1
|
Zhang Z, Liu CW, Donaghue JD, Murray EJ, Mian O, Xia P. Patient-specific adaptive planning margin for whole bladder radiation therapy. J Appl Clin Med Phys 2024:e14617. [PMID: 39715305 DOI: 10.1002/acm2.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Whole bladder irradiation is an organ preservation treatment approach for muscle-invasive bladder cancer (MIBC). Conventional planning margins, typically 15-20 mm, increase normal tissue toxicity and limit possible dose escalation. PURPOSE The study aimed to develop a patient-specific adaptive margin recipe for whole bladder irradiation to minimize the planning target volume (PTV) while preserving adequate dose coverage. METHODS Sixteen patients who received whole-bladder irradiation were retrospectively selected for this study. We proposed a patient-specific anisotropic adaptive margin recipe, derived from the first five fractions of kV-CBCTs, to account for inter-fractional bladder changes. This recipe was validated using kV-CBCTs from fractions six to ten and the final five fractions. The goal was to achieve a residual volume, defined as the percentage of daily bladder volume (Vdaily) outside the PTV, of less than 5%. Adaptive and conventional plans were created using proposed and conventional margins, respectively. A dosimetric comparison of targets and organs-at-risk (OARs) was performed between the two approaches. RESULTS (Vdaily) decreased throughout the treatment course. The most notable inter-fractional bladder variations were in the superior and anterior directions. The patient-specific anisotropic adaptive margins, averaging 6 mm (± 2.9 mm), achieved a residual volume of less than 5%. Compared to conventional planning, the adaptive approach reduced PTV volume by an average of 135.3 cc (± 46.6 cc). A significant correlation (p < 0.05) was identified between residual volume and adaptive margins in the anterior, superior, left, and right directions. Using the proposed adaptive margins, the median residual volume was 0.71% (interquartile range 0.09%-3.55%), and the median (Vdaily) receiving the prescribed dose was 99.1% (interquartile range 95.3%-99.9%). Adaptive plans demonstrated superior OAR sparing compared to conventional plans. CONCLUSIONS The proposed patient-specific adaptive margin recipe for whole bladder irradiation resulted in margins smaller than conventional ones, optimized normal tissue sparing, and maintained adequate PTV coverage.
Collapse
Affiliation(s)
- Zhexuan Zhang
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chieh-Wen Liu
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeremy D Donaghue
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric J Murray
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Omar Mian
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Azzarouali S, Goudschaal K, Visser J, Daniëls L, Bel A, den Boer D. Minimizing human interference in an online fully automated daily adaptive radiotherapy workflow for bladder cancer. Radiat Oncol 2024; 19:138. [PMID: 39375787 PMCID: PMC11457325 DOI: 10.1186/s13014-024-02526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The aim was to study the potential for an online fully automated daily adaptive radiotherapy (RT) workflow for bladder cancer, employing a focal boost and fiducial markers. The study focused on comparing the geometric and dosimetric aspects between the simulated automated online adaptive RT (oART) workflow and the clinically performed workflow. METHODS Seventeen patients with muscle-invasive bladder cancer were treated with daily Cone Beam CT (CBCT)-guided oART. The bladder and pelvic lymph nodes (CTVelective) received a total dose of 40 Gy in 20 fractions and the tumor bed received an additional simultaneously integrated boost (SIB) of 15 Gy (CTVboost). During the online sessions a CBCT was acquired and used as input for the AI-network to automatically delineate the bladder and rectum, i.e. influencers. These influencers were employed to guide the algorithm utilized in the delineation process of the target. Manual adjustments to the generated contours are common during this clinical workflow prior to plan reoptimization and RT delivery. To study the potential for an online fully automated workflow, the oART workflow was repeated in a simulation environment without manual adjustments. A comparison was made between the clinical and automatic contours and between the treatment plans optimized on these clinical (Dclin) and automatic contours (Dauto). RESULTS The bladder and rectum delineated by the AI-network differed from the clinical contours with a median Dice Similarity Coefficient of 0.99 and 0.92, a Mean Distance to Agreement of 1.9 mm and 1.3 mm and a relative volume of 100% and 95%, respectively. For the CTVboost these differences were larger, namely 0.71, 7 mm and 78%. For the CTVboost the median target coverage was 0.42% lower for Dauto compared to Dclin. For CTVelective this difference was 0.03%. The target coverage of Dauto met the clinical requirement of the CTV-coverage in 65% of the sessions for CTVboost and 95% of the sessions for the CTVelective. CONCLUSIONS While an online fully automated daily adaptive RT workflow shows promise for bladder treatment, its complexity becomes apparent when incorporating a focal boost, necessitating manual checks to prevent potential underdosage of the target.
Collapse
Affiliation(s)
- Sana Azzarouali
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands.
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Karin Goudschaal
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jorrit Visser
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laurien Daniëls
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arjan Bel
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Duncan den Boer
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Azzarouali S, Goudschaal K, Visser J, Bel A, Daniëls L, den Boer D. Cone-Beam Computed Tomography-Guided Online Adaptive Radiotherapy: Promising Results for Bladder Cancer Case. Cureus 2024; 16:e68863. [PMID: 39376847 PMCID: PMC11457903 DOI: 10.7759/cureus.68863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/09/2024] Open
Abstract
Bladder radiotherapy is challenging due to daily anatomical variations and unpredictable bladder filling, particularly affecting tumors in the cranial part. Conventional radiotherapy requires large planning target volume margins to manage these uncertainties, but this can expose healthy tissue to high radiation doses, increasing the risk of acute and late toxicity. Our aim was to study the potential to limit high-dose exposure to healthy tissue by comparing daily online adaptive radiotherapy (oART) with conventional, non-adaptive radiotherapy (non-ART). The comparison was performed on a bladder cancer patient treated with a simultaneous integrated boost while having a challenging tumor location in the cranial part of the bladder. Liquid fiducial markers aided during the localization of the tumor bed to deliver this focal boost. The dose distribution of oART fractions performed in the clinic was compared with simulated non-ART fractions on the post-treatment cone-beam computed tomography (CBCT). The results showed that while maintaining target coverage of the bladder and gross tumor volume in 100% of the fractions for both workflows, the high dose exposure to organs-at-risk was lower for oART. The small bowel received statistically significantly (p ≤ 0.05) less dose with oART compared to non-ART, with a median volume difference of 20 cm3 receiving 95% of the prescribed dose (55 Gy). The total volume of tissue outside the target receiving 95% of the prescribed dose was also smaller for oART compared to non-ART (p ≤ 0.05). The follow-up of two years showed that the patient had no long-term toxicity effects. Therefore, CBCT-guided oART has been shown to offer a conformal treatment for a challenging patient and can provide a clear advantage in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Sana Azzarouali
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, NLD
| | - Karin Goudschaal
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, NLD
| | - Jorrit Visser
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, NLD
| | - Arjan Bel
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, NLD
| | - Laurien Daniëls
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, NLD
| | - Duncan den Boer
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, NLD
| |
Collapse
|
4
|
Groot Koerkamp ML, Bol GH, Kroon PS, Krikke LL, Harderwijk T, Zoetelief AJ, Scheeren A, van der Vegt S, Plat A, Hes J, van Gasteren IB, Renders ER, Rutgers RH, Kok SW, van Kaam J, Schimmel-de Kogel GJ, Sikkes GG, Winkel D, van Rijssel MJ, Wopereis AJ, Ishakoglu K, Noteboom JL, van der Voort van Zyp JR, Beck N, Soeterik TF, van de Pol SM, Eppinga WS, van Es CA, Raaymakers BW. Bringing online adaptive radiotherapy to a standard C-arm linac. Phys Imaging Radiat Oncol 2024; 31:100597. [PMID: 39006756 PMCID: PMC11239695 DOI: 10.1016/j.phro.2024.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024] Open
Abstract
Current online adaptive radiotherapy (oART) workflows require dedicated equipment. Our aim was to develop and implement an oART workflow for a C-arm linac which can be performed using standard clinically available tools. A workflow was successfully developed and implemented. Three patients receiving palliative radiotherapy for bladder cancer were treated, with 33 of 35 total fractions being delivered with the cone-beam computed tomography (CBCT)-guided oART workflow. Average oART fraction duration was 24 min from start of CBCT acquisition to end of beam on. This work shows how oART could be performed without dedicated equipment, broadening oART availability for application at existing treatment machines.
Collapse
Affiliation(s)
| | - Gijsbert H. Bol
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Petra S. Kroon
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Lean L. Krikke
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Tessa Harderwijk
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Annelies J. Zoetelief
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Annick Scheeren
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Stefan van der Vegt
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Annika Plat
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Jochem Hes
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Ineke B.A. van Gasteren
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Esmee R.T. Renders
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Reijer H.A. Rutgers
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Saskia W. Kok
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Joost van Kaam
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | | | - Gonda G. Sikkes
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Dennis Winkel
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Michael J. van Rijssel
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - André J.M. Wopereis
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Kübra Ishakoglu
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Juus L. Noteboom
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | | | - Naomi Beck
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Timo F.W. Soeterik
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | | | - Wietse S.C. Eppinga
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Corine A. van Es
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| |
Collapse
|
5
|
Liveringhouse C, Netzley A, Bryant JM, Linkowski LC, Weygand J, Sandoval ML, Dohm A, Dookhoo M, Kelley S, Rosenberg SA, Latifi K, Torres-Roca JF, Johnstone PA, Yamoah K, Grass GD. Trimodal Therapy Using an MR-guided Radiation Therapy Partial Bladder Tumor Boost in Muscle Invasive Bladder Cancer. Adv Radiat Oncol 2023; 8:101268. [PMID: 38047218 PMCID: PMC10692296 DOI: 10.1016/j.adro.2023.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose Bladder preservation with trimodal therapy (TMT; maximal tumor resection followed by chemoradiation) is an effective paradigm for select patients with muscle invasive bladder cancer. We report our institutional experience of a TMT protocol using nonadaptive magnetic resonance imaging-guided radiation therapy (MRgRT) for partial bladder boost (PBB). Methods and Materials A retrospective analysis was performed on consecutive patients with nonmetastatic muscle invasive bladder cancer who were treated with TMT using MRgRT between 2019 and 2022. Patients underwent intensity modulated RT-based nonadaptive MRgRT PBB contoured on True fast imaging with steady state precession (FISP) images (full bladder) followed sequentially by computed tomography-based RT to the whole empty bladder and pelvic lymph nodes with concurrent chemotherapy. MRgRT treatment time, table shifts, and dosimetric parameters of target coverage and normal tissue exposure were described. Prospectively assessed acute and late genitourinary and gastrointestinal (GI) toxicity were reported. Two-year local control was assessed with Kaplan-Meier methods. Results Seventeen patients were identified for analysis. PBB planning target volume margins were ≤8 mm in 94% (n = 16) of cases. Dosimetric target coverage parameters were favorable and all normal tissue dose constraints were met. For MRgRT PBB fractions, median table shifts were 0.4 cm (range, 0-3.15), 0.45 cm (0-2.65), and 0.75 cm (0-4.8) in the X, Y, and Z planes, respectively. Median treatment time for MRgRT PBB fractions was 9 minutes (range, 6.9-17.4). We identified 32 out of 100 total MRgRT fractions that may have benefitted from online adaptation based on changes in organ position relative to planning target volume, predominantly because of small bowel (13/32, 41%) or rectum (8/32, 25%). Two patients discontinued RT prematurely. The incidence of highest-grade acute genitourinary toxicity was 1 to 2 (69%) and 3 (6%), whereas the incidence of acute GI toxicity was 1 to 2 (81%) and 3 (6%). There were no late grade 3 events; 17.6% had late grade 2 cystitis and none had late GI toxicity. With median follow-up of 18.2 months (95% CI, 12.4-22.5), the local control rate was 92%, and no patient has required salvage cystectomy. Conclusions Nonadaptive MRgRT PBB is feasible with favorable dosimetry and low resource utilization. Larger studies are needed to evaluate for potential benefits in toxicity and local control associated with this approach in comparison to standard treatment techniques.
Collapse
Affiliation(s)
- Casey Liveringhouse
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexander Netzley
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - John M. Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Joseph Weygand
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Maria L. Sandoval
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ammoren Dohm
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Marsha Dookhoo
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Stacey Kelley
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Javier F. Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A.S. Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - G. Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
6
|
Zhong J, Kobus M, Maitre P, Datta A, Eccles C, Dubec M, McHugh D, Buckley D, Scarsbrook A, Hoskin P, Henry A, Choudhury A. MRI-guided Pelvic Radiation Therapy: A Primer for Radiologists. Radiographics 2023; 43:e230052. [PMID: 37796729 DOI: 10.1148/rg.230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Radiation therapy (RT) is a core pillar of oncologic treatment, and half of all patients with cancer receive this therapy as a curative or palliative treatment. The recent integration of MRI into the RT workflow has led to the advent of MRI-guided RT (MRIgRT). Using MRI rather than CT has clear advantages for guiding RT to pelvic tumors, including superior soft-tissue contrast, improved organ motion visualization, and the potential to image tumor phenotypic characteristics to identify the most aggressive or treatment-resistant areas, which can be targeted with a more focal higher radiation dose. Radiologists should be familiar with the potential uses of MRI in planning pelvic RT; the various RT techniques used, such as brachytherapy and external beam RT; and the impact of MRIgRT on treatment paradigms. Current clinical experience with and the evidence base for MRIgRT in the settings of prostate, cervical, and bladder cancer are discussed, and examples of treated cases are illustrated. In addition, the benefits of MRIgRT, such as real-time online adaptation of RT (during treatment) and interfraction and/or intrafraction adaptation to organ motion, as well as how MRIgRT can decrease toxic effects and improve oncologic outcomes, are highlighted. MRIgRT is particularly beneficial for treating mobile pelvic structures, and real-time adaptive RT for tumors can be achieved by using advanced MRI-guided linear accelerator systems to spare organs at risk. Future opportunities for development of biologically driven adapted RT with use of functional MRI sequences and radiogenomic approaches also are outlined. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Jim Zhong
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Marta Kobus
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Priyamvada Maitre
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Anubhav Datta
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Cynthia Eccles
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Michael Dubec
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Damien McHugh
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - David Buckley
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Andrew Scarsbrook
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Peter Hoskin
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ann Henry
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ananya Choudhury
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| |
Collapse
|
7
|
Azzarouali S, Goudschaal K, Visser J, Hulshof M, Admiraal M, van Wieringen N, Nieuwenhuijzen J, Wiersma J, Daniëls L, den Boer D, Bel A. Online adaptive radiotherapy for bladder cancer using a simultaneous integrated boost and fiducial markers. Radiat Oncol 2023; 18:165. [PMID: 37803392 PMCID: PMC10557331 DOI: 10.1186/s13014-023-02348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023] Open
Abstract
PURPOSE The aim was to assess the feasibility of online adaptive radiotherapy (oART) for bladder cancer using a focal boost by focusing on the quality of the online treatment plan and automatic target delineation, duration of the workflow and performance in the presence of fiducial markers for tumor bed localization. METHODS Fifteen patients with muscle invasive bladder cancer received daily oART with Cone Beam CT (CBCT), artificial intelligence (AI)-assisted automatic delineation of the daily anatomy and online plan reoptimization. The bladder and pelvic lymph nodes received a total dose of 40 Gy in 20 fractions, the tumor received an additional simultaneously integrated boost (SIB) of 15 Gy. The dose distribution of the reference plan was calculated for the daily anatomy, i.e. the scheduled plan. Simultaneously, a reoptimization of the plan was performed i.e. the adaptive plan. The target coverage and V95% outside the target were evaluated for both plans. The need for manual adjustments of the GTV delineation, the duration of the workflow and the influence of fiducial markers were assessed. RESULTS All 300 adaptive plans met the requirement of the CTV-coverage V95%≥98% for both the boost (55 Gy) and elective volume (40 Gy). For the scheduled plans the CTV-coverage was 53.5% and 98.5%, respectively. Significantly less tissue outside the targets received 55 Gy in case of the adaptive plans as compared to the scheduled plans. Manual corrections of the GTV were performed in 67% of the sessions. In 96% of these corrections the GTV was enlarged and resulted in a median improvement of 1% for the target coverage. The median on-couch time was 22 min. A third of the session time consisted of reoptimization of the treatment plan. Fiducial markers were visible on the CBCTs and aided the tumor localization. CONCLUSIONS AI-driven CBCT-guided oART aided by fiducial markers is feasible for bladder cancer radiotherapy treatment including a SIB. The quality of the adaptive plans met the clinical requirements and fiducial markers were visible enabling consistent daily tumor localization. Improved automatic delineation to lower the need for manual corrections and faster reoptimization would result in shorter session time.
Collapse
Affiliation(s)
- Sana Azzarouali
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands.
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Karin Goudschaal
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jorrit Visser
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maarten Hulshof
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marjan Admiraal
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
| | - Niek van Wieringen
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jakko Nieuwenhuijzen
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Urology, Amsterdam, The Netherlands
| | - Jan Wiersma
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laurien Daniëls
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Duncan den Boer
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
| | - Arjan Bel
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Chick J, Alexander S, Herbert T, Huddart R, Ingle M, Mitchell A, Nill S, Oelfke U, Dunlop A, Hafeez S. Evaluation of non-vendor magnetic resonance imaging sequences for use in bladder cancer magnetic resonance image guided radiotherapy. Phys Imaging Radiat Oncol 2023; 27:100481. [PMID: 37655122 PMCID: PMC10465927 DOI: 10.1016/j.phro.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Hybrid systems that combine Magnetic Resonance Imaging (MRI) and linear accelerators are available clinically to guide and adapt radiotherapy. Vendor-approved MRI sequences are provided, however alternative sequences may offer advantages. The aim of this study was to develop a systematic approach for non-vendor sequence evaluation, to determine safety, accuracy and overall clinical application of two potential sequences for bladder cancer MRI guided radiotherapy. Non-vendor sequences underwent and passed clinical image qualitative review, phantom quality assurance, and radiotherapy planning assessments. Volunteer workflow tests showed the potential for one sequence to reduce workflow time by 27% compared to the standard vendor sequence.
Collapse
Affiliation(s)
- Joan Chick
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Sophie Alexander
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Trina Herbert
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Robert Huddart
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Manasi Ingle
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Adam Mitchell
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Simeon Nill
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Uwe Oelfke
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Alex Dunlop
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Shaista Hafeez
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| |
Collapse
|
9
|
Klaar R, Rabe M, Gaass T, Schneider MJ, Benlala I, Eze C, Corradini S, Belka C, Landry G, Kurz C, Dinkel J. Ventilation and perfusion MRI at a 0.35 T MR-Linac: feasibility and reproducibility study. Radiat Oncol 2023; 18:58. [PMID: 37013541 PMCID: PMC10069152 DOI: 10.1186/s13014-023-02244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Hybrid devices that combine radiation therapy and MR-imaging have been introduced in the clinical routine for the treatment of lung cancer. This opened up not only possibilities in terms of accurate tumor tracking, dose delivery and adapted treatment planning, but also functional lung imaging. The aim of this study was to show the feasibility of Non-uniform Fourier Decomposition (NuFD) MRI at a 0.35 T MR-Linac as a potential treatment response assessment tool, and propose two signal normalization strategies for enhancing the reproducibility of the results. METHODS Ten healthy volunteers (median age 28 ± 8 years, five female, five male) were repeatedly scanned at a 0.35 T MR-Linac using an optimized 2D+t balanced steady-state free precession (bSSFP) sequence for two coronal slice positions. Image series were acquired in normal free breathing with breaks inside and outside the scanner as well as deep and shallow breathing. Ventilation- and perfusion-weighted maps were generated for each image series using NuFD. For intra-volunteer ventilation map reproducibility, a normalization factor was defined based on the linear correlation of the ventilation signal and diaphragm position of each scan as well as the diaphragm motion amplitude of a reference scan. This allowed for the correction of signal dependency on the diaphragm motion amplitude, which varies with breathing patterns. The second strategy, which can be used for ventilation and perfusion, eliminates the dependency on the signal amplitude by normalizing the ventilation/perfusion maps with the average ventilation/perfusion signal within a selected region-of-interest (ROI). The position and size dependency of this ROI was analyzed. To evaluate the performance of both approaches, the normalized ventilation/perfusion-weighted maps were compared and the deviation of the mean ventilation/perfusion signal from the reference was calculated for each scan. Wilcoxon signed-rank tests were performed to test whether the normalization methods can significantly improve the reproducibility of the ventilation/perfusion maps. RESULTS The ventilation- and perfusion-weighted maps generated with the NuFD algorithm demonstrated a mostly homogenous distribution of signal intensity as expected for healthy volunteers regardless of the breathing maneuver and slice position. Evaluation of the ROI's size and position dependency showed small differences in the performance. Applying both normalization strategies improved the reproducibility of the ventilation by reducing the median deviation of all scans to 9.1%, 5.7% and 8.6% for the diaphragm-based, the best and worst performing ROI-based normalization, respectively, compared to 29.5% for the non-normalized scans. The significance of this improvement was confirmed by the Wilcoxon signed rank test with [Formula: see text] at [Formula: see text]. A comparison of the techniques against each other revealed a significant difference in the performance between best ROI-based normalization and worst ROI ([Formula: see text]) and between best ROI-based normalization and scaling factor ([Formula: see text]), but not between scaling factor and worst ROI ([Formula: see text]). Using the ROI-based approach for the perfusion-maps, the uncorrected deviation of 10.2% was reduced to 5.3%, which was shown to be significant ([Formula: see text]). CONCLUSIONS Using NuFD for non-contrast enhanced functional lung MRI at a 0.35 T MR-Linac is feasible and produces plausible ventilation- and perfusion-weighted maps for volunteers without history of chronic pulmonary diseases utilizing different breathing patterns. The reproducibility of the results in repeated scans significantly benefits from the introduction of the two normalization strategies, making NuFD a potential candidate for fast and robust early treatment response assessment of lung cancer patients during MR-guided radiotherapy.
Collapse
Affiliation(s)
- Rabea Klaar
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Gaass
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz J. Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Ilyes Benlala
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, F-33600 Pessac, France
- CHU Bordeaux, Service d’Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d’Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-thoracique de Bordeaux, F-33600 Pessac, France
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
10
|
Chuong MD, Palm RF, Tjong MC, Hyer DE, Kishan AU. Advances in MRI-Guided Radiation Therapy. Surg Oncol Clin N Am 2023; 32:599-615. [PMID: 37182995 DOI: 10.1016/j.soc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Image guidance for radiation therapy (RT) has evolved over the last few decades and now is routinely performed using cone-beam computerized tomography (CBCT). Conventional linear accelerators (LINACs) that use CBCT have limited soft tissue contrast, are not able to image the patient's internal anatomy during treatment delivery, and most are not capable of online adaptive replanning. RT delivery systems that use MRI have become available within the last several years and address many of the imaging limitations of conventional LINACs. Herein, the authors review the technical characteristics and advantages of MRI-guided RT as well as emerging clinical outcomes.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, 8900 North Kendall Drive, Miami, FL 33176, USA.
| | - Russell F Palm
- Department of Radiation Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Michael C Tjong
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 1338 S Hope Street, Los Angeles, CA 90015, USA
| |
Collapse
|
11
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Hafeez S, Koh M, Jones K, El Ghzal A, D'Arcy J, Kumar P, Khoo V, Lalondrelle S, McDonald F, Thompson A, Scurr E, Sohaib A, Huddart R. Assessing Bladder Radiotherapy Response With Quantitative Diffusion-Weighted Magnetic Resonance Imaging Analysis. Clin Oncol (R Coll Radiol) 2022; 34:630-641. [PMID: 35534398 DOI: 10.1016/j.clon.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
AIMS Radiotherapy with radiosensitisation offers opportunity for cure with organ preservation in muscle-invasive bladder cancer (MIBC). Treatment response assessment and follow-up are reliant on regular endoscopic evaluation of the retained bladder. In this study we aim to determine the role of diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coefficient (ADC) analysis to assess bladder radiotherapy response. MATERIALS AND METHODS Patients with T2-T4aN0-3M0 MIBC suitable for radical radiotherapy were recruited prospectively to an ethics approved protocol. Following transurethral resection of the bladder tumour and prior to any treatment, magnetic resonance imaging including DWI was performed on a 1.5T system using b values of 0, 100, 150, 250, 500, 750 s/mm2. DWI was repeated 3 months after completing radiotherapy. Cystoscopy and tumour site biopsy were undertaken following this. The response was dichotomised into response ( RESULTS Thirty-four patients were evaluated. Response was associated with a significant increase in ΔADC mean compared with poor response at ΔADCall (0.57 × 10-3 mm2/s versus -0.01 × 10-3 mm2/s; P < 0.0001) and ΔADCb100 (0.58 × 10-3 mm2/s versus -0.10 x 10-3 mm2/s; P = 0.007). A 48.50% increase in %ΔADCall mean was seen in response compared with a 1.37% decrease in poor response (P < 0.0001). This corresponded to a %ΔADCb100 mean increase of 50.34% in response versus a 7.36% decrease for poor response (P < 0.0001). Significant area under the curve (AUC) values predictive of radiotherapy response were identified at ΔADC and %ΔADC for ADCall and ADCb100 mean, 10th, 25th, 50th, 75th and 90th percentiles (AUC >0.9, P < 0.01). ΔADCall mean of 0.16 × 10-3 mm2/s and ΔADCb100 mean 0.12 × 10-3 mm2/s predicted radiotherapy response with sensitivity/specificity/positive predictive value/negative predictive value of 92.9%/100.0%/100.0%/75.0% and 89.3%/100.0%/100.0%/66.7%, respectively. CONCLUSIONS Quantitative DWI analysis can successfully provide non-invasive assessment of bladder radiotherapy response. Multicentre validation is required before prospective testing to inform MIBC radiotherapy follow-up schedules and decision making.
Collapse
Affiliation(s)
- S Hafeez
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| | - M Koh
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - K Jones
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - A El Ghzal
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - J D'Arcy
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - P Kumar
- The Royal Marsden NHS Foundation Trust, London, UK
| | - V Khoo
- The Royal Marsden NHS Foundation Trust, London, UK
| | - S Lalondrelle
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - F McDonald
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - A Thompson
- The Royal Marsden NHS Foundation Trust, London, UK
| | - E Scurr
- The Royal Marsden NHS Foundation Trust, London, UK
| | - A Sohaib
- The Royal Marsden NHS Foundation Trust, London, UK
| | - R Huddart
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Abdel-Aty H, Warren-Oseni K, Bagherzadeh-Akbari S, Hansen VN, Jones K, Harris V, Tan MP, Mcquaid D, McNair HA, Huddart R, Dunlop A, Hafeez S. Mapping Local Failure Following Bladder Radiotherapy According to Dose. Clin Oncol (R Coll Radiol) 2022; 34:e421-e429. [PMID: 35691760 PMCID: PMC9515812 DOI: 10.1016/j.clon.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
AIMS To determine the relationship between local relapse following radical radiotherapy for muscle-invasive bladder cancer (MIBC) and radiation dose. MATERIALS AND METHODS Patients with T2-4N0-3M0 MIBC were recruited to a phase II study assessing the feasibility of intensity-modulated radiotherapy to the bladder and pelvic lymph nodes. Patients were planned to receive 64 Gy/32 fractions to the bladder tumour, 60 Gy/32 fractions to the involved pelvic nodes and 52 Gy/32 fractions to the uninvolved bladder and pelvic nodes. Pre-treatment set-up was informed by cone-beam CT. For patients who experienced local relapse, cystoscopy and imaging (CT/MRI) was used to reconstruct the relapse gross tumour volume (GTVrelapse) on the original planning CT . GTVrelapse D98% and D95% was determined by co-registering the relapse image to the planning CT utilising deformable image registration (DIR) and rigid image registration (RIR). Failure was classified into five types based on spatial and dosimetric criteria as follows: A (central high-dose failure), B (peripheral high-dose failure), C (central elective dose failure), D (peripheral elective dose failure) and E (extraneous dose failure). RESULTS Between June 2009 and November 2012, 38 patients were recruited. Following treatment, 18/38 (47%) patients experienced local relapse within the bladder. The median time to local relapse was 9.0 months (95% confidence interval 6.3-11.7). Seventeen of 18 patients were evaluable based on the availability of cross-sectional relapse imaging. A significant difference between DIR and RIR methods was seen. With the DIR approach, the median GTVrelapse D98% and D95% was 97% and 98% of prescribed dose, respectively. Eleven of 17 (65%) patients experienced type A failure and 6/17 (35%) patients type B failure. No patients had type C, D or E failure. MIBC failure occurred in 10/17 (59%) relapsed patients; of those, 7/11 (64%) had type A failure and 3/6 (50%) had type B failure. Non-MIBC failure occurred in 7/17 (41%) patients; 4/11 (36%) with type A failure and 3/6 (50%) with type B failure. CONCLUSION Relapse following radiotherapy occurred within close proximity to the original bladder tumour volume and within the planned high-dose region, suggesting possible biological causes for failure. We advise caution when considering margin reduction for future reduced high-dose radiation volume or partial bladder radiotherapy protocols.
Collapse
Affiliation(s)
- H Abdel-Aty
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK
| | - K Warren-Oseni
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - S Bagherzadeh-Akbari
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - V N Hansen
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark
| | - K Jones
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK
| | - V Harris
- Department of Radiotherapy, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - M P Tan
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK
| | - D Mcquaid
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - H A McNair
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK
| | - R Huddart
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK
| | - A Dunlop
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - S Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
14
|
Kerkmeijer LGW, Kishan AU, Tree AC. Magnetic Resonance Imaging-guided Adaptive Radiotherapy for Urological Cancers: What Urologists Should Know. Eur Urol 2022; 82:149-151. [PMID: 35031164 DOI: 10.1016/j.eururo.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
Magnetic resonance imaging (MRI)-guided radiotherapy allows for online adaptation of the radiation plan on the basis of anatomical and functional changes during treatment. MRI-guided radiotherapy holds significant promise for broadening the therapeutic window for multiple urological cancers.
Collapse
Affiliation(s)
- Linda G W Kerkmeijer
- Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Amar U Kishan
- Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Alison C Tree
- Uro-Oncology, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| |
Collapse
|
15
|
Mitchell A, Ingle M, Smith G, Chick J, Diamantopoulos S, Goodwin E, Herbert T, Huddart R, McNair H, Oelfke U, Nill S, Dunlop A, Hafeez S. Feasibility of tumour-focused adaptive radiotherapy for bladder cancer on the MR-linac. Clin Transl Radiat Oncol 2022; 35:27-32. [PMID: 35571274 PMCID: PMC9092067 DOI: 10.1016/j.ctro.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder tumour-focused magnetic resonance image-guided adaptive radiotherapy using a 1.5 Tesla MR-linac is feasible. A full online workflow adapting to anatomy at each fraction is achievable in approximately 30 min. Intra-fraction bladder filling did not compromise target coverage with the class solution employed.
Collapse
Affiliation(s)
- A. Mitchell
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - M. Ingle
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - G. Smith
- The Royal Marsden NHS Foundation Trust, London, UK
| | - J. Chick
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - S. Diamantopoulos
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - E. Goodwin
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - T. Herbert
- The Royal Marsden NHS Foundation Trust, London, UK
| | - R. Huddart
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - H. McNair
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - U. Oelfke
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - S. Nill
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - A. Dunlop
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - S. Hafeez
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Hall WA, Paulson E, Li XA, Erickson B, Schultz C, Tree A, Awan M, Low DA, McDonald BA, Salzillo T, Glide-Hurst CK, Kishan AU, Fuller CD. Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. CA Cancer J Clin 2022; 72:34-56. [PMID: 34792808 PMCID: PMC8985054 DOI: 10.3322/caac.21707] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.
Collapse
MESH Headings
- History, 20th Century
- History, 21st Century
- Humans
- Magnetic Resonance Imaging, Interventional/history
- Magnetic Resonance Imaging, Interventional/instrumentation
- Magnetic Resonance Imaging, Interventional/methods
- Magnetic Resonance Imaging, Interventional/trends
- Neoplasms/diagnostic imaging
- Neoplasms/radiotherapy
- Particle Accelerators
- Radiation Oncology/history
- Radiation Oncology/instrumentation
- Radiation Oncology/methods
- Radiation Oncology/trends
- Radiotherapy Planning, Computer-Assisted/history
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/trends
Collapse
Affiliation(s)
- William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Tree
- The Royal Marsden National Health Service Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel A. Low
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Travis Salzillo
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Carri K. Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Shepherd M, Graham S, Ward A, Zwart L, Cai B, Shelley C, Booth J. Pathway for radiation therapists online advanced adapter training and credentialing. Tech Innov Patient Support Radiat Oncol 2021; 20:54-60. [PMID: 34917781 PMCID: PMC8665404 DOI: 10.1016/j.tipsro.2021.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Online Adaptive Radiation Therapy (oART) provides a solution to account for daily patient variations, but wide spread implementation is hindered by human resources and training. Physicians can mentor Radiation Therapists (RTTs) through traditional tasks such as contouring and plan approval. With evidence-based credentialing activities, decision support aids and ‘on-call’ caveats, RTTs can lead the oART workflow and a ‘Clinician-Lite’ approach. Compliance with legislative, regulatory and medico-legal governing bodies can be addressed through post-graduate study, advanced practice pathways, exemptions and delegation of task.
Online adaptive radiotherapy (oART) is an emerging advanced treatment option for cancer patients worldwide. Current oART practices using magnetic resonance (MR) and cone beam computed tomography (CBCT) based imaging are resource intensive and require physician presence, which is a barrier to widespread implementation. Global evidence demonstrates Radiation Therapists (RTTs) can lead the oART workflow with decision support tools and on ‘on-call’ caveats in a ‘clinician-lite’ approach without significantly compromising on treatment accuracy, speed or patient outcomes. With careful consideration of jurisdictional regulations and guidance from the multi-disciplinary team, RTTs can elevate beyond traditional scopes of practice. By implementing robust and evidence-based credentialing activities, they enable service sustainability and expand the real-world gains of adaptive radiotherapy to a greater number of cancer patients worldwide. This work summarises the evidence for RTT-led oART treatments and proposes a pathway for training and credentialing.
Collapse
Affiliation(s)
- Meegan Shepherd
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd, St Leonard, NSW 2065, Australia
| | - Siobhan Graham
- Queen's Hospital, BHRUT NHS Trust, Rom Valley Way, Romford RM1 0AG, UK
| | - Amy Ward
- Queen's Hospital, BHRUT NHS Trust, Rom Valley Way, Romford RM1 0AG, UK
| | - Lissane Zwart
- Medisch Spectrum Twente (MST), Koningstraat 1, 7512 KZ Enschede, Netherlands
| | - Bin Cai
- UT Southwestern Medical Center, Harry Hines Blvd, Dallas, TX 75390, USA
| | | | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd, St Leonard, NSW 2065, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2004, Australia
| |
Collapse
|
18
|
den Boer D, den Hartogh MD, Kotte AN, van der Voort van Zyp JR, Noteboom JL, Bol GH, Willigenburg T, Werensteijn-Honingh AM, Jürgenliemk-Schulz IM, van Lier AL, Kroon PS. Comparison of Library of Plans with two daily adaptive strategies for whole bladder radiotherapy. Phys Imaging Radiat Oncol 2021; 20:82-87. [PMID: 34849413 PMCID: PMC8609047 DOI: 10.1016/j.phro.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Whole bladder radiotherapy is challenging due to inter- and intrafraction size and shape changes. To account for these changes, currently a Library of Plans (LoP) technique is often applied, but daily adaptive radiotherapy is also increasingly becoming available. The aim of this study was to compare LoP with two magnetic resonance imaging guided radiotherapy (MRgRT) strategies by comparing target coverage and volume of healthy tissue inside the planning target volume (PTV) for whole bladder treatments. Methods and materials Data from 25 MRgRT lymph node oligometastases treatments (125 fractions) were used, with three MRI scans acquired at each fraction at 0, 15 and 30 min. Bladders were delineated and used to evaluate three strategies: 1) LoP with two plans for a 15 min fraction, 2) MRgRT15min for a 15 min fraction and 3) MRgRT30min for a 30 min fraction. The volumes of healthy tissue inside and bladder outside the PTV were analyzed on the simulated post-treatment images. Results MRgRT30min had 120% and 121% more healthy tissue inside the PTV than LoP and MRgRT15min. For LoP slightly more target outside the PTV was found than for MRgRT30min and MRgRT15min, with median 0% (range 0-23%) compared to 0% (0-20%) and 0% (0-10%), respectively. Conclusions Taking into account both target coverage and volume of healthy tissue inside the PTV, MRgRT15min performed better than LoP and MRgRT30min for whole bladder treatments. A 15 min daily adaptive radiotherapy workflow is needed to potentially benefit from replanning compared to LoP.
Collapse
Affiliation(s)
- Duncan den Boer
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Corresponding author at: Department of Radiotherapy, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands.
| | - Mariska D. den Hartogh
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Alexis N.T.J. Kotte
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | | | - Juus L. Noteboom
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Gijsbert H. Bol
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Thomas Willigenburg
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Anita M. Werensteijn-Honingh
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ina M. Jürgenliemk-Schulz
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Astrid L.H.M.W. van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Petra S. Kroon
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
19
|
Portner R, Bajaj A, Elumalai T, Huddart R, Murthy V, Nightingale H, Patel K, Sargos P, Song Y, Hoskin P, Choudhury A. A practical approach to bladder preservation with hypofractionated radiotherapy for localised muscle-invasive bladder cancer. Clin Transl Radiat Oncol 2021; 31:1-7. [PMID: 34466667 PMCID: PMC8385113 DOI: 10.1016/j.ctro.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder preservation with trimodality treatment (TMT) is an alternative strategy to radical cystectomy (RC) for the management of localised muscle invasive bladder cancer (MIBC). TMT comprises of transurethral resection of the bladder tumour (TURBT) followed by radiotherapy with concurrent radiosensitisation. TMT studies have shown neo-adjuvant chemotherapy with cisplatin-based regimens is often given to further improve survival outcomes. A hypofractionated radiotherapy regimen is preferable due to its non-inferiority in local control and late toxicities. Radiosensitisation can comprise concurrent chemotherapy (with gemcitabine, cisplatin or combination fluorouracil and mitomycin), CON (carbogen and nicotinomide) or hyperthermic treatment. Radiotherapy techniques are continuously improving and becoming more personalised. As the bladder is a mobile structure subject to volumetric changes from filling, an adaptive approach can optimise bladder coverage and reduce dose to normal tissue. Adaptive radiotherapy (ART) is an evolving field that aims to overcome this. Improved knowledge of tumour biology and advances in imaging techniques aims to further optimise and personalise treatment.
Collapse
Affiliation(s)
- R. Portner
- The Christie NHS Foundation Trust, Manchester, UK
| | - A. Bajaj
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T. Elumalai
- The Christie NHS Foundation Trust, Manchester, UK
| | - R. Huddart
- Royal Marsden NHS Foundation Trust, London, UK
- Institute of Cancer Research, UK
| | - V. Murthy
- Department of Radiation Oncology, ACTREC and Tata Memorial Hospital, Homi Bhabha National University, Mumbai, India
| | | | - K. Patel
- The Christie NHS Foundation Trust, Manchester, UK
| | - P. Sargos
- Department of Radiation Oncology, Institut Bergonié, F-33076 Bordeaux Cedex, France
| | - Y. Song
- The Christie NHS Foundation Trust, Manchester, UK
| | - P. Hoskin
- Mount Vernon Cancer Centre, Northwood, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - A. Choudhury
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Yeh J, Bressel M, Tai KH, Kron T, Foroudi F. A retrospective review of the long-term outcomes of online adaptive radiation therapy and conventional radiation therapy for muscle invasive bladder cancer. Clin Transl Radiat Oncol 2021; 30:65-70. [PMID: 34401535 PMCID: PMC8358463 DOI: 10.1016/j.ctro.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022] Open
Abstract
Risks with tight adaptive RT margins. Cancer control may be poorer if margins tight. Prospective studies required.
Background and Purpose To report long-term outcomes of online image-guided (IG) adaptive radiation therapy (aRT) versus conventional IG radiation therapy (cRT) for bladder preservation in muscle-invasive bladder cancer (MIBC). Materials and Methods A retrospective review of patients with histologically proven MIBC who were prescribed radical intent radiation therapy (RT) following trans-urethral resection of bladder tumour (TURBT) was conducted. There were three groups based on their RT treatment modality: conventional RT (cRT), margin 5 mm adaptive RT (aRT5mm) and margin 7 mm adaptive RT (aRT7mm). Results 171 patients were included in this study, with median age of 79.4 years (41–90). Approximately half of all patients received concurrent chemotherapy. N = 57 underwent cRT, n = 39 underwent aRT5mm, and n = 75 underwent aRT7mm. Response evaluable patients in all three groups (n = 133) had high rates of complete response (CR, 83%) on first post-RT cystoscopy with no significant differences between the groups. At a median follow-up of 54 months, the 5-year freedom from muscle-invasive failure survival (FFMIFS) in the cRT, aRT5mm, and aRT7mm groups were 75%, 59%, and 98%, respectively. The estimated cancer specific survival (CSS) at 5 years were 60%, 30%, and 59%, respectively. The estimated overall survival (OS) at 5 years were 43%, 26%, and 38%, respectively. The incidence of late grade 3 or 4 toxicity was n = 5 in aRT5mm, n = 2 in cRT group, and n = 1 in aRT7mm. Conclusion IG aRT with 7 mm expansion for MIBC provides higher rates of FFMIFS, similar 5-year CSS and OS, as well as toxicity outcomes when compared to cRT. aRT with 5 mm expansion with this RT protocol is not recommended for treatment.
Collapse
Affiliation(s)
- Janice Yeh
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia.,Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Hospital, Victoria, Australia
| | - Mathias Bressel
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Keen Hun Tai
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Tomas Kron
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Farshad Foroudi
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Hospital, Victoria, Australia
| |
Collapse
|
21
|
de Muinck Keizer DM, van der Voort van Zyp JRN, de Groot-van Breugel EN, Raaymakers BW, Lagendijk JJW, de Boer HCJ. On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 19:90-95. [PMID: 34377842 PMCID: PMC8327343 DOI: 10.1016/j.phro.2021.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022]
Abstract
Background and purpose In daily adaptive magnetic resonance (MR)-guided radiotherapy, plans are adapted based on the patient's daily anatomy. During this adaptation phase, prostate intrafraction motion (IM) can occur. The aim of this study was to investigate the efficacy of always applying a subsequent virtual couch shift (VCS) to counter IM that occurred during the daily contour and plan adaption (CPa) procedure. Material and Methods One hundred fifty patients with low and intermediate risk prostate cancer were treated with 5x7.25 Gy fractions on a 1.5 T MR-Linac. In each fraction, contour adaptation and dose re-optimization was performed using the session’s first MR-scan. IM that occurred here was countered using two methods. One patient group had selective VCS (sVCS) applied if the CTV reached outside the PTV on a second MR acquired during plan optimization. The other group had always VCS (aVCS) applied for any prostate shift greater than 1 mm. Remaining IM during beam delivery was determined using 3D cine-MR. Results Percentage of fractions where a VCS was applied was 28% (sVCS) vs 78% (aVCS). Always applying VCS significantly reduced influences of systematic prostate IM. Population random and systematic median values in all translations directions were lower for the aVCS than sVCS group, but not for the population random cranial-caudal direction. Conclusion Applying VCS after daily CPa reduced impact of systematic prostate drift in especially the posterior and caudal translation direction. However, due to the continuous and stochastical nature of prostate IM, margin reduction below 4 mm requires fast intrafraction plan adaption methods.
Collapse
Affiliation(s)
- Daan M de Muinck Keizer
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA Utrecht, the Netherlands
| | | | | | - Bas W Raaymakers
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA Utrecht, the Netherlands
| | - Jan J W Lagendijk
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA Utrecht, the Netherlands
| | - Hans C J de Boer
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA Utrecht, the Netherlands
| |
Collapse
|
22
|
Seravalli E, Kroon PS, Buatti JM, Hall MD, Mandeville HC, Marcus KJ, Onal C, Ozyar E, Paulino AC, Paulsen F, Saunders D, Tsang DS, Wolden SL, Janssens GO. The potential role of MR-guided adaptive radiotherapy in pediatric oncology: Results from a SIOPE-COG survey. Clin Transl Radiat Oncol 2021; 29:71-78. [PMID: 34159265 PMCID: PMC8202186 DOI: 10.1016/j.ctro.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance guided radiotherapy (MRgRT) has been successfully implemented for several routine clinical applications in adult patients. The purpose of this study is to map the potential benefit of MRgRT on toxicity reduction and outcome in pediatric patients treated with curative intent for primary and metastatic sites. MATERIALS AND METHODS Between May and August 2020, a survey was distributed among SIOPE- and COG-affiliated radiotherapy departments, treating at least 25 pediatrics patients annually and being (candidate) users of a MRgRT system. The survey consisted of a table with 45 rows (clinical scenarios for primary (n = 28) and metastatic (n = 17) tumors) and 7 columns (toxicity reduction, outcome improvement, PTV margin reduction, target volume daily adaptation, online re-planning, intrafraction motion compensation and on-board functional imaging) and the option to answer by 'yes/no' . Afterwards, the Dutch national radiotherapy cohort was used to estimate the percentage of pediatric treatments that may benefit from MRgRT. RESULTS The survey was completed by 12/17 (71% response rate) institutions meeting the survey inclusion criteria. Responders indicated an 'expected benefit' from MRgRT for toxicity/outcome in 7% (for thoracic lymphomas and abdominal rhabdomyosarcomas)/0% and 18% (for mediastinal lymph nodes, lymph nodes located in the liver/splenic hilum, and liver metastases)/0% of the considered scenarios for the primary and metastatic tumor sites, respectively, and a 'possible benefit' was estimated in 64%/46% and 47%/59% of the scenarios. When translating the survey outcome into a clinical perspective a toxicity/outcome benefit, either expected or possible, was anticipated for 55%/24% of primary sites and 62%/38% of the metastatic sites. CONCLUSION Although the benefit of MRgRT in pediatric radiation oncology is estimated to be modest, the potential role for reducing toxicity and improving clinical outcomes warrants further investigation. This fits best within the context of prospective studies or registration trials.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra S. Kroon
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John M. Buatti
- Departments of Radiation Oncology, University of Iowa, Iowa City, USA
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Henry C. Mandeville
- Department of Radiotherapy, The Royal Marsden Hospital and Institute of Cancer Research, Sutton, United Kingdom
| | - Karen J. Marcus
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Cem Onal
- Department of Radiation Oncology, Baskent University, Ankara, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Arnold C. Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Derek S. Tsang
- Radiation Medicine Program, University Health Network – Princess Margaret Cancer Centre, Toronto, Canada
| | - Suzanne L. Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Geert O. Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
23
|
Hafeez S, Dunlop A, Mitchell A, Nill S. Comment on Hunt et al., "Feasibility of magnetic resonance guided radiotherapy for the treatment of bladder cancer". Clin Transl Radiat Oncol 2021; 29:9-10. [PMID: 34027138 PMCID: PMC8122149 DOI: 10.1016/j.ctro.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- S. Hafeez
- Divsion of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK
| | - A. Dunlop
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - A. Mitchell
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - S. Nill
- The Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| |
Collapse
|
24
|
Kong V, Hansen VN, Hafeez S. Image-guided Adaptive Radiotherapy for Bladder Cancer. Clin Oncol (R Coll Radiol) 2021; 33:350-368. [PMID: 33972024 DOI: 10.1016/j.clon.2021.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Technological advancement has facilitated patient-specific radiotherapy in bladder cancer. This has been made possible by developments in image-guided radiotherapy (IGRT). Particularly transformative has been the integration of volumetric imaging into the workflow. The ability to visualise the bladder target using cone beam computed tomography and magnetic resonance imaging initially assisted with determining the magnitude of inter- and intra-fraction target change. It has led to greater confidence in ascertaining true anatomy at each fraction. The increased certainty of dose delivered to the bladder has permitted the safe reduction of planning target volume margins. IGRT has therefore improved target coverage with a reduction in integral dose to the surrounding tissue. Use of IGRT to feed back into plan and dose delivery optimisation according to the anatomy of the day has enabled adaptive radiotherapy bladder solutions. Here we undertake a review of the stepwise developments underpinning IGRT and adaptive radiotherapy strategies for external beam bladder cancer radiotherapy. We present the evidence in accordance with the framework for systematic clinical evaluation of technical innovations in radiation oncology (R-IDEAL).
Collapse
Affiliation(s)
- V Kong
- Radiation Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - V N Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - S Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
25
|
Huddart RA. Bladder Radiotherapy: Is Cinderella Ready for the Ball? Clin Oncol (R Coll Radiol) 2021; 33:343-345. [PMID: 33895059 DOI: 10.1016/j.clon.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/22/2022]
Affiliation(s)
- R A Huddart
- Institute of Cancer Research, Sutton, Surrey, UK.
| |
Collapse
|
26
|
Yavas G, Yavas C, Arslan G, Onal C. Comment on Hunt et al, "Feasibility of magnetic resonance guided radiotherapy for the treatment of bladder cancer". Clin Transl Radiat Oncol 2021; 28:88-89. [PMID: 33912694 PMCID: PMC8065181 DOI: 10.1016/j.ctro.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
Bladder cancer patients who are unsuitable for standard radical treatments present a large unfulfilled clinical need. Hypofractionated RT can be an appropriate solution for these patients; however organ movement and changes in bladder filling is important obstacle for such treatment strategies. The only way to overcome this obstacle is that using online adaptive image-guided RT. There is need of new studies evaluating the role of MRgRT for bladder cancer patients.
Collapse
Affiliation(s)
- Guler Yavas
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Cagdas Yavas
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Gungor Arslan
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey
| | - Cem Onal
- Baskent University, Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey.,Baskent University, Faculty of Medicine, Department of Radiation Oncology Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| |
Collapse
|
27
|
Hijab A, Tocco B, Hanson I, Meijer H, Nyborg CJ, Bertelsen AS, Smeenk RJ, Smith G, Michalski J, Baumann BC, Hafeez S. MR-Guided Adaptive Radiotherapy for Bladder Cancer. Front Oncol 2021; 11:637591. [PMID: 33718230 PMCID: PMC7947660 DOI: 10.3389/fonc.2021.637591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has an important role in the curative and palliative treatment settings for bladder cancer. As a target for radiotherapy the bladder presents a number of technical challenges. These include poor tumor visualization and the variability in bladder size and position both between and during treatment delivery. Evidence favors the use of magnetic resonance imaging (MRI) as an important means of tumor visualization and local staging. The availability of hybrid systems incorporating both MRI scanning capabilities with the linear accelerator (MR-Linac) offers opportunity for in-room and real-time MRI scanning with ability of plan adaption at each fraction while the patient is on the treatment couch. This has a number of potential advantages for bladder cancer patients. In this article, we examine the technical challenges of bladder radiotherapy and explore how magnetic resonance (MR) guided radiotherapy (MRgRT) could be leveraged with the aim of improving bladder cancer patient outcomes. However, before routine clinical implementation robust evidence base to establish whether MRgRT translates into improved patient outcomes should be ascertained.
Collapse
Affiliation(s)
- Adham Hijab
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Boris Tocco
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ian Hanson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Hanneke Meijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gillian Smith
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Shaista Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|