1
|
Béraud BL, Meichtry A, Hanusch KU, Hilfiker R. Language errors in pain medicine: An umbrella review. THE JOURNAL OF PAIN 2024:104738. [PMID: 39577823 DOI: 10.1016/j.jpain.2024.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Errors in language are common in pain medicine, but the extent of such errors has not been systematically measured. This pre-registered umbrella review explored Embase, PubMed, Medline and CINAHL and seeks to quantify the prevalence of errors in language in review articles since the last IASP definition revision. To be eligible, studies must have met the following criteria: 1) Primary aim was stated as to provide neurophysiological explanations of nociception and/or pain in humans in context of a pathology/condition; 2) Any type of review article; 3) Written in English; 4) Published in a peer-reviewed journal. Studies were excluded if they met any of the following criteria: 5) Published prior to the last revision of the IASP definition; 6) Published after May 2023; 7) Published in a predatory journal. Out of 5470 articles screened, 48 review articles met the inclusion criteria. All articles contained at least one error in language, there were no differences in the proportions of errors in language in review articles between years of publication, and various predictors were mostly not associated with a higher or lower number of errors in language counts in articles. Our findings reveal the need for heightened awareness among researchers, clinicians, journals and editorial boards regarding the prevalence and impact of these errors. Given our findings and their limitations, further research should focus on examining the contextual influence of misnomer usage and replication of these results. PERSPECTIVE: This umbrella review explored the main biomedical databases to see how many review articles contained language errors. Our findings underscore the imperative for prompt action in regulating pain medicine terminology. PRE-REGISTRATION: This umbrella review was pre-registered on OSF registries (https://doi.org/10.17605/osf.io/kau8m). ONLINE MATERIAL: https://osf.io/kdweg/.
Collapse
Affiliation(s)
| | - André Meichtry
- Bern University of Applied Sciences, Health, Bern, Switzerland
| | - Kay-Uwe Hanusch
- Bern University of Applied Sciences, Health, Bern, Switzerland
| | | |
Collapse
|
2
|
Sánchez-Martínez C, Grueso E, Calvo-López T, Martinez-Ortega J, Ruiz A, Almendral JM. VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications. Cells 2024; 13:1815. [PMID: 39513922 PMCID: PMC11545703 DOI: 10.3390/cells13211815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF's functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF-virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Esther Grueso
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Afiadenyo M, Adams L, Agoni C, Moane S, Mckeon-Bennett M, Obiri-Yeboah D, Singh J. Computational Screening of Neuropilin-1 Unveils Novel Potential Anti-SARS-CoV-2 Therapeutics. Chem Biodivers 2023; 20:e202301227. [PMID: 37878727 DOI: 10.1002/cbdv.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Neuropilin 1 (NRP-1) inhibition has shown promise in reducing the infectivity of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and preventing the virus entry into nerve tissues, thereby mitigating neurological symptoms in COVID-19 patients. In this study, we employed virtual screening, including molecular docking, Molecular Dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations, to identify potential NRP-1 inhibitors. From a compendium of 1930 drug-like natural compounds, we identified five potential leads: CNP0435132, CNP0435311, CNP0424372, CNP0429647, and CNP0427474, displaying robust binding energies of -8.2, -8.1, -10.7, -8.2, and -8.2 kcal/mol, respectively. These compounds demonstrated interactions with critical residues Tyr297, Trp301, Thr316, Asp320, Ser346, Thr349, and Tyr353 located within the b1 subdomain of NRP-1. Furthermore, MD simulations and MM-PBSA calculations affirmed the stability of the complexes formed, with average root mean square deviation, radius of gyration, and solvent accessible surface area values of 0.118 nm, 1.516 nm, and 88.667 nm2 , respectively. Notably, these lead compounds were estimated to penetrate the blood-brain barrier and displayed antiviral properties, with Pa values ranging from 0.414 to 0.779. The antagonistic effects of these lead compounds merit further investigation, as they hold the potential to serve as foundational scaffolds for the development of innovative therapeutics aimed at reducing the neuroinfectivity of SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Afiadenyo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Latif Adams
- Technological University of Shannon: Midlands Midwest Midlands Campus, Athlone, Ireland
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Clement Agoni
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield D04, V1 W8, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- West African Centre for Computational Research and Innovation, Ghana
| | - Siobhan Moane
- Technological University of Shannon: Midlands Midwest Midlands Campus, Athlone, Ireland
| | | | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, Delhi, India
| |
Collapse
|
4
|
Ishitoku M, Mokuda S, Araki K, Watanabe H, Kohno H, Sugimoto T, Yoshida Y, Sakaguchi T, Masumoto J, Hirata S, Sugiyama E. Tumor Necrosis Factor and Interleukin-1β Upregulate NRP2 Expression and Promote SARS-CoV-2 Proliferation. Viruses 2023; 15:1498. [PMID: 37515185 PMCID: PMC10383177 DOI: 10.3390/v15071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) and the auxiliary receptor Neuropilin-1 (NRP1) to enter host cells. NRP1 has another isoform, NRP2, whose function in COVID-19 has seldom been reported. In addition, although patients with severe cases of COVID-19 often exhibit increased levels of proinflammatory cytokines, the relationship between these cytokines and SARS-CoV-2 proliferation remains unknown. The aim of this study is to clarify the roles of proinflammatory cytokines in Neuropilin expressions and in SARS-CoV-2 infection. To identify the expression patterns of NRP under inflamed and noninflamed conditions, next-generation sequencing (RNA-seq), immunohistochemistry, quantitative real-time PCR, and Western blotting were performed using primary cultured fibroblast-like synoviocytes, MH7A (immortalized cell line of human rheumatoid fibroblast-like synoviocytes), immortalized MRC5 (human embryonic lung fibroblast), and synovial tissues. To measure viral proliferative capacity, SARS-CoV-2 infection experiments were also performed. NRP2 was upregulated in inflamed tissues. Cytokine-stimulated human fibroblast cell lines, such as MH7A and immortalized MRC5, revealed that NRP2 expression increased with co-stimulation of tumor necrosis factor α (TNFα) and interleukin-1 beta (IL-1β) and was suppressed with anti-TNFα antibody alone. TNFα and IL-1β promoted SARS-CoV-2 proliferation and Spike protein binding. The viral proliferation coincided with the expression of NRP2, which was modulated through plasmid transfections. Our results revealed that proinflammatory cytokines, including TNFα, contribute to NRP2 upregulation and SARS-CoV-2 proliferation in host human cells.
Collapse
Affiliation(s)
- Michinori Ishitoku
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Kei Araki
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hirofumi Watanabe
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroki Kohno
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tomohiro Sugimoto
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yusuke Yoshida
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon 791-0295, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Goswami S, Samanta D, Duraivelan K. Molecular mimicry of host short linear motif-mediated interactions utilised by viruses for entry. Mol Biol Rep 2023; 50:4665-4673. [PMID: 37016039 PMCID: PMC10072811 DOI: 10.1007/s11033-023-08389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Viruses are obligate intracellular parasites that depend on host cellular machinery for performing even basic biological functions. One of the many ways they achieve this is through molecular mimicry, wherein the virus mimics a host sequence or structure, thereby being able to hijack the host's physiological interactions for its pathogenesis. Such adaptations are specific recognitions that often confer tissue and species-specific tropisms to the virus, and enable the virus to utilise previously existing host signalling networks, which ultimately aid in further steps of viral infection, such as entry, immune evasion and spread. A common form of sequence mimicry utilises short linear motifs (SLiMs). SLiMs are short-peptide sequences that mediate transient interactions and are major elements in host protein interaction networks. This work is aimed at providing a comprehensive review of current literature of some well-characterised SLiMs that play a role in the attachment and entry of viruses into host cells, which mimic physiological receptor-ligand interactions already present in the host. Considering recent trends in emerging diseases, further research on such motifs involved in viral entry can help in the discovery of previously unknown cellular receptors utilised by viruses, as well as help in the designing of targeted therapeutics such as vaccines or inhibitors directed towards these interactions.
Collapse
Affiliation(s)
- Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kheerthana Duraivelan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Folic Acid and Leucovorin Have Potential to Prevent SARS-CoV-2-Virus Internalization by Interacting with S-Glycoprotein/Neuropilin-1 Receptor Complex. Molecules 2023; 28:molecules28052294. [PMID: 36903540 PMCID: PMC10005443 DOI: 10.3390/molecules28052294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.
Collapse
|
7
|
Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022; 10:2452. [PMID: 36557705 PMCID: PMC9784975 DOI: 10.3390/microorganisms10122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long coronavirus disease-19 (COVID-19) is a newly discovered syndrome characterized by multiple organ manifestations that persist for weeks to months, following the recovery from acute disease. Occasionally, neurological and cardiovascular side effects mimicking long COVID-19 have been reported in recipients of COVID-19 vaccines. Hypothetically, the clinical similarity could be due to a shared pathogenic role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike (S) protein produced by the virus or used for immunization. The S protein can bind to neuropilin (NRP)-1, which normally functions as a coreceptor for the vascular endothelial growth factor (VEGF)-A. By antagonizing the docking of VEGF-A to NRP-1, the S protein could disrupt physiological pathways involved in angiogenesis and nociception. One consequence could be the increase in unbound forms of VEGF-A that could bind to other receptors. SARS-CoV-2-infected individuals may exhibit increased plasma levels of VEGF-A during both acute illness and convalescence, which could be responsible for diffuse microvascular and neurological damage. A few studies suggest that serum VEGF-A may also be a potential biomarker for long COVID-19, whereas evidence for COVID-19 vaccines is lacking and merits further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
8
|
Maleksabet H, Rezaee E, Tabatabai SA. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr Pharm Des 2022; 28:3583-3591. [PMID: 36420875 DOI: 10.2174/1381612829666221123111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARSCoV- 2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under in-vitro. DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.
Collapse
Affiliation(s)
- Hanieh Maleksabet
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Charitou T, Kontou PI, Tamposis IA, Pavlopoulos GA, Braliou GG, Bagos PG. Drug genetic associations with COVID-19 manifestations: a data mining and network biology approach. THE PHARMACOGENOMICS JOURNAL 2022; 22:294-302. [PMID: 36171417 PMCID: PMC9517961 DOI: 10.1038/s41397-022-00289-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/16/2022] [Accepted: 09/08/2022] [Indexed: 01/08/2023]
Abstract
Available drugs have been used as an urgent attempt through clinical trials to minimize severe cases of hospitalizations with Coronavirus disease (COVID-19), however, there are limited data on common pharmacogenomics affecting concomitant medications response in patients with comorbidities. To identify the genomic determinants that influence COVID-19 susceptibility, we use a computational, statistical, and network biology approach to analyze relationships of ineffective concomitant medication with an adverse effect on patients. We statistically construct a pharmacogenetic/biomarker network with significant drug-gene interactions originating from gene-disease associations. Investigation of the predicted pharmacogenes encompassing the gene-disease-gene pharmacogenomics (PGx) network suggests that these genes could play a significant role in COVID-19 clinical manifestation due to their association with autoimmune, metabolic, neurological, cardiovascular, and degenerative disorders, some of which have been reported to be crucial comorbidities in a COVID-19 patient.
Collapse
|
10
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
11
|
Alipoor SD, Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep 2022; 49:10715-10727. [PMID: 35754059 PMCID: PMC9244107 DOI: 10.1007/s11033-022-07700-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- grid.419420.a0000 0000 8676 7464Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic, Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Mirsaeidi
- grid.15276.370000 0004 1936 8091Division of Pulmonary, Critical Care, and Sleep Disease, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL USA
| |
Collapse
|
12
|
Chapoval SP, Keegan AD. Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection. Mol Med 2021; 27:162. [PMID: 34961486 PMCID: PMC8711287 DOI: 10.1186/s10020-021-00423-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| |
Collapse
|
13
|
Jobe A, Vijayan R. Characterization of peptide binding to the SARS-CoV-2 host factor neuropilin. Heliyon 2021; 7:e08251. [PMID: 34722943 PMCID: PMC8540010 DOI: 10.1016/j.heliyon.2021.e08251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 10/21/2021] [Indexed: 11/04/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health concern. It is now well established that the spike (S) protein of SARS-CoV-2 interacts with its primary host receptor, the angiotensin converting enzyme 2 (ACE2). Additionally, the interaction of S with the neuropilin (NRP) receptor has been reported to facilitate viral entry. SARS-CoV-2 S protein binds to neuropilin-1 (NRP1) by virtue of a CendR motif which terminates with either an arginine or lysine. Furthermore, a number of different peptide sequences have been reported to bind to the same site in NRP1 including vascular endothelial growth factor A and other viral proteins. To gain a deeper understanding of additional factors besides the C-terminal arginine that may favour high NRP1 binding, several modelled peptides were investigated using triplicate 1 μs molecular dynamics simulations. A C-end histidine failed to exhibit strong NRP1 affinity. Some previously reported factors that increase binding affinity and secure NRP1 receptor activation was observed in the NRP1-peptide complexes studied and such complexes had higher molecular mechanics-generalized Born surface area based free energy of binding. Additionally, the results also highlight the relevance of an exposed arginine at its canonical location as capping it blocked arginine from engaging key residues at the NRP1 receptor site that are indispensable for functional binding; and that the presence of proline reinforces the C-terminal arginine. Given that stable NRP1 binding is crucial for viral uptake, stable interactions should be accounted for in the design of potential drugs and treatment routes to target or disrupt this interface, considering the S1-NRP1 interaction as well as its endogenous VEGF-A ligand that is associated with nociception.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.,The Big Data Analytics Center, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Mourad D, Azar NS, Azar ST. Diabetic Nephropathy and COVID-19: The Potential Role of Immune Actors. Int J Mol Sci 2021; 22:ijms22157762. [PMID: 34360529 PMCID: PMC8346171 DOI: 10.3390/ijms22157762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
Nowadays, type II diabetes mellitus, more specifically ensuing diabetic nephropathy, and severe COVID-19 disease are known to be closely associated. The exact mechanisms behind this association are less known. An implication for the angiotensin-converting enzyme 2 remains controversial. Some researchers have started looking into other potential actors, such as neuropilin-1, mitochondrial glutathione, vitamin D, and DPP4. In particular, neuropilin-1 seems to play an important role in the underlying mechanism linking COVID-19 and diabetic nephropathy. We suggest, based on the findings in this review, that its up-regulation in the diabetic kidney facilitates viral entry in this tissue, and that the engagement of both processes leads to a depletion of neuropilin-1, which was demonstrated to be strongly associated with the pathogenesis of DN. More studies are needed to confirm this hypothesis, and research should be directed towards elucidating the potential roles of all these suggested actors and eventually discovering new therapeutic strategies that could reduce the burden of COVID-19 in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Diane Mourad
- Department of Internal Medicine, Endocrinology Division, Faculty of Medicine and Medical Center, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Nadim S. Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Sami T. Azar
- Department of Internal Medicine, Endocrinology Division, Faculty of Medicine and Medical Center, American University of Beirut, Beirut 11-0236, Lebanon;
- Endocrinology, Diabetes and Metabolism Division, American University of Beirut Medical Center, Beirut 11-0236, Lebanon
- Correspondence: ; Tel.: +961-323-4250
| |
Collapse
|
15
|
Smarz-Widelska I, Grywalska E, Morawska I, Forma A, Michalski A, Mertowski S, Hrynkiewicz R, Niedźwiedzka-Rystwej P, Korona-Glowniak I, Parczewski M, Załuska W. Pathophysiology and Clinical Manifestations of COVID-19-Related Acute Kidney Injury-The Current State of Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:7082. [PMID: 34209289 PMCID: PMC8268979 DOI: 10.3390/ijms22137082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
The continually evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in a vast number of either acute or chronic medical impairments of a pathophysiology that is not yet fully understood. SARS-CoV-2 tropism for the organs is associated with bilateral organ cross-talks as well as targeted dysfunctions, among which acute kidney injury (AKI) seems to be highly prevalent in infected patients. The need for efficient management of COVID-related AKI patients is an aspect that is still being investigated by nephrologists; however, another reason for concern is a disturbingly high proportion of various types of kidney dysfunctions in patients who have recovered from COVID-19. Even though the clinical picture of AKI and COVID-related AKI seems to be quite similar, it must be considered that regarding the latter, little is known about both the optimal management and long-term consequences. These discrepancies raise an urgent need for further research aimed at evaluating the molecular mechanisms associated with SARS-CoV-2-induced kidney damage as well as standardized management of COVID-related AKI patients. The following review presents a comprehensive and most-recent insight into the pathophysiology, clinical manifestations, recommended patient management, treatment strategies, and post-mortem findings in patients with COVID-related AKI.
Collapse
Affiliation(s)
- Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, 20-718 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland;
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-954 Lublin, Poland;
| |
Collapse
|
16
|
Vianello A, Del Turco S, Babboni S, Silvestrini B, Ragusa R, Caselli C, Melani L, Fanucci L, Basta G. The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity? Biomedicines 2021; 9:710. [PMID: 34201505 PMCID: PMC8301470 DOI: 10.3390/biomedicines9070710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic. Following the binding between S1 subunit and ACE2 receptor, different serine proteases, including TMPRSS2 and furin, trigger and participate in the fusion of the viral envelope with the host cell membrane. On the basis of the high virulence and pathogenicity of SARS-CoV-2, other receptors have been found involved for viral binding and invasiveness of host cells. This review comprehensively discusses the mechanisms underlying the binding of SARS-CoV2 to ACE2 and putative alternative receptors, and the role of potential co-receptors and proteases in the early stages of SARS-CoV-2 infection. Given the short therapeutic time window within which to act to avoid the devastating evolution of the disease, we focused on potential therapeutic treatments-selected mainly among repurposing drugs-able to counteract the invasive front of proteases and mild inflammatory conditions, in order to prevent severe infection. Using existing approved drugs has the advantage of rapidly proceeding to clinical trials, low cost and, consequently, immediate and worldwide availability.
Collapse
Affiliation(s)
- Annamaria Vianello
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Serena Del Turco
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Serena Babboni
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Beatrice Silvestrini
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, 56122 Pisa, Italy;
| | - Rosetta Ragusa
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Chiara Caselli
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Luca Melani
- Department of Territorial Medicine, ASL Toscana Nord-Ovest, 56121 Pisa, Italy;
| | - Luca Fanucci
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Giuseppina Basta
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| |
Collapse
|
17
|
Antony P, Vijayan R. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomed J 2021; 44:235-244. [PMID: 34193390 PMCID: PMC8059258 DOI: 10.1016/j.bj.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst medical emergencies that has hit the world in almost a century. The virus has now spread to a large number of countries/territories and has caused over three million deaths. Evidently, the virus has been mutating and adapting during this period. Significant effort has been spent on identifying these variations and their impact on transmission, virulence and pathogenicity of SARS-CoV-2. Binding of the SARS-CoV-2 spike protein to the angiotensin converting enzyme 2 (ACE2) promotes cellular entry. Therefore, human ACE2 variations could also influence susceptibility or resistance to the virus. A deeper understanding of the evolution and genetic variations in SARS-CoV-2 as well as ACE2 could contribute to the development of effective treatment and preventive measures. Here, we review the literature on SARS-CoV-2 and ACE2 variations and their role in COVID-19.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|