37:256-262. [PMID: 34825404 DOI: 10.1111/jgh.15738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
The gastrointestinal tract houses millions of microbes collectively referred to as the gut microbiome. The gut microbes comprise of bacteria, viruses, fungi, archaea, and microscopic eukaryotes, which co-evolved or colonize the gut forming complex symbiotic and mutualistic relationships. A state of homeostasis is required between host and gut microbiome relationship to maintain several host beneficial processes. Alterations in the taxonomic and functional composition of the gut microbes are associated with several human diseases including gastrointestinal cancers. Owed to their overwhelming abundance and ease of characterization, several studies focus on the role of bacteria in gastrointestinal cancers. There is however growing evidence that non-bacteria gut microbes are associated with the pathogenesis of gastrointestinal cancers. This review details the association of non-bacteria gut microbes including fungi, viruses, and archaea and their potential manipulation in the prevention and treatment of human gastrointestinal cancers.
Collapse
Affiliation(s)
- Olabisi Oluwabukola Coker
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Ibragimova S, Ramachandran R, Ali FR, Lipovich L, Ho SB. Dietary Patterns and Associated Microbiome Changes that Promote Oncogenesis. Front Cell Dev Biol 2021; 9:725821. [PMID: 34869313 PMCID: PMC8633417 DOI: 10.3389/fcell.2021.725821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The recent increases in cancer incidences have been linked to lifestyle changes that result in obesity and metabolic syndrome. It is now evident that these trends are associated with the profound changes that occur in the intestinal microbiome, producing altered microbial population signatures that interact, directly or indirectly, with potentially pro-carcinogenic molecular pathways of transcription, proliferation, and inflammation. The effects of the entire gut microbial population on overall health are complex, but individual bacteria are known to play important and definable roles. Recent detailed examinations of a large number of subjects show a tight correlation between habitual diets, fecal microbiome signatures, and markers of metabolic health. Diets that score higher in healthfulness or diversity such as plant-based diets, have altered ratios of specific bacteria, including an increase in short-chain fatty acid producers, which in turn have been linked to improved metabolic markers and lowered cancer risk. Contrarily, numerous studies have implicated less healthy, lower-scoring diets such as the Western diet with reduced intestinal epithelial defenses and promotion of specific bacteria that affect carcinogenic pathways. In this review, we will describe how different dietary patterns affect microbial populations in the gut and illustrate the subsequent impact of bacterial products and metabolites on molecular pathways of cancer development, both locally in the gut and systemically in distant organs.
Collapse
Affiliation(s)
- Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Samuel B Ho
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE.,Department of Medicine, Mediclinic City Hospital, Dubai Healthcare City, Dubai, UAE
| |
Collapse
|
22
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
23
|
Virulence factor-related gut microbiota genes and immunoglobulin A levels as novel markers for machine learning-based classification of autism spectrum disorder. Comput Struct Biotechnol J 2020; 19:545-554. [PMID: 33510860 PMCID: PMC7809157 DOI: 10.1016/j.csbj.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition for which early identification and intervention is crucial for optimum prognosis. Our previous work showed gut Immunoglobulin A (IgA) to be significantly elevated in the gut lumen of children with ASD compared to typically developing (TD) children. Gut microbiota variations have been reported in ASD, yet not much is known about virulence factor-related gut microbiota (VFGM) genes. Upon determining the VFGM genes distinguishing ASD from TD, this study is the first to utilize VFGM genes and IgA levels for a machine learning-based classification of ASD. Sequence comparisons were performed of metagenome datasets from children with ASD (n = 43) and TD children (n = 31) against genes in the virulence factor database. VFGM gene composition was associated with ASD phenotype. VFGM gene diversity was higher in children with ASD and positively correlated with IgA content. As Group B streptococcus (GBS) genes account for the highest proportion of 24 different VFGMs between ASD and TD and positively correlate with gut IgA, GBS genes were used in combination with IgA and VFGMs diversity to distinguish ASD from TD. Given that VFGM diversity, increases in IgA, and ASD-enriched VFGM genes were independent of sex and gastrointestinal symptoms, a classification method utilizing them will not pertain only to a specific subgroup of ASD. By introducing the classification value of VFGM genes and considering that VFs can be isolated in pregnant women and newborns, these findings provide a novel machine learning-based early risk identification method for ASD.
Collapse
|