1
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Ho JSS, Ping TL, Paudel KR, El Sherkawi T, De Rubis G, Yeung S, Hansbro PM, Oliver BGG, Chellappan DK, Sin KP, Dua K. Exploring Bioactive Phytomedicines for Advancing Pulmonary Infection Management: Insights and Future Prospects. Phytother Res 2024. [PMID: 39385504 DOI: 10.1002/ptr.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024]
Abstract
Pulmonary infections have a profound influence on global mortality rates. Medicinal plants offer a promising approach to address this challenge, providing nontoxic alternatives with higher levels of public acceptance and compliance, particularly in regions where access to conventional medications or diagnostic resources may be limited. Understanding the pathophysiology of viruses and bacteria enables researchers to identify biomarkers essential for triggering diseases. This knowledge allows the discovery of biological molecules capable of either preventing or alleviating symptoms associated with these infections. In this review, medicinal plants that have an effect on COVID-19, influenza A, bacterial and viral pneumonia, and tuberculosis are discussed. Drug delivery has been briefly discussed as well. It examines the effect of bioactive constituents of these plants and synthesizes findings from in vitro, in vivo, and clinical studies conducted over the past decade. In conclusion, many medicinal plants can be used to treat pulmonary infections, but further in-depth studies are needed as most of the current studies are only at preliminary stages. Extensive investigation and clinical studies are warranted to fully elucidate their mechanisms of action and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Joyce Siaw Syuen Ho
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Teh Li Ping
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, Australia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, Australia
| | - Brian Gregory George Oliver
- School of Life Science, University of Technology Sydney, Ultimo, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Keng Pei Sin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
3
|
Dilip Bhandare S. Exploration of medicinal plants as potential therapeutics against COVID-19: molecular insights and drug development prospects with other significant medicinal information a retrospective exposition. J Pharm Pharmacol 2024:rgae074. [PMID: 39173011 DOI: 10.1093/jpp/rgae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES The study aims to explore the potential of medicinal plants and their phytoconstituents as effective inhibitors of the coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus. The focus is on investigating specific medicinal plants known for their pharmacological properties, such as: antioxidant, anti-inflammatory, and immunomodulatory effects, to determine their viability in developing COVID-19 treatments. MATERIALS AND METHODS This study involves a comprehensive study of medicinal plants, including: Withania somnifera (Ashwagandha) and Ocimum sanctum (Holy Basil), known for their beneficial health effects. Molecular docking studies were conducted to assess the interactions between phytoconstituents from these plants and SARS-CoV-2 proteins. The compounds' drug-like characteristics and safety profiles were also evaluated to determine their potential as therapeutic agents. RESULTS The molecular docking studies revealed that the phytoconstituents from the studied medicinal plants exhibit favourable interactions with SARS-CoV-2 proteins, suggesting their potential as therapeutic targets. These compounds demonstrated promising drug-like characteristics and safety profiles, indicating their suitability for further development as COVID-19-fighting medications. DISCUSSION The results indicate that medicinal plants and their bioactive substances hold significant potential for developing therapies against COVID-19. The ability of these organic substances to interact with key viral proteins and provide various therapeutic benefits highlights their potential as multi-functional treatment options. However, further research is necessary to confirm these findings and to understand the full scope of their therapeutic efficacy and safety in clinical settings. CONCLUSIONS Medicinal plants and their phyto-constituents represent a promising avenue for developing effective treatments for COVID-19. The favourable interactions with SARS-CoV-2 proteins and the promising drug-like characteristics observed in this study suggest that these natural compounds could be integral in the fight against the COVID-19 pandemic. Further research and clinical trials are essential to fully validating their potential and translating these findings into practical medical applications.
Collapse
Affiliation(s)
- Saurabh Dilip Bhandare
- Nashik Gramin Shikshan Prasarak Mandal's, College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambak, Nashik 422213, Maharashtra, India
| |
Collapse
|
4
|
Wimalawansa SJ. Unlocking insights: Navigating COVID-19 challenges and Emulating future pandemic Resilience strategies with strengthening natural immunity. Heliyon 2024; 10:e34691. [PMID: 39166024 PMCID: PMC11334859 DOI: 10.1016/j.heliyon.2024.e34691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
The original COVID-19 vaccines, developed against SARS-CoV-2, initially mitigated hospitalizations. Bivalent vaccine boosters were used widely during 2022-23, but the outbreaks persisted. Despite this, hospitalizations, mortality, and outbreaks involving dominant mutants like Alpha and Delta increased during winters when the population's vitamin D levels were at their lowest. Notably, 75 % of human immune cell/system functions, including post-vaccination adaptive immunity, rely on adequate circulatory vitamin D levels. Consequently, hypovitaminosis compromises innate and adaptive immune responses, heightening susceptibility to infections and complications. COVID-19 vaccines primarily target SARS-CoV-2 Spike proteins, thus offering only a limited protection through antibodies. mRNA vaccines, such as those for COVID-19, fail to generate secretory/mucosal immunity-like IgG responses, rendering them ineffective in halting viral spread. Additionally, mutations in the SARS-CoV-2 binding domain reduce immune recognition by vaccine-derived antibodies, leading to immune evasion by mutant viruses like Omicron variants. Meanwhile, the repeated administration of bivalent boosters intended to enhance efficacy resulted in the immunoparesis of recipients. As a result, relying solely on vaccines for outbreak prevention, it became less effective. Dominant variants exhibit increased affinity to angiotensin-converting enzyme receptor-2, enhancing infectivity but reducing virulence. Meanwhile, spike protein-related viral mutations do not impact the potency of widely available, repurposed early therapies, like vitamin D and ivermectin. With the re-emergence of COVID-19 and impending coronaviral pandemics, regulators and health organizations should proactively consider approval and strategic use of cost-effective adjunct therapies mentioned above to counter the loss of vaccine efficacy against emerging variants and novel coronaviruses and eliminate vaccine- and anti-viral agents-related serious adverse effects. Timely implementation of these strategies could reduce morbidity, mortality, and healthcare costs and provide a rational approach to address future epidemics and pandemics. This perspective critically reviews relevant literature, providing insights, justifications, and viewpoints into how the scientific community and health authorities can leverage this knowledge cost-effectively.
Collapse
Affiliation(s)
- Sunil J. Wimalawansa
- Medicine, Endocrinology, and Nutrition, B14 G2, De Soyza Flats, Moratuwa, Sri Lanka
| |
Collapse
|
5
|
Bhandari RB, Balkrishna A, Maheshkumar K, Arumugam VA. Traditional Formulations for Managing COVID-19: A Systematic Review. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:420-430. [PMID: 37972056 DOI: 10.1089/jicm.2023.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Background: The advancing etiopathogenesis, diagnosis, and treatment of the global coronavirus disease 2019 (COVID-19) pandemic have prompted the medical community to consider Ayurveda, Siddha, and Unani as add-on preventive and therapeutic options. Objective: To explore the effect of standalone or integrative Traditional Formulations (TFs) on selected clinical symptoms and biomarkers of COVID-19. Search strategy: Out of 465 articles identified from PubMed, ScienceDirect, and Scopus, 17 randomized controlled trials (RCTs) with 1646 COVID-19 patients published from January 2020 to February 2022 were included in the study. Inclusion criteria: RCTs that compared the effect of standalone/integrative TFs in decoction, tablet, and powder forms with placebo plus standard care (SC)/placebo/SC as controls involving mild to severe symptomatic COVID-19 patients were included. Data extraction and analysis: Three reviewers independently assessed the titles and abstracts of each article based on the inclusion after deleting duplicates. The relevant full texts were retrieved and examined, and then their data were extracted and double-checked by three independent reviewers using prepared data extraction forms. The primary outcome variables were reverse transcription polymerase chain reaction, fever, cough, dyspnea, myalgia, headache, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and D-dimer. Results: The effect of different TFs or integrative TFs was more to inhibit severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) than the controls. There was an increase in fever and cough, a decrease in dyspnea, myalgia, headache, and ESR, no change in CRP, and a slight increase in D-dimer as an effect of TFs. Conclusions: Integrative or standalone TF may be the inexpensive preventive and therapeutic option to inhibit SARS-CoV-2 and its clinical symptoms.
Collapse
Affiliation(s)
- Rudra B Bhandari
- Department of Yoga Science, University of Patanjali, Haridwar, India
| | | | - Kuppusamy Maheshkumar
- Department of Physiology, Government Yoga and Naturopathy Medical College and Hospital, Chennai, India
| | - Velan A Arumugam
- University of Patanjali, Haridwar, India
- Department of Yoga, International Institute of Yoga and Naturopathy Medical College, Chengalpattu, Chennai, India
| |
Collapse
|
6
|
Umer M, Naveed A, Maryam Q, Cheema HA, Shahid A, Hermis AH, Chinnam S, Swed S, Sahra S. Nigella sativa for the treatment of COVID-19 patients: A rapid systematic review and meta-analysis of randomized controlled trials. Food Sci Nutr 2024; 12:2061-2067. [PMID: 38455176 PMCID: PMC10916652 DOI: 10.1002/fsn3.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024] Open
Abstract
Nigella sativa is an herbal therapy for various afflictions. It has some potential to be a promising option as an efficacious treatment for COVID-19 patients that can contribute to global healthcare as a relatively cheap therapy but evidence of its use from randomized controlled trials (RCTs) is limited. Therefore, to explore the effect of N. sativa in combating COVID-19, we undertook this meta-analysis. We searched several databases to retrieve all RCTs investigating N. sativa for the treatment of COVID-19 as compared to placebo or standard care. We used RevMan 5.4 for all analyses with risk ratio (RR) or odds ratio (OR) as the effect measures. We included a total of seven RCTs in this review. N. sativa significantly reduced the risk of all-cause mortality in patients with COVID-19 compared to the control group (RR 0.27, 95% CI: 0.10 to 0.72; I 2 = 0%). N. sativa significantly reduced the rate of viral PCR positivity (RR 0.62, 95% CI: 0.39 to 0.97; I 2 = 0%). We did not find any significant difference in the risk of hospitalization (RR 0.26, 95% CI: 0.04 to 1.54; I 2 = 0%) and the rate of no recovery (OR 0.48, 95% CI: 0.20 to 1.15; I 2 = 84%) between the two groups. N. sativa is an easily available herbal medicine that may decrease the risk of mortality and improve virological clearance in COVID-19 patients. However, our results are limited by the small number of RCTs available. Further large-scale RCTs are needed to better understand the anti-inflammatory and antiviral effects of N. sativa in COVID-19 patients.
Collapse
Affiliation(s)
- Mohammad Umer
- Division of Infectious Diseases, Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Aiman Naveed
- Division of Infectious Diseases, Department of MedicineKing Edward Medical UniversityLahorePakistan
| | | | - Huzaifa Ahmad Cheema
- Division of Infectious Diseases, Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Abia Shahid
- Division of Infectious Diseases, Department of MedicineKing Edward Medical UniversityLahorePakistan
| | | | - Sampath Chinnam
- Department of ChemistryM. S. Ramaiah Institute of Technology (Affiliated with Visvesvaraya Technological University, Belgaum)BengaluruKarnatakaIndia
| | - Sarya Swed
- Faculty of MedicineAleppo UniversityAleppoSyria
| | - Syeda Sahra
- Department of Infectious DiseasesUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
7
|
Ketebchi S, Papari Moghadamfard M. A review on the effective natural compounds of medicinal plants on the COVID-19. Nat Prod Res 2024:1-14. [PMID: 38333915 DOI: 10.1080/14786419.2024.2309322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
In this review out of 300 selected articles 70 articles were evaluated, and the most significant compounds impacting COVID-19 and their mechanism of action were introduced. The compounds belong to four categories as follow: Phenolic, Flavonoid, Terpenoid, and Alkaloid compounds. In the phenol groups, the most effective compounds are scutellarin (suppressor of COVID-19 virus), thymol and carvacrol (the most inhibitory effect on COVID-19 virus), in the flavonoid groups, hesperdin (a strong inhibitor on COVID-19), in the terpenoids, methyl tanshinonate and sojil COVID-19 inhibitory effect) and 1,8-cineol (COVID-19 inhibitory effect) and in the last group, niglidine and quinoline alkaloid compounds (COVID-19 inhibitory effect) have been identified and introduced. These compounds have shown promising results due to their structure and effective mechanisms on COVID-19, so it can be an idea for researchers in this field to try to produce drugs by using natural compounds against the COVID-19 and Corona viruses.
Collapse
Affiliation(s)
- Saghar Ketebchi
- Department of Plant Pathology and Plant Protection (Microbiology), Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | |
Collapse
|
8
|
Maen A, Gok Yavuz B, Mohamed YI, Esmail A, Lu J, Mohamed A, Azmi AS, Kaseb M, Kasseb O, Li D, Gocio M, Kocak M, Selim A, Ma Q, Kaseb AO. Individual ingredients of NP-101 (Thymoquinone formula) inhibit SARS-CoV-2 pseudovirus infection. Front Pharmacol 2024; 15:1291212. [PMID: 38379905 PMCID: PMC10876831 DOI: 10.3389/fphar.2024.1291212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Thymoquinone TQ, an active ingredient of Nigella Sativa, has been shown to inhibit COVID-19 symptoms in clinical trials. Thymoquinone Formulation (TQF or NP-101) is developed as a novel enteric-coated medication derivative from Nigella Sativa. TQF consists of TQ with a favorable concentration and fatty acids, including palmitic, oleic, and linoleic acids. In this study, we aimed to investigate the roles of individual ingredients of TQF on infection of SARS-CoV-2 variants in-vitro, by utilizing Murine Leukemia Virus (MLV) based pseudovirus particles. We demonstrated that NP-101, TQ, and other individual ingredients, including oleic, linoleic, and palmitic acids inhibited SARS-CoV-2 infection in the MLV-based pseudovirus model. A large, randomized phase 2 study of NP-101 is planned in outpatient COVID-19 patients.
Collapse
Affiliation(s)
- Abdelrahim Maen
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston, TX, United States
- Weill Cornell Medical College, New York, NY, United States
- Cockrell Center for Advanced Therapeutic Phase I Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Betul Gok Yavuz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yehia I. Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abdullah Esmail
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston, TX, United States
| | - Jianming Lu
- Codex BioSolutions Inc., Rockville, MD, United States
| | - Amr Mohamed
- Seidman Cancer Center, Case Western University, Multidisciplinary NET Treatment, Cleveland, OH, United States
| | - Asfar S. Azmi
- School of Medicine, Wayne State University, Detroit, MI, United States
| | - Mohamed Kaseb
- Novatek Pharmaceuticals, Inc., Houston, TX, United States
| | - Osama Kasseb
- Novatek Pharmaceuticals, Inc., Houston, TX, United States
| | - Dan Li
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michelle Gocio
- Novatek Pharmaceuticals, Inc., Houston, TX, United States
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Abdelhafez Selim
- Philadelphia College of Osteopathic Medicine (PCOM), Philadelphia, PA, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Cyril AC, Ali NM, Nelliyulla Parambath A, Vazhappilly CG, Jan RK, Karuvantevida N, Aburamadan H, Lozon Y, Radhakrishnan R. Nigella sativa and its chemical constituents: pre-clinical and clinical evidence for their potential anti-SARS-CoV-2 effects. Inflammopharmacology 2024; 32:273-285. [PMID: 37966624 DOI: 10.1007/s10787-023-01385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.
Collapse
Affiliation(s)
- Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Najma Mohamed Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Anagha Nelliyulla Parambath
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Haneen Aburamadan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yosra Lozon
- Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Zaman R, Ravichandran V, Tan CK. Role of dietary supplements in the continuous battle against COVID-19. Phytother Res 2024; 38:1071-1088. [PMID: 38168043 DOI: 10.1002/ptr.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A sudden outbreak of the COVID-19 pandemic was a big blow to the world community on every level. Created by a novel coronavirus, SARS-CoV-2, which was previously unknown to the human immune system. The expert opinion almost immediately united on the fact that the most effective way of fighting the pandemic would be by building immunity artificially via a mass immunization program. However, it took about a year for the approval of the first vaccine against COVID-19. In the meantime, a big part of the general population started adapting nutritious diet plans and dietary supplements to boost natural immunity as a potential prophylactic strategy against SARS-CoV-2 infection. Whether they originate from mainstream medicine, such as synthetic supplements, or traditional herbal remedies in the form of single or poly-herbs, these supplements may comprise various components that exhibit immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial characteristics. There is a substantial body of predictions and expert opinions suggesting that enhancing one's diet with dietary supplements containing additional nutrients and bioactive compounds like vitamins, minerals, amino acids, fatty acids, phytochemicals, and probiotics can enhance the immune system's ability to develop resistance against COVID-19, although none of them have any conclusive evidence nor officially recommended by World Health Organization (WHO). The current review critically acclaims the gap between public perception-based preference and real evidence-based study to weigh the actual benefit of dietary supplements in relation to COVID-19 prevention and management.
Collapse
Affiliation(s)
- Rahela Zaman
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vignesh Ravichandran
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chung Keat Tan
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Majeed M, Nagabhushanam K, Lawrence L, Prakasan P, Mundkur L. The Mechanism of Anti-Viral Activity of a Novel, Hydroponically Selenium-Enriched Garlic Powder (SelenoForce ®) Against SARS-CoV-2 Virus. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241268100. [PMID: 39130207 PMCID: PMC11311149 DOI: 10.1177/27536130241268100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024]
Abstract
Abstract The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is far from over as new strains are emerging all over the world. Selenium as a micronutrient is important for immunity and also has anti-viral activity. Objective The study evaluated the activity of a Selenium enriched garlic powder (SeGP or SelenoForce®) against SARS-CoV-2 viral replication in vitro and explored its possible mechanism of action. Methods The anti-SARS-CoV-2 activity assay was carried out in Vero E6 cells in vitro. Human lung carcinoma A549 cells were used to study the antioxidant activity, expression of angiotensin converting enzyme (ACE), transmembrane protease, serine 2 (TMPRSS2) and the activity of proprotein convertase, and furin. Anti-inflammatory activity was evaluated in lipopolysaccharide-activated RAW 264.7 cells. Results SeGP inhibited the replication of SARS-CoV-2 in Vero E6 cells with an IC50 of 19.59 μg/ml. It exhibited significant antioxidant activity in vitro with IC50 value determined as 43.45 μg/ml. The Selenium enriched product inhibited the expression of ACE and TMPRSS2 and also showed inhibition of furin protease activity. In the presence of SeGP, the secretion of nitric oxide, interleukin -6 and TNF-α were reduced in activated RAW 264.7 macrophages. Conclusion The results of the study suggest that Selenium enriched garlic powder could inhibit SARS-CoV-2 multiplication in vitro, reduce oxidative stress and inflammatory mediators suggesting that it could be developed as an effective supplement or adjunct therapy to combat viral infections.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, India
- Sabinsa Corporation, East Windsor, NJ, USA
| | | | | | | | | |
Collapse
|
12
|
Alfaqeeh M, Zakiyah N, Suwantika AA, Shabrina Z. Evaluation of Global Post-Outbreak COVID-19 Treatment Interventions: A Systematic Review and Bibliometric Analysis of Randomized Controlled Trials. J Multidiscip Healthc 2023; 16:4193-4209. [PMID: 38152831 PMCID: PMC10752030 DOI: 10.2147/jmdh.s448786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose The outbreak of COVID-19 has led to a global pandemic with millions of cases and deaths. Many randomized controlled trials (RCTs) were conducted to establish effective therapies. However, the methodological quality of these trials is paramount, as it directly impacts the reliability of results. This systematic review and bibliometric analysis aim to assess the methodological approach, execution diversity, global trends, and distribution of COVID-19 treatment RCTs post-outbreak, covering the period from the second wave and onward up to the present. Methods We utilize articles from three electronic databases published from September 1, 2020, to April 1, 2023. Inclusion and exclusion criteria were applied to identify relevant RCTs. Data extraction involved the collection of various study details. Risk of Bias (RoB) 2 tool assessed methodological quality, while implementation variability was evaluated against registration information. Bibliometric analysis, including keyword co-occurrence and country distribution, used VOSviewer and Tableau software. Results Initially, 501 studies were identified, but only 22 met the inclusion criteria, of which 19 had registration information. The methodological quality assessment revealed deficiencies in five main domains: randomization process (36%), deviations from intended interventions (9%), missing outcome data (4%), measurement of the outcome (18%), and selection of reported results (4%). An analysis of alignment between research protocols and registration data revealed common deviations in eight critical aspects. Bibliometric findings showcased global collaboration in COVID-19 treatment RCTs, with Iran and Brazil prominently contributing, while keyword co-occurrence analysis illuminated prominent research trends and terms in study titles and abstracts. Conclusion This study offers valuable insights into the evaluation of COVID-19 treatment RCTs. The scarcity of high-quality RCTs highlights the importance of enhancing trial rigor and transparency in global health emergencies.
Collapse
Affiliation(s)
- Mohammed Alfaqeeh
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Neily Zakiyah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Auliya A Suwantika
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Bandung, Indonesia
| | - Zahratu Shabrina
- Department of Geography, King’s College London, London, UK
- Regional Innovation, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
13
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
14
|
Abo-Neima SE, El-Sheekh MM, Al-Zaban MI, El-Sayed AIM. Antibacterial and anti-corona virus (229E) activity of Nigella sativa oil combined with photodynamic therapy based on methylene blue in wound infection: in vitro and in vivo study. BMC Microbiol 2023; 23:274. [PMID: 37773101 PMCID: PMC10540405 DOI: 10.1186/s12866-023-03018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Microbial skin infections, antibiotic resistance, and poor wound healing are major problems, and new treatments are needed. Our study targeted solving this problem with Nigella sativa (NS) oil and photodynamic therapy based on methylene blue (MB-PDT). Antibacterial activity and minimum inhibitory concentration (MIC) were determined via agar well diffusion assay and broth microdilution, respectively. Transmission electron microscopy (TEM) proved deformations in Staphylococcus aureus ATCC 6538. Gas chromatography-mass spectrometry identified useful compounds that were suggested to be responsible for the potency of the oil. NS oil was tested as an antivirus against low pathogenic coronavirus (229E). Therapies examined, MB-PDT, NS, and MB-PDT + NS oil, to accelerate wound healing. The antibacterial efficacy against S. aureus was promising, with a MIC of 12.5% and TEM showing injured cells treated with NS oil. This oil inhibited 229E virus up to 42.85% and 32.14%. All tested therapies were successful in accelerating wound healing. The most successful was combined therapy (MB-PDT + NS oil), with a faster healing time. The combined therapy (MB-PDT + NS oil) reduced bacterial counts, which may be a key factor in accelerating wound healing. Skin wound histology was investigated; blood hematology and biochemical analysis did not change significantly after the safe combination treatment. A combination treatment could facilitate healing in a simple and inexpensive way in the future. Based on the results of the in vitro and in vivo studies, it was determined that NS oil had antibacterial and anti-corona virus activity when used in conjunction with photodynamic treatment based on methylene blue to treat wound infections.
Collapse
Affiliation(s)
- Sahar E Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mayasar I Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abeer I M El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, El-Beheira, Egypt
| |
Collapse
|
15
|
Singh H, Yadav B, Rai AK, Srivastava S, Saiprasad A, Jameela S, Singhal R, Muralidharan S, Mohan R, Chaudhary S, Rana R, Khanduri S, Sharma BS, Chandrasekhararao B, Srikanth N, Dhiman KS. Ashwagandha (Withania somnifera) and Shunthi (Zingiber officinale) in mild and moderate COVID-19: An open-label randomized controlled exploratory trial. Complement Ther Med 2023; 76:102966. [PMID: 37482107 DOI: 10.1016/j.ctim.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Ayurveda interventions have been used for prophylaxis and care during the COVID-19 pandemic in India and have shown promising results in promoting early clinical recovery from COVID-19. OBJECTIVE To assess the efficacy and safety of Ashwagandha [Withania somnifera (L.) Dunal] tablet and Shunthi (Zingiber officinale Roscoe) capsule in mild and moderate COVID-19 compared to conventional standard care. METHODS A randomized controlled exploratory trial was conducted at a designated COVID-19 care center in India with 60 participants having mild or moderate COVID-19. Ashwagandha, two tablets (250 mg each), and Shunthi, two capsules (500 mg each) twice daily for 15 days, were given orally to the participants in the Ayurveda group (AG) and the control group (CG) received conventional standard care. The outcome measures included clinical recovery rate, the proportion of participants with negative RT-PCR assay for COVID-19 on day 7 and day 15, mean time to attain clinical recovery, change in pro-inflammatory markers, serum IgG for COVID-19, HRCT chest findings, disease progression and incidence of adverse events (AE). RESULTS A total of 60 participants were enrolled, and the data of 48 participants (AG = 25 and CG = 23) were considered for the statistical analysis. The mean time for clinical recovery was reduced by almost 50 % in the AG (6.9 days) compared to CG (13.0 days) (p < 0.001). The proportion of participants who attained viral clearance in AG was 76.0 % compared to 60.8 % in the CG (RR= 1.24, 95 % CI: 0.841, 1.851, p-value = 0.270). Changes in the pro-inflammatory markers, serum IgG for COVID-19, and HRCT chest findings were comparable in both groups, and no AE or disease progression was reported. CONCLUSIONS The Ayurveda interventions, Ashwagandha and Shunthi, can effectively reduce the duration of clinical recovery and improve time for viral clearance in mild and moderate COVID-19. These interventions were observed to be safe and well-tolerated during the duration of the trial. TRIAL REGISTRATION Clinical Trial Registry of India - CTRI/2020/08/027224.
Collapse
Affiliation(s)
- Harbans Singh
- Department of Ayurveda, Central Ayurveda Research Institute, Patiala, Punjab, India
| | - Babita Yadav
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Amit K Rai
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India.
| | - Sumit Srivastava
- Department of Ayurveda, Shri Dhanwantry Ayurvedic College and Hospital, Chandigarh, India
| | - Ajv Saiprasad
- Department of Ayurveda, Regional Ayurveda Research Institute, Vijayawada, Andhra Pradesh, India
| | - Sophia Jameela
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Richa Singhal
- Former Statistical Investigator, Biostatistical Unit, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Sanuj Muralidharan
- Department of Ayurveda, Shri Dhanwantry Ayurvedic College and Hospital, Chandigarh, India
| | - Rijin Mohan
- Department of Ayurveda, Shri Dhanwantry Ayurvedic College and Hospital, Chandigarh, India
| | - Shikha Chaudhary
- Department of Ayurveda, Shri Dhanwantry Ayurvedic College and Hospital, Chandigarh, India
| | - Rakesh Rana
- Biostatistical Unit, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Shruti Khanduri
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Bhagwan S Sharma
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Bhogavalli Chandrasekhararao
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Narayanam Srikanth
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| | - Kartar S Dhiman
- Former Director-General, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, India
| |
Collapse
|
16
|
Badanta B, García MA, Jiménez ÁE, Lucchetti G, de Diego-Cordero R. The use of complementary and traditional medicine for the treatment of patients with COVID-19: A systematic review. Explore (NY) 2023; 19:646-662. [PMID: 36828766 PMCID: PMC9941070 DOI: 10.1016/j.explore.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/02/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the use and effectiveness of non-pharmacological therapies as part of the treatment of COVID-19 and its complications, either combined or not with the usual treatment. METHODS A systematic review was conducted between August and October 2021 using PubMed, Scopus, CINAHL and Web of Science databases. From a total of 204 articles identified, 33 were included in the final sample (15 clinical trials and 18 quasi-experimental studies). The methodological evaluation was carried out using STROBE and CONSORT guidelines. RESULTS There is a growing literature on the use of CAM for COVID-19. Most studies have shown positive findings, particularly for the use of TCM, other herbal therapies and acupuncture. Nevertheless, most studies were carried out in Asia and relied on quasi-experimental designs. The current evidence is available for physical outcomes (mortality rate, pneumonia resolution and other symptoms, negative PCR test, and hospitalization and ICU admissions) and for mental health outcomes. CONCLUSION Despite a positive role of CAM on COVID-19 outcomes, the evidence is still mostly based on quasi-experimental studies. More robust clinical trials are needed in order to generate better evidence in this area.
Collapse
Affiliation(s)
- Barbara Badanta
- Department of Nursing, Faculty of Nursing, Physiotherapy, and Podiatry, University of Sevilla, C/Avenzoar, 6, Spain
| | - Marta Alonso García
- Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Spain
| | | | - Giancarlo Lucchetti
- Department of Medicine, School of Medicine, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Rocío de Diego-Cordero
- Department of Nursing, Faculty of Nursing, Physiotherapy, and Podiatry, University of Sevilla, C/Avenzoar, 6, Spain.
| |
Collapse
|
17
|
Komariah M, Amirah S, Maulana S, Abdurrahman MF, Ibrahim K, Platini H, Lele JAJMN, Kohar K, Rahayuwati L, Firdaus MKZH. The Efficacy of Herbs as Complementary and Alternative Therapy in Recovery and Clinical Outcome Among People with COVID-19: A Systematic Review, Meta-Analysis, and Meta-Regression. Ther Clin Risk Manag 2023; 19:611-627. [PMID: 37484695 PMCID: PMC10362865 DOI: 10.2147/tcrm.s405507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023] Open
Abstract
Background The COVID-19 pandemic continues, and this condition has caused many cases in various countries around the world, resulting in more than 6 million deaths worldwide. Herbal medicines can act as immunomodulators, anti-inflammatories, antioxidants, antimicrobials, and others depending on the type and content of the herbs used. Previous studies have shown that several types of herbs, such as Echinacea purpurea, Curcumin or Turmeric, Nigella sativa, and Zingiber officinale, have proven their effectiveness as herbal plants for COVID-19. Methods We conducted a comprehensive literature search through five databases, namely, PubMed, Scopus, Embase, Wiley, and ProQuest to assess the efficacy of phytopharmaceuticals until July 12, 2022. We used the Cochrane RoB 2.0 for the quality assessment of the study. Results Phytopharmaceuticals significantly improved patients' recovery rate (OR = 3.54; p < 0.00001) and reduced deaths (OR = 0.24; p < 0.0001) compared to the control group. Phytopharmaceuticals also performed as a protective factor for COVID-19 clinical symptoms, such as dyspnea (OR = 0.42; p < 0.05) and myalgia (OR = 0.31; p = 0.02) compared to the control group. However, there is no statistically significant effect on cough (OR = 0.76; p = 0.61) and fever (OR = 0.60; p < 0.20). The results were not affected by patients' covariates [hypertension, diabetes mellitus, and cardiovascular diseases (meta-regression p > 0.05)]. Conclusion Herbal medicine has the potential as an adjuvant therapy in the management of COVID-19.
Collapse
Affiliation(s)
- Maria Komariah
- Department of Fundamental Nursing, Faculty of Nursing, Universitas Padjadjaran, Sumedang, Indonesia
| | - Shakira Amirah
- Undergraduate Medical Education, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Sidik Maulana
- Nursing Internship Program, Faculty of Nursing, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Kusman Ibrahim
- Department of Medical-Surgical Nursing, Faculty of Nursing, Universitas Padjadjaran, Sumedang, Indonesia
| | - Hesti Platini
- Department of Medical-Surgical Nursing, Faculty of Nursing, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Kelvin Kohar
- Clinical Clerkship Program, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo, Central Hospital, Jakarta, Indonesia
| | - Laili Rahayuwati
- Department of Community Health Nursing, Faculty of Nursing, Universitas Padjadjaran, Sumedang, Indonesia
| | - Mohd Khairul Zul Hasymi Firdaus
- Department of Medical-Surgical Nursing, Faculty of Nursing, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Soudani W, Zaki H, Alaqarbeh M, ELMchichi L, Bouachrine M, Hadjadj-Aoul FZ. Discover the Medication Potential of Algerian Medicinal Plants Against Sars-Cov-2 Main Protease (M pro): Molecular Docking, Molecular Dynamic Simulation, and ADMET Analysis. CHEMISTRY AFRICA 2023. [PMCID: PMC10238776 DOI: 10.1007/s42250-023-00684-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/16/2023] [Indexed: 07/25/2023]
Abstract
At the end of 2019, the world faced a big challenge and crisis caused by the SARS-CoV-2 virus. It spreads rapidly and is contagious; no treatment has officially been found. Algeria has used medicinal plants native to the country to defend against this pandemic. The objective of this paper is based on a molecular docking study of the active compounds of five Algerian medicinal plants with their target Sars-2Cov-2 virus protease to assess their potential antiviral activity against COVID-19. Innovative software and computerized databases were introduced into the in-silico domain, mainly the Auto-Dock software version 1.5.6. Similar results were obtained for all ligands, with a better chemical affinity of − 5.600 kcal/mol for the protease target 6LU7 and − 5.700 kcal/mol for the protease target 6WTT, with an average of − 4.227 kcal/mol and − 4.221 kcal/mol, respectively. The protease targets 6LU7 and 6WTT. In the ADME-Tox study, the active compounds of Algerian medicinal plants also demonstrated an excellent pharmacokinetic and toxic profile. Best scores were noted for cedrol, camphor, and eucalyptol. A molecular dynamics simulation showed the stability of camphor-6LU7 and cedrol-6LU7 complexes, favoring the biological potential of white artemisia and cypress plants.
Collapse
Affiliation(s)
- Wafa Soudani
- Therapeutic Chemistry Laboratory, Department of Pharmacy, Annaba Faculty of Medicine, 23000 Annaba, Algeria
| | - Hanane Zaki
- Biotechnology, Bioresources and Bioinformatics Laboratory, Higher School of Technology, 54000 Khenifra, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa, 19381 Jordan
| | - Larbi ELMchichi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, 50000 Meknes, Morocco
| | - Mohammed Bouachrine
- Biotechnology, Bioresources and Bioinformatics Laboratory, Higher School of Technology, 54000 Khenifra, Morocco
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, 50000 Meknes, Morocco
| | - Fatima Zohra Hadjadj-Aoul
- Therapeutic Chemistry Laboratory, Department of Pharmacy, Algiers Faculty of Medicine, 16000 Algiers, Algeria
| |
Collapse
|
19
|
Nayak SS, Naidu A, Sudhakaran SL, Vino S, Selvaraj G. Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease. J Pers Med 2023; 13:664. [PMID: 37109050 PMCID: PMC10142859 DOI: 10.3390/jpm13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Collapse
Affiliation(s)
- Smruti Sudha Nayak
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sajitha Lulu Sudhakaran
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundararajan Vino
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Department of Chemistry and Biochemistry, Concordia University-Loyola Campus, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
20
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
21
|
Li W. Dietary phytochemicals against COVID‐19: A focus on thymoquinone. EFOOD 2023. [DOI: 10.1002/efd2.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Affiliation(s)
- Wen‐Wu Li
- School of Pharmacy and Bioengineering Keele University Stoke‐on‐Trent UK
| |
Collapse
|
22
|
Li J, Chen W, Liu H, Liu H, Xiang S, You F, Jiang Y, Lin J, Zhang D, Zheng C. Pharmacologic effects approach of essential oils and their components on respiratory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115962. [PMID: 36529244 DOI: 10.1016/j.jep.2022.115962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EOs) are concentrated hydrophobic liquids with volatility and a unique aroma. Formed by aromatic plants as secondary metabolites, EOs have been used as traditional medicines to treat various health problems worldwide. Historical records show that herbs rich in EOs have been widely used to treat respiratory diseases in China, Europe, and many other regions. AIM OF THE REVIEW This review summarizes the traditional applications and modern pharmacological mechanisms of EOs derived from aromatic herbs and their active ingredients in respiratory diseases in preclinical and clinical trials through multitarget synergy. MATERIALS AND METHODS Information about EOs and respiratory diseases was collected from electronic databases, such as ScienceDirect, Web of Science, PubMed, Google Scholar, Baidu Scholar, and the China National Knowledge Infrastructure (CNKI). RESULTS This review presents the preventive and therapeutic effects of EOs on respiratory diseases, including chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, pulmonary infection, and pulmonary fibrosis. The molecular mechanisms of EOs in treating different lung diseases are summarized, including anti-inflammation, anti-oxidation, mucolytic, and immune regulatory mechanisms. CONCLUSIONS EOs show potential as supplements or substitutes for treating lung diseases.
Collapse
Affiliation(s)
- Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Huimin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Hong Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Sirui Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
23
|
H U, S M, A A, Pk M, R K, R D, D S, Aa M, Panda PK. Effects of Active Compounds of Nigella sativa in COVID-19: A Narrative Review. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2023; 19:RAAIDD-EPUB-129715. [PMID: 36815641 DOI: 10.2174/2772434418666230222140805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 02/24/2023]
Abstract
BACKGROUND SARS-CoV-2 infection that led to the COVID-19 pandemic has changed human health and the economy globally. SARS CoV-2 is a type of Coronaviruses that has caused pneumonia and its complications with many deaths over the past two years. The use of hydroxychloroquine and chloroquine, accepted as generally safe for patients with autoimmune diseases or malaria, was attempted in many trials for COVID-19 treatment. Nigella sativa (NS) (black caraway, also known as black cumin, nigella or Kalonji) is an annual flowering plant of the Ranunculaceae family, chemically composed of the main constituent natural Thymoquinone (TQ) (30%- 48%) in forms of thymohydroquinone, dithymoquinone (Nigellone) is a native to wider regions, including parts of eastern Europe, west Asia, North of Africa and east of Myanmar. In this review, we explored the Randomized Controlled Trial, Controlled Trial, and Systematic review studies that support Nigella sativa Thymoquinone-targeted SARS-CoV-2 targeting. Therefore, A literature search was performed for publications published on the electronic databases (PubMed, Embase, Scopus, CNKI, and Google Scholar) for Nigella sativa, black seeds, Kalonji, coronavirus, SARS-CoV -2 and COVID-19. This review aimed to find relevant evidence of Nigella sativa preferences as a natural feasible remedy with no side effects in COVID-19. Studies reported the benefits of NS as beneficial, another appropriate remedy for patients with COVID-19. However, all studies have shown limitations, such as limiting clinical symptom outcomes due to regulations imposed by isolation policies and lack of adequate funding. Therefore, the evidence suggests that the chemical contents of NS are a safe and possible treatment for COVID-19 patients that helps to improve COVID-19 infection in patients with no side effects. CONCLUSION Nigella sativa seeds were one of the well-documented herbal products. Three reviewed randomized controlled trials reported that NS reduced covid-19 risk and could improve immune function. It was also helpful in upper respiratory infections such as asthma and bronchitis, with one RCT showing that honey and NS significantly improved symptoms, viral clearance, and mortality of COVID-19 patients. This review concludes that NS has a positive barrier effect on people at risk of acquiring a COVID-19 infection.
Collapse
Affiliation(s)
- Usmani H
- Department of Biochemistry, AIIMS, Rishikesh, India
| | - Malik S
- Department of Pulmonary Medicine, AIIMS, Rishikesh, India
| | - Arya A
- Department of Pulmonary Medicine, AIIMS, Rishikesh, India
| | - Mahto Pk
- Department of Yoga, Patanjali University, India
| | - Kant R
- Department of Medicine, AIIMS, Rishikesh, India
| | - Dua R
- Department of Pulmonary Medicine, AIIMS, Rishikesh, India
| | | | - Mirza Aa
- Department of Biochemistry, AIIMS, Rishikesh, India
| | - P K Panda
- Department of Medicine, AIIMS, Rishikesh,India
| |
Collapse
|
24
|
Ashraf S, Ashraf S, Ashraf M, Imran MA, Kalsoom L, Siddiqui UN, Farooq I, Akmal R, Akram MK, Ashraf S, Ghufran M, Majeed N, Habib Z, Rafique S, -Abdin ZU, Arshad S, Shahab MS, Ahmad S, Zheng H, Mirza AR, Zulfiqar S, Anwar MI, Humayun A, Mahmud T, Saboor QA, Ahmad A, Ashraf M, Izhar M. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multicenter placebo-controlled randomized clinical trial. Phytother Res 2023; 37:627-644. [PMID: 36420866 DOI: 10.1002/ptr.7640] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
Abstract
Until now, no specific and effective treatment exists for coronavirus disease 2019 (COVID-19). Since honey and Nigella sativa (HNS) have established antiviral, antibacterial, antiinflammatory, antioxidant, and immunomodulatory properties, we tested their efficacy for this disease in a multicenter, placebo-controlled, and randomized clinical trial at four medical care facilities in Pakistan. RT-PCR confirmed COVID-19 adults showing moderate or severe disease were enrolled in the trial. Patients were randomly assigned in a 1:1 ratio to receive either honey (1 g kg-1 day-1 ) and Nigella sativa seeds (80 mg kg-1 day-1 ) or a placebo for up to 13 days along with standard care. The outcomes included symptoms' alleviation, viral clearance, and 30-day mortality in the intention-to-treat population. Three hundred and thirteen patients, 210 with moderate and 103 with severe disease, underwent randomization from April 30 to July 29, 2020. Among the moderate cases, 107 were assigned to HNS, whereas 103 were assigned to the placebo group. Among the severe cases, 50 were given HNS, and 53 were given the placebo. HNS resulted in ~50% reduction in time taken to alleviate symptoms as compared to placebo (moderate cases: 4 vs. 7 days, Hazard Ratio [HR]: 6.11; 95% Confidence Interval [CI]: 4.23-8.84, p < 0.0001 and for severe cases: 6 vs. 13 days, HR: 4.04; 95% CI: 2.46-6.64; p < 0.0001). HNS also cleared the virus earlier than placebo in both moderate cases (6 vs. 10 days, HR: 5.53; 95% CI: 3.76-8.14, p < 0.0001) and severe cases (8.5 vs. 12 days, HR: 4.32; 95% CI: 2.62-7.13, p < 0.0001). HNS further led to a better clinical score on day 6 with normal activity resumption in 63.6% vs. 10.9% among moderate cases (OR: 0.07; 95% CI: 0.03-0.13, p < 0.0001) and hospital discharge in 50% versus 2.8% in severe cases (OR: 0.03; 95% CI: 0.01-0.09, p < 0.0001). In severe cases, the mortality rate was less than 1/4th in the HNS group than in placebo (4% vs. 18.87%, OR: 0.18; 95% CI: 0.02-0.92, p = 0.029). No HNS-related adverse effects were observed. HNS, compared with placebo, significantly improved symptoms, expedited viral load clearance, and reduced mortality in COVID-19 patients. This trial was registered on April 15, 2020 with ClinicalTrials.gov Identifier: NCT04347382.
Collapse
Affiliation(s)
- Sohaib Ashraf
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Shoaib Ashraf
- Department of Pathobiology, Riphah University, Lahore, Pakistan
| | - Moneeb Ashraf
- Department of Pharmacology, King Edward Medical University, Mayo Hospital, Lahore, Pakistan
| | - Muhammad Ahmad Imran
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Larab Kalsoom
- Department of Internal Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Uzma N Siddiqui
- Department of Medicine, Port Macquarie Base Hospital, Port Macquarie, New South Wales, Australia.,Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Iqra Farooq
- Department of Pediatrics Surgery, Children Hospital, Lahore, Pakistan
| | - Rutaba Akmal
- Department of Medicine, Sahara Medical College, Narowal, Pakistan
| | - Muhammad Kiwan Akram
- Department of Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ghufran
- Medico Cirujano, ESACHS (Empresa de Servico Externo de la Asociacion Chilena de Seguridad), Santiago, Chile
| | - Nighat Majeed
- Department of Internal Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Zaighum Habib
- Department of Orthopedics, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Sundas Rafique
- Department of Oncology, Mayo Hospital, King Edward Medical University, Lahore, Pakistan
| | - Zain-Ul -Abdin
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Shahroze Arshad
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Muhammad Sarmad Shahab
- Department of Internal Medicine, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hui Zheng
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Rafique Mirza
- Department of Plastic Surgery, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Sibgha Zulfiqar
- Department of Physiology, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Muhamad Imran Anwar
- Department of General Surgery, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Ayesha Humayun
- Department of Public Health and Community Medicine, Shaikh Zayed Postgraduate Medical Institute Lahore, Pakistan
| | - Talha Mahmud
- Department of Pulmonology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Qazi Abdul Saboor
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Ali Ahmad
- Department of Microbiology, Infectious Diseases & Immunology, Centre Hospitalier Universitaire (CHU) Sainte Justine/University of Montreal, Montreal, Quebec, Canada
| | - Muhammad Ashraf
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mateen Izhar
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | | |
Collapse
|
25
|
El-Sayed SAES, Rizk MA. COVID-19 and Thymoquinone: Clinical Benefits, Cure, and Challenges. BIOMED 2023; 3:59-76. [DOI: 10.3390/biomed3010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the outbreak of the coronavirus disease 2019 (COVID-19) has spread throughout the world, causing severe acute respiratory syndrome (SARS) and several associated complications in various organs (heart, liver, kidney, and gastrointestinal tract), as well as significant multiple organ dysfunction, shock, and even death. In order to overcome the serious complications associated with this pandemic virus and to prevent SARS-CoV-2 entry into the host cell, it is necessary to repurpose currently available drugs with a broad medicinal application as soon as they become available. There are several therapeutics under investigation for improving the overall prognosis of COVID-19 patients, but none of them has demonstrated clinical efficacy to date, which is disappointing. It is in this pattern that Nigella sativa seeds manifest their extensive therapeutic effects, which have been reported to be particularly effective in the treatment of skin diseases, jaundice, and gastrointestinal problems. One important component of these seeds is thymoquinone (TQ), which has a wide range of beneficial properties, including antioxidant and anti-inflammatory properties, as well as antibacterial and parasitic properties, in addition to anticarcinogenic, antiallergic, and antiviral properties. This comprehensive review discussed the possibility of an emerging natural drug with a wide range of medical applications; the use of TQ to overcome the complications of COVID-19 infection; and the challenges that are impeding the commercialization of this promising phytochemical compound. TQ is recommended as a highly effective weapon in the fight against the novel coronavirus because of its dual antiviral action, in addition to its capacity to lessen the possibility of SARS-CoV-2 penetration into cells. However, future clinical trials are required to confirm the role of TQ in overcoming the complications of COVID-19 infection.
Collapse
|
26
|
Comparative Analysis of the Efficiency of Medicinal Plants for the Treatment and Prevention of COVID-19. Int J Biomater 2022; 2022:5943649. [DOI: 10.1155/2022/5943649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic has once again prompted people to resort to the remedies of folk and alternative medicine. Medicinal plants, because of their chemical composition, pharmacological properties, and the action of biologically active substances, can stop and relieve the symptoms of the disease. The purpose of the work is a comparative flora analysis of medicinal plants to identify the most prospective plant and further production of a remedy for the avoidance, treatment, and rehabilitation of COVID-19. The search for prospective medicinal plants was performed by analyzing the literature in online databases: Web of Science, Scopus, Google Scholar, and PubMed, including official WHO media sites. According to recent studies related to COVID-19, a significant number of medicinal plants with anti-inflammatory, antiviral, and immunostimulatory effects have been identified. A comparative study of nine medicinal plants was conducted to determine the most suitable medicinal plant to treat coronavirus infection. According to the results of the comparative analysis, Chamaenerion angustifolium Seg. showed itself as the most prospective medicinal plant with the greatest pharmacological effect compared with other types of medicinal plants. Its therapeutic properties allow physiological relief of 18 symptoms of coronavirus infection. It is advisable to conduct further clinical trials for the treatment and rehabilitation of COVID-19 using preparations from this plant.
Collapse
|
27
|
Deyab N, Ekram B, Badr KR, Abd El-Hady BM, Allam NK. Antiviral Electrospun Polyamide Three-Layered Mask Filter Containing Metal Oxide Nanoparticles and Black Seed Oil. ACS OMEGA 2022; 7:44438-44447. [PMID: 36506173 PMCID: PMC9730509 DOI: 10.1021/acsomega.2c06611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Upon the tremendous spread of coronavirus, there is a need to develop biodegradable, multifunctional, antiviral masks that can be safely used without polluting the environment as conventional surgical masks do. In this study, a three-layered mask filter is designed and fabricated. The first two layers contain electrospun polyamide with dispersed nanoparticles (NPs) of TiO2 and ZnO prepared via breakdown anodization. The third layer is composed of Nigella sativa oil (black seed oil) electrospun with polyamide and blended with chitosan to form an effective antiviral three-layered mask filter. The morphological characterization revealed the nanoscale features of the fabricated nanofibers with the ZnO and TiO2 NPs being embedded in the polymeric matrix. The specimens showed good wettability, which is necessary for virus attachment and its subsequent decay. The assembled mask has shown very good mechanical properties. The cytotoxicity results revealed that the proposed mask filter has less cytotoxic effect on the A549 cell line than the commercial KN95 mask filter with maintaining a cell viability of 65.3%. The antiviral activity test showed a variable virucidal effect against human adenovirus on A549 cells. The proposed mask showed the highest effect on the virus followed by PA-ZnO and PA-TiO2 films, which supports the assumption that the used NPs may have broad and promising effects on viruses when combined with the electrospun films.
Collapse
Affiliation(s)
- Nourhan
M. Deyab
- Physical
Chemistry Department, Advanced Materials Technology and Mineral Resources
Research Institute, National Research Centre, Dokki, 12622Cairo, Egypt
| | - Basma Ekram
- Polymers
and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, 12622Cairo, Egypt
| | - Kareem R. Badr
- Environmental
Virology Laboratory, Water 593 Pollution Research Department, Environment
and Climate Change Research Institute, National
Research Centre, Dokki, 12622Cairo, Egypt
| | - Bothaina M. Abd El-Hady
- Polymers
and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, 12622Cairo, Egypt
| | - Nageh K. Allam
- Energy
Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo, New Cairo11835, Egypt
| |
Collapse
|
28
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
29
|
Said SA, Abdulbaset A, El-Kholy AA, Besckales O, Sabri NA. The effect of Ni gella sativa and vitamin D3 supplementation on the clinical outcome in COVID-19 patients: A randomized controlled clinical trial. Front Pharmacol 2022; 13:1011522. [PMID: 36425571 PMCID: PMC9681154 DOI: 10.3389/fphar.2022.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 10/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) is a novel coronavirus that causes severe infection in the respiratory system. Since the immune status plays an essential role in combating COVID-19, herbal medicines, which have an immunomodulatory effect, may help prevent and even treat COVID-19. Nigella sativa is one of the herbal medicines with antiviral and immunomodulatory activities, and its therapeutic effectiveness makes it a promising add-on therapy for COVID-19. In addition, vitamin D3 has an immunomodulatory role, but the effect of therapeutic vitamin D3 supplementation in SARS-CoV-2 infection is still not well-known. Objective: This study aims to investigate the effects of Nigella sativa and vitamin D3 as single supplemental therapies and in combination on viral clearance indicated by a negative polymerase chain reaction and the alleviation of symptoms during the study follow-up duration of 14 days. Patients and Methods: The study design was an open-label randomized controlled clinical trial conducted at the Respiratory Hospital at the Kobry El Qobba Armed Forces Medical Complex. In total, 120 COVID-19 patients with mild to moderate symptoms were randomly assigned to four groups, with thirty patients each, as follows: Group 1 received an oral dose of 900 mg Nigella sativa through 450 mg soft gelatin capsules twice daily for two weeks; Group 2 received 2,000 IU of vitamin D3 through 1000-IU tablets given as two tablets, once daily; Group 3 received 900 mg of Nigella sativa and 2,000 IU of vitamin D3 in the same manner of dosing as in the previous groups; and Group 4 was the control group. All groups received standard therapy for COVID-19 infections and clinical management of COVID-19's clinical symptoms. Results: The Nigella sativa-vitamin D3 combination in addition to the standard therapy for COVID-19 infections significantly contributed to the alleviation of most COVID-19 symptoms: 50% of patients were free of cough after 7 days, 70% showed an absence of fatigue after 4 days, 80% had no headache after 5 days, 90% were free of rhinorrhea after 7 days, and 86.7% of the patients had no dyspnea after 7 days. Moreover, patients in the four studied groups showed a reduced median temperature after 3 days of treatment. Negative results of the polymerase chain reaction (PCR) test recorded on the 7th and 14th day of therapy were superior in the Nigella sativa and vitamin D3 combination arm compared to those of the other studied arms where the value of the odds ratio (OR) on the 7th day was 0.13 with 95% CI: 0.03-0.45 and that of the 14th day was 0.09 with 95% CI: 0.02-0.3. Conclusion: The results of this study showed a promising therapeutic benefit of the administration of Nigella sativa and vitamin D3 combination in COVID-19 patients with mild to moderate symptoms. Additionally, the remarkable viral clearance in a short time interval and reduction in the severity and progression of symptoms recommended the use of this combination as an add-on therapy for the management of COVID-19 patients. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT04981743.
Collapse
Affiliation(s)
- Shimaa A. Said
- Respiratory Specialized Hospital, Kobry Al Qobba Military Complex, Cairo, Egypt
| | - Alsayyed Abdulbaset
- Respiratory Specialized Hospital, Kobry Al Qobba Military Complex, Cairo, Egypt
| | - Amal A. El-Kholy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Osama Besckales
- Respiratory Specialized Hospital, Kobry Al Qobba Military Complex, Cairo, Egypt
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Zeyad Bazbouz L, Ghassan Ibrahim F, Lakshmi Chelakkot A, Matar R, Merheb M, Hodeify R, Vazhappilly CG. Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections. Phytother Res 2022; 37:383-387. [PMID: 36218236 PMCID: PMC9874561 DOI: 10.1002/ptr.7650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Laila Zeyad Bazbouz
- Department of BiotechnologyAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates
| | - Fatme Ghassan Ibrahim
- Department of BiotechnologyAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates
| | | | - Rachel Matar
- Department of BiotechnologyAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates
| | - Maxime Merheb
- Department of BiotechnologyAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates
| | - Rawad Hodeify
- Department of BiotechnologyAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates
| | - Cijo George Vazhappilly
- Department of BiotechnologyAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates
| |
Collapse
|
31
|
Bin Abdulrahman KA, Bamosa AO, Bukhari AI, Siddiqui IA, Arafa MA, Mohsin AA, Althageel MF, Aljuaeed MO, Aldeailej IM, Alrajeh AI, Aldosari KM, Hawsawi NA, Zawbaee KI, Alsurayea SM. The Effect of Short Treatment with Nigella Sativa on Symptoms, the Cluster of Differentiation (CD) Profile, and Inflammatory Markers in Mild COVID-19 Patients: A Randomized, Double-Blind Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11798. [PMID: 36142070 PMCID: PMC9517329 DOI: 10.3390/ijerph191811798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The current study investigated the impact of different doses of Nigella sativa seeds on the symptoms, the cluster of differentiation profile group, and inflammatory markers of mild COVID-19 cases. METHODS The study was a double-blind placebo-controlled clinical trial. Patients with mild and asymptomatic SARS-CoV-2 infection patients were randomly subdivided into seven subgroups: Group (GP) 1: received charcoal capsules as a control group, and GP 2: received three capsules of whole Nigella sativa seeds daily, two capsules in the morning and one in the evening; GP 3: received three capsules of whole Nigella sativa seeds every 12 h, GP 4: received five capsules in the morning and four capsules of whole Nigella sativa seeds in the evening, GP 5: received one capsule of Nigella sativa powder every 12 h; GP 6: received two capsules of Nigella sativa powder every 12 h; GP 7: received three capsules of Nigella sativa powder every 12 h; all treatment course was for ten days. Inflammatory parameters were assessed before and after interventions. RESULTS 262 subjects were included in the final analysis. No significant difference was detected regarding age, gender, and nationality. No significant differences were detected between the inflammatory marker in all groups. The WBCs showed a significant difference between before and after the intervention. While for procalcitonin, a significant difference was demonstrated in groups 1,4, and 6. CONCLUSIONS The current randomized clinical trial did not reveal a significant effect of ten days of treatment with various doses of Nigella sativa on symptoms, differentiation profile, and inflammatory markers of patients with COVID-19. As a natural product, the effect of Nigella sativa on disease requires weeks to manifest itself.
Collapse
Affiliation(s)
- Khalid A. Bin Abdulrahman
- Department of Medical Education, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Abdullah Omar Bamosa
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abdullah I. Bukhari
- Department of Medicine, Division of Infectious Diseases, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Intisar Ahmad Siddiqui
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mostafa A. Arafa
- College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt
| | - Ashfaq A. Mohsin
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | | | - Majed Owed Aljuaeed
- Ministry of Health, King Salman Bin Abdulaziz Hospital, Riyadh 12769, Saudi Arabia
| | | | | | | | - Najat Ahmed Hawsawi
- Ministry of Health, Riyadh Regional Lab and Blood Bank, Riyadh 12746, Saudi Arabia
| | | | | |
Collapse
|
32
|
Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon 2022; 8:e10702. [PMID: 36157310 PMCID: PMC9484857 DOI: 10.1016/j.heliyon.2022.e10702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 remains an international concern. Although there are drugs to fight it, new natural alternatives such as polyphenols are essential due to their antioxidant activity and high antiviral potential. In this context, this review reports the main findings on the effect of phenolic compounds (PCs) against SARS-CoV-2 virus. First, the proven activity of PCs against different human viruses is briefly detailed, which serves as a starting point to study their anti-COVID-19 potential. SARS-CoV-2 targets (its proteins) are defined. Findings from in silico, in vitro and in vivo studies of a wide variety of phenolic compounds are shown, emphasizing their mechanism of action, which is fundamental for drug design. Furthermore, clinical trials have demonstrated the effectiveness of PCs in the prevention and as a possible therapeutic management against COVID-19. The results were complemented with information on the influence of polyphenols in strengthening/modulating the immune system. It is recommended to investigate compounds such as vitamins, minerals, alkaloids, triterpenes and fatty acids, and their synergistic use with PCs, many of which have been successful against SARS-CoV-2. Based on findings on other viruses, synergistic evaluation of PCs with accepted drugs against COVID-19 is also suggested. Other recommendations and limitations are also shown, which is useful for professionals involved in the development of efficient, safe and low-cost therapeutic strategies based on plant matrices rich in PCs. To the authors' knowledge, this manuscript is the first to evaluate the relationship between the antiviral and immunomodulatory (including anti-inflammatory and antioxidant effects) activity of PCs and their underlying mechanisms in relation to the fight against COVID-19. It is also of interest for the general population to be informed about the importance of consuming foods rich in bioactive compounds for their health benefits.
Collapse
|
33
|
Hasanpour M, Safari H, Mohammadpour AH, Iranshahy M, Dehghan Nayyeri MJ, Farhadi F, Emami B, Iranshahi M. Efficacy of Covexir® (Ferula foetida oleo-gum) treatment in symptomatic improvement of patients with mild to moderate COVID-19: A randomized, double-blind, placebo-controlled trial. Phytother Res 2022; 36:4504-4515. [PMID: 35896167 PMCID: PMC9353293 DOI: 10.1002/ptr.7567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 COVID-19 pandemic has emerged as an unprecedented emergency state in healthcare system and global challenge. In recent decade, the function of exogenous H2 S in the treatment of respiratory diseases has been investigated using H2 S-donor agents. Ferula foetida is a medicinal plant that is traditionally used in respiratory diseases including asthma and viral respiratory diseases. The oleo-gum of this plant is a rich source of several organic sulfides including thiophenes, disulfides and polysulfide derivatives, which can act as H2 S-donor agents. The purpose of this study was to investigate the efficacy of Covexir® (F. foetida oleo-gum) treatment as a rich source of H2 S-donor compounds in clinical presentations of patients with COVID-19. The efficacy of Covexir® was evaluated in a randomized, double-blind, placebo-controlled trial in outpatients with COVID-19. Covexir® could significantly inhibit cough when compared to the placebo group (p < .01 and p < 001, respectively). Moreover, there was a significant difference (p < 001) between the two groups in dyspnea symptom at follow-up interval of 7 day after receiving Covexir®. Furthermore, on days 3 and 7, statistically significant differences were observed in myalgia, anorexia, anosmia, and sense of taste severity between two groups. Our findings revealed that Covexir® was very safe in the treatment of COVID-19 patients with mild to moderate symptoms and it can be recommended to improve clinical presentations of patients with COVID-19 such as cough, shortness of breath, myalgia, anorexia, anosmia, and sense of taste.
Collapse
Affiliation(s)
- Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hossein Safari
- Hasheminezhad HospitalMashhad University of Medical SciencesMashhadIran
| | | | - Milad Iranshahy
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | | | - Faegheh Farhadi
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran,Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesKermanIran
| | - Bahareh Emami
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
34
|
Pharmacological Profile of Nigella sativa Seeds in Combating COVID-19 through In-Vitro and Molecular Docking Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 infection is associated with elevated oxidative stress, systemic hyper-inflammatory responses, endothelial dysfunction, and red blood cell membrane deformability. Nigella sativa extract is widely used in alternative and complementary medicine systems in a large population, due to its highly therapeutic, economic, natural, and safe nature. The aim of this study was to evaluate the effect of N. sativa extract on oxidative stress, hemolysis, proteolysis, and glycation through in vitro studies, as well as to find out its anti-viral potential against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) using in silico studies. N. sativa seed extract (at 600 µg/mL) displayed 67.33% scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, and 70.28% hydrogen peroxide reducing activity. N. sativa exhibited anti-proteolytic activity by decreasing heat-induced denaturation of bovine serum albumin (BSA) and egg albumin by 63.14% and 57.95%, respectively, and exhibited anti-proteinase potential of 66.28% at 600 μg/mL. In addition, heat-induced hemolysis and hypersalinity-induced hemolysis were inhibited by 57.86% and 61.7%, respectively, by the N. sativa seeds. N. sativa also inhibited browning intensity by 56.38%, and percent aggregation index by 51.38%, amyloid structure by 48.28%, and AGE-specific fluorescence by 52.18%, thereby protecting the native structure of BSA from glycation. The binding interactions between bioactive molecules of N. sativa seed with SARS-CoV-2 spike glycoprotein were proven by using in silico molecular docking tools. The functional amino acids involved in the interactions are Asp467, Thr108, Thr114, Ile468, Asn234, Gln155, Glu465, Arg466, Gly232, and Ile233, indicating the inhibiting property of N. sativa on SARS-CoV-2. Finally, we may infer that phytoconstituents of N. sativa seeds have the potential to protect against the spike protein of SARS-CoV-2. Studies on N. sativa seeds might act as a path to develop a potent alternative therapy against viral infections, especially COVID-19 infection, in the future. However, the limitations linked with the use of natural products are also needed to be considered in this regard.
Collapse
|
35
|
Bencheqroun H, Ahmed Y, Kocak M, Villa E, Barrera C, Mohiuddin M, Fortunet R, Iyoha E, Bates D, Okpalor C, Agbosasa O, Mohammed K, Pondell S, Mohamed A, Mohamed YI, Gok Yavuz B, Kaseb MO, Kasseb OO, Gocio MY, Tu PTM, Li D, Lu J, Selim A, Ma Q, Kaseb AO. A Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Safety and Efficacy of ThymoQuinone Formula (TQF) for Treating Outpatient SARS-CoV-2. Pathogens 2022; 11:pathogens11050551. [PMID: 35631072 PMCID: PMC9144779 DOI: 10.3390/pathogens11050551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for an oral drug for the treatment of mild to moderate outpatient SARS-CoV-2. Our preclinical and clinical study’s aim was to determine the safety and preliminary efficacy of oral TQ Formula (TQF), in the treatment of outpatient SARS-CoV-2. In a double-blind, placebo-controlled phase 2 trial, we randomly assigned (1:1 ratio) non-hospitalized, adult (>18 years), symptomatic SARS-CoV-2 patients to receive oral TQF or placebo. The primary endpoints were safety and the median time-to-sustained-clinical-response (SCR). SCR was 6 days in the TQF arm vs. 8 days in the placebo arm (p = 0.77), and 5 days in the TQF arm vs. 7.5 days in the placebo arm in the high-risk cohort, HR 1.55 (95% CI: 0.70, 3.43, p = 0.25). No significant difference was found in the rate of AEs (p = 0.16). TQF led to a significantly faster decline in the total symptom burden (TSB) (p < 0.001), and a significant increase in cytotoxic CD8+ (p = 0.042) and helper CD4+ (p = 0.042) central memory T lymphocytes. TQF exhibited an in vitro inhibitory effect on the entry of five SARS-CoV-2 variants. TQF was well-tolerated. While the median time-to-SCR did not reach statistical significance; it was shorter in the TQF arm and preclinical/clinical signals of TQF activity across multiple endpoints were significant. Therefore, a confirmatory study is planned.
Collapse
Affiliation(s)
- Hassan Bencheqroun
- RESPIRE Clinical Research, Palm Springs, CA 92262, USA;
- Correspondence: (H.B.); (A.O.K.)
| | - Yasir Ahmed
- United Memorial Medical Center, Department of Research and Development, Houston, TX 77091, USA; (Y.A.); (C.B.); (M.M.)
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | | | - Cesar Barrera
- United Memorial Medical Center, Department of Research and Development, Houston, TX 77091, USA; (Y.A.); (C.B.); (M.M.)
| | - Mariya Mohiuddin
- United Memorial Medical Center, Department of Research and Development, Houston, TX 77091, USA; (Y.A.); (C.B.); (M.M.)
| | - Raul Fortunet
- RESPIRE Clinical Research, Palm Springs, CA 92262, USA;
| | - Emmanuel Iyoha
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Deborah Bates
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Chinedu Okpalor
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Ola Agbosasa
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Karim Mohammed
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Stephen Pondell
- Chemistry, Manufacturing and Controls Department, Novatek Pharmaceuticals, Inc., Houston, TX 77054, USA;
| | - Amr Mohamed
- UH Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yehia I. Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.I.M.); (B.G.Y.)
| | - Betul Gok Yavuz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.I.M.); (B.G.Y.)
| | - Mohamed O. Kaseb
- Novatek Pharmaceuticals, Inc., Houston, TX 77598, USA; (M.O.K.); (O.O.K.); (M.Y.G.)
| | - Osama O. Kasseb
- Novatek Pharmaceuticals, Inc., Houston, TX 77598, USA; (M.O.K.); (O.O.K.); (M.Y.G.)
| | - Michelle York Gocio
- Novatek Pharmaceuticals, Inc., Houston, TX 77598, USA; (M.O.K.); (O.O.K.); (M.Y.G.)
| | | | - Dan Li
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.); (Q.M.)
| | - Jianming Lu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA;
- Codex BioSolutions Inc., Rockville, MD 20852, USA
| | - Abdulhafez Selim
- Philadelphia College of Osteopathic Medicine (PCOM), Philadelphia, PA 19131, USA;
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.); (Q.M.)
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.I.M.); (B.G.Y.)
- Correspondence: (H.B.); (A.O.K.)
| |
Collapse
|
36
|
Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN, Kamal M, Alam O, Asdaq SMB, Alzahrani AK, Jomah S. Nigella sativa L. and COVID-19: A Glance at The Anti-COVID-19 Chemical Constituents, Clinical Trials, Inventions, and Patent Literature. Molecules 2022; 27:2750. [PMID: 35566101 PMCID: PMC9105261 DOI: 10.3390/molecules27092750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has had an impact on human quality of life and economics. Scientists have been identifying remedies for its prevention and treatment from all possible sources, including plants. Nigella sativa L. (NS) is an important medicinal plant of Islamic value. This review highlights the anti-COVID-19 potential, clinical trials, inventions, and patent literature related to NS and its major chemical constituents, like thymoquinone. The literature was collected from different databases, including Pubmed, Espacenet, and Patentscope. The literature supports the efficacy of NS, NS oil (NSO), and its chemical constituents against COVID-19. The clinical data imply that NS and NSO can prevent and treat COVID-19 patients with a faster recovery rate. Several inventions comprising NS and NSO have been claimed in patent applications to prevent/treat COVID-19. The patent literature cites NS as an immunomodulator, antioxidant, anti-inflammatory, a source of anti-SARS-CoV-2 compounds, and a plant having protective effects on the lungs. The available facts indicate that NS, NSO, and its various compositions have all the attributes to be used as a promising remedy to prevent, manage, and treat COVID-19 among high-risk people as well as for the therapy of COVID-19 patients of all age groups as a monotherapy or a combination therapy. Many compositions of NS in combination with countless medicinal herbs and medicines are still unexplored. Accordingly, the authors foresee a bright scope in developing NS-based anti-COVID-19 composition for clinical use in the future.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman;
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh 76312, Saudi Arabia;
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | | | - A. Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Sulaiman Al-Habib Medical Group, Riyadh 11643, Saudi Arabia
| |
Collapse
|
37
|
Liu YX, Zhou YH, Jiang CH, Liu J, Chen DQ. Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Bioengineered 2022; 13:5480-5508. [PMID: 35184680 PMCID: PMC8973820 DOI: 10.1080/21655979.2022.2036521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the SARS-coronavirus 2(SARS-CoV-2) virus has become the greatest global public health crisis in recent years,and the COVID-19 epidemic is still continuing. However, due to the lack of effectivetherapeutic drugs, the treatment of corona viruses is facing huge challenges. In thiscontext, countries with a tradition of using herbal medicine such as China have beenwidely using herbal medicine for prevention and nonspecific treatment of corona virusesand achieved good responses. In this review, we will introduce the application of herbalmedicine in the treatment of corona virus patients in China and other countries, andreview the progress of related molecular mechanisms and antiviral activity ingredients ofherbal medicine, in order to provide a reference for herbal medicine in the treatment ofcorona viruses. We found that herbal medicines are used in the prevention and fightagainst COVID-19 in countries on all continents. In China, herbal medicine has beenreported to relieve some of the clinical symptoms of mild patients and shorten the length of hospital stay. However, as most herbal medicines for the clinical treatment of COVID-19still lack rigorous clinical trials, the clinical and economic value of herbal medicines in theprevention and treatment of COVID-19 has not been fully evaluated. Future work basedon large-scale randomized, double-blind clinical trials to evaluate herbal medicines andtheir active ingredients in the treatment of new COVID-19 will be very meaningful.
Collapse
Affiliation(s)
- Yan-Xia Liu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-He Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Chang-Hong Jiang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Mustari A, Nooruzzaman M, Miah MA, Sujan KM, Chowdhury EH. Promoting action of vitamin E and black seed oil on reproductive hormones and organ histoarchitecture of Swiss albino mice. Vet Med Sci 2022; 8:710-718. [PMID: 35037408 PMCID: PMC8959291 DOI: 10.1002/vms3.708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Vitamin E and black seed oil are two powerful antioxidants with several health benefits. Objective The effect of vitamin E and black seed oil on reproductive performance of Swiss albino mice was studied. Methods A total of 80 (40 male and 40 female) mice of 25–28 days old were randomly divided into four groups viz., A, B, C and D consisting of 10 mice in each group. Mice from the group A served as vehicle control and received normal mice ration whereas mice from the group B, C and D received feed supplemented with either black seed oil (0.5 ml/kg), vitamin E (200 mg/kg) or combination of black seed oil (0.5 ml/kg) and vitamin E (200 mg/kg), respectively daily for 16 weeks. At the end point of the study, blood samples were collected and sera were separated for hormonal analysis. At the same time, mice were sacrificed and testes and ovaries were collected for histomorphological examination. Results In male mice, the level of testosterone increased significantly in mice receiving black seed oil only, whereas the thyroxin increased significantly in all treated groups when compared to the control mice. Histomorphological examination revealed a significant increase in the diameter of seminiferous tubules in male mice fed with either black seed oil or vitamin E or both. On the other hand, the oestradiol and thyroxin concentration in female mice showed no significant changes in both control and treated groups. However, ovaries of mice fed with black seed oil or vitamin E or both showed an increased number of the follicles of different stages than the control mice. Conclusions The findings highlighted the promoting action of vitamin E and black seed oil on reproductive functions of mice and that can be used to treat infertility in man and animals.
Collapse
Affiliation(s)
- Afrina Mustari
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Alam Miah
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Khaled Mahmud Sujan
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Hauqe Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
39
|
Anaeigoudari A. Antidepressant and anti-nociceptive effects of Nigella sativa and its main constituent, thymoquinone: A literature review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.363875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019-2021). Biomolecules 2021; 12:20. [PMID: 35053168 PMCID: PMC8773974 DOI: 10.3390/biom12010020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Medicinal and aromatic plants are mainly characterized by the presence of different bioactive compounds which exhibit various therapeutic activities. In order to investigate the different pharmacological properties of different Nigella sativa extracts, a multitude of research articles published in the period between 2019 and 2021 were obtained from different databases (Scopus, Science Direct, PubMed, and Web of Science), and then explored and analyzed. The analysis of the collected articles allows us to classify the phytochemicals and the pharmacological activities through their underlying molecular mechanisms, as well as to explore the pharmacological activities exhibited by several identified compounds in Nigella sativa which allow a better understanding, and better elucidation, of the bioactive compounds responsible for the pharmacological effects. Also shown are the existence of other bioactive compounds that are still unexplored and could be of great interest. This review could be taken as a guide for future studies in the field.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Oussama Bekkouch
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Ali Azghar
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|