1
|
Wu K, Peng X, Chen M, Li Y, Tang G, Peng J, Peng Y, Cao X. Recent progress of research on anti‐tumor agents using benzimidazole as the structure unit. Chem Biol Drug Des 2022; 99:736-757. [DOI: 10.1111/cbdd.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Miaojia Chen
- Department of Pharmacy the first People's Hospital Pingjiang Yueyang Hunan China
| | - Yang Li
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering East China Jiaotong University Nanchang 330000 China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| |
Collapse
|
2
|
Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals (Basel) 2021; 14:ph14090854. [PMID: 34577553 PMCID: PMC8466194 DOI: 10.3390/ph14090854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Retinoids are a class of natural and synthetic compounds derived from vitamin A. They are involved in several biological processes like embryogenesis, reproduction, vision, growth, inflammation, differentiation, proliferation, and apoptosis. In light of their important functions, retinoids have been widely investigated for their therapeutic applications. Thus far, their use for the treatment of several types of cancer and skin disorders has been reported. However, these therapeutic agents present several limitations for their widespread clinical translatability, i.e., poor solubility and chemical instability in water, sensitivity to light, heat, and oxygen, and low bioavailability. These characteristics result in internalization into target cells and tissues only at low concentration and, consequently, at an unsatisfactory therapeutic dose. Furthermore, the administration of retinoids causes severe side-effects. Thus, in order to improve their pharmacological properties and circulating half-life, while minimizing their off-target uptake, various retinoids delivery systems have been recently developed. This review intends to provide examples of retinoids-loaded nano-delivery systems for cancer treatment. In particular, the use and the therapeutic results obtained by using fenretinide-loaded liposomes against neuroectodermal-derived tumors, such as melanoma, in adults, and neuroblastoma, the most common extra-cranial solid tumor of childhood, will be discussed.
Collapse
|
3
|
Turkez H, Cacciatore I, Marinelli L, Fornasari E, Aslan ME, Cadirci K, Kahraman CY, Caglar O, Tatar A, Di Biase G, Hacimuftuoglu A, Di Stefano A, Mardinoglu A. Glycyl-L-Prolyl-L-Glutamate Pseudotripeptides for Treatment of Alzheimer's Disease. Biomolecules 2021; 11:biom11010126. [PMID: 33478054 PMCID: PMC7835747 DOI: 10.3390/biom11010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
So far, there is no effective disease-modifying therapies for Alzheimer’s Disease (AD) in clinical practice. In this context, glycine-L-proline-L-glutamate (GPE) and its analogs may open the way for developing a novel molecule for treating neurodegenerative disorders, including AD. In turn, this study was aimed to investigate the neuroprotective potentials exerted by three novel GPE peptidomimetics (GPE1, GPE2, and GPE3) using an in vitro AD model. Anti-Alzheimer potentials were determined using a wide array of techniques, such as measurements of mitochondrial viability (MTT) and lactate dehydrogenase (LDH) release assays, determination of acetylcholinesterase (AChE), α-secretase and β-secretase activities, comparisons of total antioxidant capacity (TAC) and total oxidative status (TOS) levels, flow cytometric and microscopic detection of apoptotic and necrotic neuronal death, and investigating gene expression responses via PCR arrays involving 64 critical genes related to 10 different pathways. Our analysis showed that GPE peptidomimetics modulate oxidative stress, ACh depletion, α-secretase inactivation, apoptotic, and necrotic cell death. In vitro results suggested that treatments with novel GPE analogs might be promising therapeutic agents for treatment and/or or prevention of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Erika Fornasari
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Mehmet Enes Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Kenan Cadirci
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, 25200 Erzurum, Turkey;
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Ozge Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Giuseppe Di Biase
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Antonio Di Stefano
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 24075 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
4
|
Turkez H, Cacciatore I, Arslan ME, Fornasari E, Marinelli L, Di Stefano A, Mardinoglu A. Histidyl-Proline Diketopiperazine Isomers as Multipotent Anti-Alzheimer Drug Candidates. Biomolecules 2020; 10:biom10050737. [PMID: 32397415 PMCID: PMC7277666 DOI: 10.3390/biom10050737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic dipeptides administered by both parenteral and oral routes are suggested as promising candidates for the treatment of neurodegeneration-related pathologies. In this study, we tested Cyclo (His-Pro) isomers (cHP1-4) for their anti-Alzheimer potential using a differentiated human neuroblastoma cell line (SH-SY5Y) as an Alzheimer’s disease (AD) experimental model. The SH-SY5Y cell line was differentiated by the application of all-trans retinoic acid (RA) to obtain mature neuron-like cells. Amyloid-beta 1-42 (Aβ1-42) peptides, the main effector in AD, were administered to the differentiated cell cultures to constitute the in vitro disease model. Next, we performed cell viability analyses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays) to investigate the neuroprotective concentrations of cyclodipeptides using the in vitro AD model. We evaluated acetylcholinesterase (AChE), α- and β-secretase activities (TACE and BACE1), antioxidant potency, and apoptotic/necrotic properties and performed global gene expression analysis to understand the main mechanism behind the neuroprotective features of cHP1-4. Moreover, we conducted sister chromatid exchange (SCE), micronucleus (MN), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) analyses to evaluate the genotoxic damage potential after applications with cHP1-4 on cultured human lymphocytes. Our results revealed that cHP1-4 isomers provide a different degree of neuroprotection against Aβ1-42-induced cell death on the in vitro AD model. The applications with cHP1-4 isomers altered the activity of AChE but not the activity of TACE and BACE1. Our analysis indicated that the cHP1-4 increased the total antioxidant capacity without altering total oxidative status levels in the cellular AD model and that cHP1-4 modulated the alterations of gene expressions by Aβ1-42 exposure. We also observed that cHP1-4 exhibited noncytotoxic and non-genotoxic features in cultured human whole blood cells. In conclusion, cHP1-4 isomers, especially cHP4, have been explored as novel promising therapeutics against AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey;
| | - Erika Fornasari
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (I.C.); (E.F.); (L.M.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
5
|
Villasante A, Sakaguchi K, Kim J, Cheung N, Nakayama M, Parsa H, Okano T, Shimizu T, Vunjak-Novakovic G. Vascularized Tissue-Engineered Model for Studying Drug Resistance in Neuroblastoma. Am J Cancer Res 2017; 7:4099-4117. [PMID: 29158813 PMCID: PMC5695000 DOI: 10.7150/thno.20730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/11/2017] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma is a vascularized pediatric tumor derived from neural crest stem cells that displays vasculogenic mimicry and can express a number of stemness markers, such as SOX2 and NANOG. Tumor relapse is the major cause of succumbing to this disease, and properties attributed to cancer stem-like cells (CSLC), such as drug-resistance and cell plasticity, seem to be the key mechanisms. However, the lack of controllable models that recapitulate the features of human neuroblastoma limits our understanding of the process and impedes the development of new therapies. In response to these limitations, we engineered a perfusable, vascularized in vitro model of three-dimensional human neuroblastoma to study the effects of retinoid therapy on tumor vasculature and drug-resistance. METHODS The in vitro model of neuroblastoma was generated using cell-sheet engineering and cultured in a perfusion bioreactor. Firstly, we stacked three cell sheets containing SKNBE(2) neuroblastoma cells and HUVEC. Then, a vascular bed made of fibrin, collagen I and HUVEC cells was placed onto a collagen-gel base with 8 microchannels. After gelling, the stacked cell sheets were placed on the vascular bed and cultured in the perfusion bioreactor (perfusion rate: 0.5 mL/min) for 4 days. Neuroblastoma models were treated with 10μM isotretionin in single daily doses for 5 days. RESULTS The bioengineered model recapitulated vasculogenic mimicry (vessel-like structure formation and tumor-derived endothelial cells-TECs), and contained CSLC expressing SOX2 and NANOG. Treatment with Isotretinoin destabilized vascular networks but failed to target vasculogenic mimicry and augmented populations of CSLCs expressing high levels of SOX2. Our results suggest that CSLCs can transdifferentiate into drug resistant CD31+-TECs, and reveal the presence of an intermediate state STEC (stem tumor-derived endothelial cell) expressing both SOX2 and CD31. CONCLUSION Our results reveal some roles of SOX2 in drug resistance and tumor relapse, and suggest that SOX2 could be a therapeutic target in neuroblastoma.
Collapse
|
6
|
Sun J, Wang D, Guo L, Fang S, Wang Y, Xing R. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo. Front Neurosci 2017; 11:116. [PMID: 28326012 PMCID: PMC5339338 DOI: 10.3389/fnins.2017.00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients.
Collapse
Affiliation(s)
- Junyan Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China; Department of Experimental Functionality, College of Basic Medical SciencesDalian, China
| | - Dongmei Wang
- College of Integrative Medicine, Dalian Medical University Dalian, China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine Baltimore, MD, USA
| | - Yang Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Rong Xing
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University Dalian, China
| |
Collapse
|
7
|
PlGF and VEGF-A Regulate Growth of High-Risk MYCN-Single Copy Neuroblastoma Xenografts via Different Mechanisms. Int J Mol Sci 2016; 17:ijms17101613. [PMID: 27669225 PMCID: PMC5085646 DOI: 10.3390/ijms17101613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood and is a rapidly growing, highly-vascularized cancer. NBs frequently express angiogenic factors and high tumor angiogenesis has been associated with poor outcomes. Placental growth factor (PlGF) is an angiogenic protein belonging to the vascular endothelial growth factor (VEGF) family and is up-regulated mainly in pathologic conditions. Recently, PlGF was identified as a member of a gene expression signature characterizing highly malignant NB stem cells drawing attention as a potential therapeutic target in NB. In the present study, we sought to investigate the expression of PlGF in NB patients and the effect of PlGF inhibition on high-risk MYCN-non-amplified SK-N-AS NB xenografts. Human SK-N-AS cells, which are poorly differentiated and express PlGF and VEGF-A, were implanted subcutaneously in athymic nude mice. Treatment was done by intratumoral injection of replication-incompetent adenoviruses (Ad) expressing PlGF- or VEGF-specific short hairpin (sh)RNA, or soluble (s)VEGF receptor 2 (VEGFR2). The effect on tumor growth and angiogenesis was analyzed. High PlGF expression levels were observed in human advanced-stage NBs. Down-regulating PlGF significantly reduced NB growth in established NB xenografts by reducing cancer cell proliferation but did not suppress angiogenesis. In contrast, blocking VEGF by administration of Ad(sh)VEGF and Ad(s)VEGFR2 reduced tumor growth associated with decreased tumor vasculature. These findings suggest that PlGF and VEGF-A modulate MYCN-non-amplified NB tumors by different mechanisms and support a role for PlGF in NB biology.
Collapse
|
8
|
Komar-Stossel C, Gross E, Dery E, Corchia N, Meir K, Fried I, Abramovitch R. TL-118 and gemcitabine drug combination display therapeutic efficacy in a MYCN amplified orthotopic neuroblastoma murine model--evaluation by MRI. PLoS One 2014; 9:e90224. [PMID: 24603724 PMCID: PMC3946152 DOI: 10.1371/journal.pone.0090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common extra-cranial pediatric solid tumor with up to 50% of NB patients classified as having high-risk disease with poor long-term survival rates. The poor clinical outcome and aggressiveness of high-risk NB strongly correlates with enhanced angiogenesis, suggesting anti-angiogenic agents as attractive additions to the currently insufficient therapeutics. TL-118, a novel drug combination has been recently developed to inhibit tumor angiogenesis. In the current study, we used the SK-N-BE (2) cell line to generate orthotopic NB tumors in order to study the combinational therapeutic potential of TL-118 with either Gemcitabine (40 mg/kg; IP) or Retinoic acid (40 mg/kg; IP). We show that TL-118 treatment (n = 9) significantly inhibited tumor growth, increased cell apoptosis, reduced proliferation and extended mouse survival. Moreover, the reciprocal effect of TL-118 and Gemcitabine treatment (n = 10) demonstrated improved anti-tumor activity. The synergistic effect of these drugs in combination was more effective than either TL or Gemcitabine alone (n = 9), via significantly reduced cell proliferation (p<0.005), increased apoptosis (p<0.05) and significantly prolonged survival (2-fold; p<0.00001). To conclude, we demonstrate that the novel drug combination TL-118 has the ability to suppress the growth of an aggressive NB tumor. The promising results with TL-118 in this aggressive animal model may imply that this drug combination has therapeutic potential in the clinical setting.
Collapse
Affiliation(s)
- Chani Komar-Stossel
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Gross
- Pediatric Surgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Elia Dery
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Nathalie Corchia
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Karen Meir
- Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Fried
- Pediatric Hemato-Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Rinat Abramovitch
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. J Control Release 2013; 170:445-51. [PMID: 23792118 DOI: 10.1016/j.jconrel.2013.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/11/2013] [Indexed: 01/01/2023]
Abstract
Neuroblastoma is an embryonal tumor originating from the simpatico-adrenal lineage of the neural crest. It approximately accounts for about 15% of all pediatric oncology deaths. Despite advances in multimodal therapy, metastatic neuroblastoma tumors at diagnosis remain a clinical challenge. Retinoids are a class of compounds known to induce both terminal differentiation and apoptosis/necrosis of neuroblastoma cells. Among them, fenretinide (HPR) has been considered one of the most promising anti-tumor agent but it is partially efficacious due to both poor aqueous solubility and rapid metabolism. Here, we have developed a novel HPR formulation, by which the drug was encapsulated into sterically stabilized nanoliposomes (NL[HPR]) according to the Reverse Phase Evaporation method. This procedure led to a higher structural integrity of liposomes in organic fluids for a longer period of time, in comparison with our previous liposomal formulation developed by the film method. Moreover, NL[HPR] were further coupled with NGR peptides for targeting the tumor endothelial cell marker, aminopeptidase N (NGR-NL[HPR]). Orthotopically xenografted neuroblastoma-bearing mice treated with NGR-NL[HPR] lived statistically longer than mice untreated or treated with free HPR (NGR-NL[HPR] vs both control and HPR: P<0.0001). Also, NL[HPR] resulted in a statistically improved survival (NL[HPR] vs both control and HPR: P<0.001) but to a less extent if compared with that obtained with NGR-NL[HPR] (NGR-NL[HPR] vs NL[HPR]: P<0.01). Staining of tumor sections with antibodies specific for neuroblastoma and for either pericytes or endothelial cells evidenced that HPR reduced neuroblastoma growth through both anti-tumor and anti-angiogenic effects, mainly when delivered by NGR-NL[HPR]. Indeed, in this group of mice a marked reduction of tumor progression, of intra-tumoral vessel counts and VEGF expression, together with a marked down-modulation of matrix metalloproteinases MMP2 and MMP9, was observed. In conclusion, the use of this novel targeted delivery system for the apoptotic and antiangiogenic drug, fenretinide, could be considered as an adjuvant tool in the future treatment of neuroblastoma patients.
Collapse
|
10
|
Ribatti D. Anti-angiogenesis in neuroblastoma. Crit Rev Oncol Hematol 2012; 86:212-21. [PMID: 23273512 DOI: 10.1016/j.critrevonc.2012.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/05/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022] Open
Abstract
The nature of the angiogenic balance in neuroblastoma is complex, and a spectrum of angiogenesis stimulators and inhibitors have been detected in neuroblastoma tumours. The complex relationships between angiogenic cascade and anti-angiogenic agents in the tumour vascular phase have indicated that anti-angiogenesis can be considered as a strategy for the adjuvant therapy of neuroblastoma. The major goal is to establish if inhibition of angiogenesis is a realistic therapeutic strategy for inhibiting tumour cell dissemination and the formation of metastasis in neuroblastoma.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy.
| |
Collapse
|
11
|
Qin L, Bromberg-White JL, Qian CN. Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv Cancer Res 2012; 113:191-239. [PMID: 22429856 DOI: 10.1016/b978-0-12-394280-7.00006-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is essential for tumor growth and metastasis. Many signaling pathways are involved in regulating tumor angiogenesis, with the vascular endothelial growth factor pathway being of particular interest. The recognition of the heterogeneity in tumor vasculature has led to better predictions of prognosis through differential analyses of the vasculature. However, the clinical benefits from antiangiogenic therapy are limited, because many antiangiogenic agents cannot provide long-term survival benefits, suggesting the development of drug resistance. Activation of the hypoxia and c-Met pathways, as well as other proangiogenic factors, has been shown to be responsible for such resistance. Vessel co-option could be another important mechanism. For future development, research to improve the efficacy of antiangiogenic therapy includes (a) using tumor-derived endothelial cells for drug screening; (b) developing the drugs focusing on specific tumor types; (c) developing a better preclinical model for drug study; (d) developing more accurate biomarkers for patient selection; (e) targeting the c-Met pathway or other pathways; and (f) optimizing the dose and schedule of antiangiogenic therapy. In summary, the future of antiangiogenic therapy for cancer patients depends on our efforts to develop the right drugs, select the right patients, and optimize the treatment conditions.
Collapse
Affiliation(s)
- Li Qin
- State Key Laboratory on Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | | | | |
Collapse
|
12
|
Low microvascular density at the tumor center is related to the expression of metalloproteases and their inhibitors and with the occurrence of distant metastasis in breast carcinomas. Int J Clin Oncol 2012; 18:629-40. [PMID: 22688161 DOI: 10.1007/s10147-012-0428-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aims of this study were to evaluate the microvascular density (MVD) at the center of breast carcinomas, its relationship with the expression of metalloproteases (MMPs) and their inhibitors (TIMPs), and its connection with the distant metastasis rate. METHODS An immunohistochemical study of four MMPs and two TIMPs was performed on cancer specimens from 97 women with a histological confirmed diagnosis of early invasive breast cancer. RESULTS Expressions of MMP-9 by cancerous cells, or MMP-11 and TIMP-2 by stromal cells, were all negative and significantly associated with MVD, whereas MMP-7 score values were positive and also significantly associated with MVD. However, positive expression of MMP-1 by mononuclear inflammatory cells was significantly associated with MVD. Multivariate analysis demonstrated a significant and inverse relationship between MVD and the occurrence of distant metastasis. CONCLUSIONS Our data point out the clinical importance of low MVD at the tumor center as an independent prognostic factor of distant metastasis development in breast cancer.
Collapse
|
13
|
Stauffer JK, Orentas RJ, Lincoln E, Khan T, Salcedo R, Hixon JA, Back TC, Wei JS, Patidar R, Song Y, Hurd L, Tsokos M, Lai EW, Eisenhofer G, Weiss W, Khan J, Wigginton JM. High-throughput molecular and histopathologic profiling of tumor tissue in a novel transplantable model of murine neuroblastoma: new tools for pediatric drug discovery. Cancer Invest 2012; 30:343-63. [PMID: 22571338 PMCID: PMC6993178 DOI: 10.3109/07357907.2012.664670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using two MYCN transgenic mouse strains, we established 10 transplantable neuroblastoma cell lines via serial orthotopic passage in the adrenal gland. Tissue arrays demonstrate that by histochemistry, vascularity, immunohistochemical staining for neuroblastoma markers, catecholamine analysis, and concurrent cDNA microarray analysis, there is a close correspondence between the transplantable lines and the spontaneous tumors. Several genes closely associated with the pathobiology and immune evasion of neuroblastoma, novel targets that warrant evaluation, and decreased expression of tumor suppressor genes are demonstrated. These studies describe a unique and generalizable approach to expand the utility of transgenic models of spontaneous tumor, providing new tools for preclinical investigation.
Collapse
Affiliation(s)
- Jimmy K Stauffer
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Targeting angiogenesis for controlling neuroblastoma. JOURNAL OF ONCOLOGY 2011; 2012:782020. [PMID: 21876694 PMCID: PMC3163143 DOI: 10.1155/2012/782020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/03/2011] [Indexed: 12/21/2022]
Abstract
Neuroblastoma, a progressive solid tumor in childhood, continues to be a clinical challenge. It is highly vascular, heterogeneous, and extracranial tumor that originates from neural crest. Angiogenesis, genetic abnormalities, and oncogene amplification are mainly responsible for malignant phenotype of this tumor. Survivability of malignant neuroblastoma patients remains poor despite the use of traditional therapeutic strategies. Angiogenesis is a very common and necessary pre-requisite for tumor progression and metastasis. Angiogenesis is also a major factor in making malignant neuroblastoma. Thus, prevention of angiogenesis can be a highly significant strategy in the treatment of malignant neuroblastoma. Here, we summarize our current understanding of angiogenesis in malignant neuroblstoma and describe the use of experimental anti-angiogenic agents either alone or in combination therapy. This review will clearly indicate the importance of angiogenesis in the pathogenesis of malignant neuroblastoma, its prevention as a promising therapy in preclinical models of malignant neuroblastoma, and prospective clinical trials.
Collapse
|
15
|
Di Paolo D, Ambrogio C, Pastorino F, Brignole C, Martinengo C, Carosio R, Loi M, Pagnan G, Emionite L, Cilli M, Ribatti D, Allen TM, Chiarle R, Ponzoni M, Perri P. Selective therapeutic targeting of the anaplastic lymphoma kinase with liposomal siRNA induces apoptosis and inhibits angiogenesis in neuroblastoma. Mol Ther 2011; 19:2201-12. [PMID: 21829174 DOI: 10.1038/mt.2011.142] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is involved in the pathogenesis of different types of human cancers, including neuroblastoma (NB). In NB, ALK overexpression, or point mutations, are associated with poor prognosis and advanced stage disease. Inhibition of ALK kinase activity by small-molecule inhibitors in lung cancers carrying ALK translocations has shown therapeutic potential. However, secondary mutations may occur that, generate tumor resistance to ALK inhibitors. To overcome resistance to ALK inhibitors in NB, we adopted an alternative RNA interference (RNAi)-based therapeutic strategy that is able to knockdown ALK, regardless of its genetic status [mutated, amplified, wild-type (WT)]. NB cell lines, transduced by lentiviral short hairpin RNA (shRNA), showed reduced proliferation and increased apoptosis when ALK was knocked down. In mice, a nanodelivery system for ALK-specific small interfering RNA (siRNA), based on the conjugation of antibodies directed against the NB-selective marker GD(2) to liposomes, showed strong ALK knockdown in vivo in NB cells, which resulted in cell growth arrest, apoptosis, and prolonged survival. ALK knockdown was associated with marked reductions in vascular endothelial growth factor (VEGF) secretion, blood vessel density, and matrix metalloproteinases (MMPs) expression in vivo, suggesting a role for ALK in NB-induced neoangiogenesis and tumor invasion, confirming this gene as a fundamental oncogene in NB.
Collapse
Affiliation(s)
- Daniela Di Paolo
- Experimental Therapy Unit, Laboratory of Oncology, Department of Experimental Medicine, IRCCS Istituto G. Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Children with high-risk disease have a 3-year event-free survival rate of only 20%. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. The aim of this article was to review and critically evaluate the pharmacotherapy of neuroblastoma, using peer reviewed and review literature from 2000-11. All peer reviewed, published human subject studies of therapy for neuroblastoma in children were included. Animal model and in vitro studies were included only if they added to the understanding of the mechanism of a proposed or existing human neuroblastoma therapy. Current therapeutic options for neuroblastoma involve insufficient differentiation of normal from neoplastic tissue. Critically needed new approaches will increasingly exploit targeting of therapy for unique characteristics of the neuroblastoma cell. Pharmacotherapy for neuroblastoma still suffers from an inadequate therapeutic window. Enhancement of toxicity for tumor and safety for normal tissues will entail innovation in targeting neuroblastoma cells and rescuing or protecting normal tissue elements.
Collapse
Affiliation(s)
- Veena R Ganeshan
- Center for Neural Development and Disease, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
17
|
Abstract
Neuroblastomas are pediatric tumors which develop from sympathetic precursors and express neuronal proteins, such as neuropeptide Y (NPY). NPY is a sympathetic neurotransmitter acting via multiple receptors (Y1-Y5R). Both NPY and Y2Rs are commonly expressed in neuroblastoma cell lines and tissues. The peptide secreted from neuroblastomas stimulates tumor cell proliferation and angiogenesis. Since both processes are Y2R-mediated, the goal of this study was to assess Y2R as a potential therapeutic target for neuroblastoma. In vitro, Y2R antagonist (BIIE0246) prevented activation of p44/42 MAPK induced by endogenous NPY, which resulted in decreased proliferation and induction of Bim-mediated apoptosis. Similar growth-inhibitory effects were achieved with NPY siRNA and Y2R siRNA. In vivo, Y2R antagonist significantly inhibited growth of SK-N-BE(2) and SK-N-AS xenografts, which was associated with decreased activation of p44/42 MAPK, as well as reduced proliferation (Ki67) and increased apoptosis (TUNEL). The Y2R antagonist also exerted an anti-angiogenic effect. In vitro, it reduced the proliferation of endothelial cells induced by neuroblastoma-conditioned media. Consequently, the Y2R antagonist-treated xenografts had decreased vascularization and a high degree of focal fibrosis. In human neuroblastoma tissues, the expression of Y2R was observed in both tumor and endothelial cells, while NPY was predominantly expressed in neuroblastoma cells. In summary, Y2R is a promising new target for neuroblastoma therapy affecting both cancer cells and tumor vasculature.
Collapse
|
18
|
The studies on the correlation for gene expression of tyrosine-kinase receptors and vascular endothelial growth factor in human neuroblastomas. J Pediatr Hematol Oncol 2010; 32:180-4. [PMID: 20186105 DOI: 10.1097/mph.0b013e3181c46bab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To study the correlation and clinical significance of expression of tyrosine-kinase receptors (TrkA and TrkB) and vascular endothelial growth factor (VEGF) in human neuroblastomas. METHODS Expression of TrkA, TrkB, and VEGF mRNA was semi-quantitatively detected by reverse transcription-polymerase chain reaction (RT-PCR) in 51 cases of neuroblastomas. RESULTS The expression of TrkA was significantly higher in lower-stage group compared with higher-stage group (P<0.05), whereas the expression of VEGF was significantly higher in the higher-stage group compared with the lower-stage group (P<0.05). The expression of TrkA was correlated negatively with the expression of VEGF (P<0.01), and has remarkable dependability with 2-year cumulative survival rate (P<0.01). The expression of TrkA in the lower age group was significantly higher than in the higher age group of NB cases (P<0.01). TrkA has a good prognostic impact on neuroblastoma patients (P<0.01). The expression of TrkB was significantly higher in the higher-stage group compared with the lower-stage group (P<0.05) and was positively correlated with VEGF expression (r=0.342, P<0.05); their expression also has remarkable dependability with the 2-year cumulative survival rate (P<0.01). The expression of TrkB was significantly lower in the higher age group compared with the lower age group (P<0.05). The 2-year cumulative-survival rate in the lower age group had a great significance compared with the higher age group (P<0.001). TrkB has a bad prognostic impact on neuroblastoma patients (P<0.01). CONCLUSIONS TrkA was highly expressed in good prognostic neuroblastomas; however, TrkB and VEGF were highly expressed in poor prognostic neuroblastomas. The expression of TrkA was negatively correlated with the expression of VEGF, whereas the expression of TrkB was positively correlated with the expression of VEGF. These 3 genes have an important clinical significance relating to the tumor stage and the outcome for patients with neuroblastomas.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Although there have been recent advances with multimodal therapy, treatment of neuroblastoma remains a clinical challenge. Despite the identification of several genetic features, there has not been a significant increase in 5-year survival in the last decade. This review will highlight the current operative strategies along with new research developments aimed at improving survival. RECENT FINDINGS The goal of surgical intervention in the early stages of neuroblastoma is complete curative resection. In advanced-stage disease, tissue biopsy for staging is the initial goal. In recent years, minimally invasive surgery (MIS) is considered in carefully selected patients. Recent advances in neuroblastoma research have focused on tyrosine kinase inhibition, differentiation, pathway inhibition, and immunotherapy. Several of these targets have shown promising results in vivo and are currently under investigation for potential clinical trials. SUMMARY New information on the importance of cell signaling and the targeting of specific genes of interest are providing key insights into neuroblastoma. Only through the discovery of novel treatment strategies made available through the advancement of research will neuroblastoma be survivable for patients with advanced-stage disease.
Collapse
|
20
|
Patra CR, Cao S, Safgren S, Bhattacharya R, Ames MM, Shah V, Reid JM, Mukherjee P. Intracellular Fate of a Targeted Delivery System. J Biomed Nanotechnol 2008. [DOI: 10.1166/jbn.2008.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Puppo M, Battaglia F, Ottaviano C, Delfino S, Ribatti D, Varesio L, Bosco MC. Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1α and -2α. Mol Cancer Ther 2008; 7:1974-84. [DOI: 10.1158/1535-7163.mct-07-2059] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Beaudry P, Nilsson M, Rioth M, Prox D, Poon D, Xu L, Zweidler-Mckay P, Ryan A, Folkman J, Ryeom S, Heymach J. Potent antitumor effects of ZD6474 on neuroblastoma via dual targeting of tumor cells and tumor endothelium. Mol Cancer Ther 2008; 7:418-24. [PMID: 18245671 DOI: 10.1158/1535-7163.mct-07-0568] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among children with relapsed or refractory neuroblastoma, the prognosis is poor and novel therapeutic strategies are needed to improve long-term survival. As with other solid tumors, high vascular density within neuroblastoma is associated with advanced disease, and therapeutic regimens directed against the tumor vasculature may provide clinical benefit. The receptor tyrosine kinase RET is widely expressed in neuroblastoma and is known to activate key signal transduction pathways involved in tumor cell survival and progression including Ras/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt. We investigated the effect of dual targeting of tumor cells and tumor endothelium with ZD6474, a small-molecule tyrosine kinase inhibitor of vascular endothelial growth factor (VEGF) receptor 2, epidermal growth factor receptor, and RET. ZD6474 inhibited the phosphorylation of RET in neuroblastoma cells and had a direct effect on tumor cell viability in seven neuroblastoma cell lines. In a human neuroblastoma xenograft model, ZD6474 inhibited tumor growth by 85% compared with treatment with vehicle alone. In contrast, no significant inhibition of tumor growth was observed after treatment with bevacizumab, an antihuman VEGF monoclonal antibody, or the epidermal growth factor receptor inhibitor erlotinib, either alone or in combination. Immunohistochemical analysis showed that ZD6474 treatment led to an increase in endothelial cell apoptosis along with inhibition of VEGF receptor-2 activation on tumor endothelium. In conclusion, dual targeting of tumor cells, potentially through RET inhibition, and tumor vasculature with ZD6474 leads to potent antitumor effects. This approach merits further investigation for patients with neuroblastoma.
Collapse
Affiliation(s)
- Paul Beaudry
- Department of Vascular Biology, Boston Children's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
AIM OF STUDY Reactive oxygen species have been shown to be initiators/promotors of tumorigenesis. Because evidence supports the role of increased oxidative stress in solid tumors, we sought to establish this relationship in neuroblastoma (NB). The aim of the study was to investigate the extent of oxidative DNA damage and antioxidative status in a progressive animal model of human NB. METHODS Tumors were induced in the left kidneys of nude mice by the injection of cultured human NB cells (10(6)). Blood was collected from tumor-bearing mice and controls at 2, 4, and 6 weeks. Peripheral blood leukocyte oxidative DNA damage was determined using single-cell gel electrophoresis (comet assay), and plasma antioxidant capacity was assessed by the Trolox equivalent antioxidant capacity method. MAIN RESULTS Levels of oxidative DNA damage in peripheral blood leukocytes of NB-bearing mice were increased by 166%, 110%, and 87% as compared with healthy controls at 2, 4, and 6 weeks, respectively. Plasma total antioxidant values for tumor-bearing mice were not significantly different from control mice. CONCLUSIONS Our results indicate an increase of oxidative stress in an animal model of human NB, especially in the early stages of growth. Yet, we did not observe an appreciable response in plasma antioxidant activity. Because an altered redox status has been implicated in tumor maintenance and progression, these findings support the notion of a complex oxidant-antioxidant imbalance contributing to NB growth.
Collapse
|
24
|
Abstract
Neuroblastomas continue to remain a clinical challenge, despite advances in multimodal therapy. Currently, studies are aimed at novel targets for neuroblastoma directed toward poor prognostic indicators such as the MYCN oncogene and marked angiogenesis. There have also been recent discoveries in neuroblastoma pathogenesis involving epigenetic regulation and retinoic acid therapy. Understanding the intricate complexities of this tumor may lead to innovative agents for more effective combinational therapy.
Collapse
|
25
|
Chesler L, Goldenberg DD, Seales IT, Satchi-Fainaro R, Grimmer M, Collins R, Struett C, Nguyen KN, Kim G, Tihan T, Bao Y, Brekken RA, Bergers G, Folkman J, Weiss WA. Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Res 2007; 67:9435-42. [PMID: 17909053 PMCID: PMC2921769 DOI: 10.1158/0008-5472.can-07-1316] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeted expression of MYCN to the neural crest [under control of the rat tyrosine hydroxylase (TH) promoter] causes neuroblastoma in transgenic mice (TH-MYCN) and is a well-established model for this disease. Because high levels of MYCN are associated with enhanced tumor angiogenesis and poor clinical outcome in neuroblastoma, we serially characterized malignant progression, angiogenesis, and sensitivity to angiogenic blockade in tumors from these animals. Tumor cells were proliferative, secreted high levels of the angiogenic ligand vascular endothelial growth factor (VEGF), and recruited a complex vasculature expressing the angiogenic markers VEGF-R2, alpha-SMA, and matrix metalloproteinases MMP-2 and MMP-9, all of which are also expressed in human disease. Treatment of established murine tumors with the angiogenesis inhibitor TNP-470 caused near-complete ablation, with reduced proliferation, enhanced apoptosis, and vasculature disruption. Because TNP-470 has been associated with neurotoxicity, we tested the recently described water-soluble HPMA copolymer-TNP-470 conjugate (caplostatin), which showed comparable efficacy and was well tolerated without weight loss or neurotoxicity as measured by rotarod testing. This study highlights the importance of angiogenesis inhibition in a spontaneous murine tumor with native tumor-microenvironment interactions, validates the use of mice transgenic for TH-MYCN as a model for therapy in this common pediatric tumor, and supports further clinical development of caplostatin as an antiangiogenic therapy in childhood neuroblastoma.
Collapse
Affiliation(s)
- Louis Chesler
- Department of Pediatrics, University of California-San Francisco Medical School, San Francisco, California
- Comprehensive Cancer Center, University of California-San Francisco Medical School, San Francisco, California
| | - David D. Goldenberg
- Department of Neurology, University of California-San Francisco Medical School, San Francisco, California
| | - Isha T. Seales
- Department of Neurology, University of California-San Francisco Medical School, San Francisco, California
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matt Grimmer
- Department of Pediatrics, University of California-San Francisco Medical School, San Francisco, California
| | - Rodney Collins
- Department of Pathology, University of California-San Francisco Medical School, San Francisco, California
| | - Chris Struett
- Department of Neurology, University of California-San Francisco Medical School, San Francisco, California
| | - Kim N. Nguyen
- Department of Neurology, University of California-San Francisco Medical School, San Francisco, California
| | - Grace Kim
- Department of Pathology, University of California-San Francisco Medical School, San Francisco, California
| | - Tarik Tihan
- Department of Pathology, University of California-San Francisco Medical School, San Francisco, California
| | - Yun Bao
- Department of Neurology, University of California-San Francisco Medical School, San Francisco, California
| | - Rolf A. Brekken
- Departments of Surgery and Pharmacology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gabriele Bergers
- Department of Neurological Surgery, University of California-San Francisco Medical School, San Francisco, California
- Brain Tumor Research Center, University of California-San Francisco Medical School, San Francisco, California
- Comprehensive Cancer Center, University of California-San Francisco Medical School, San Francisco, California
| | - Judah Folkman
- Departments of Surgery and Cellular Biology, Harvard Medical School and Children’s Hospital, Boston, Massachusetts
| | - William A. Weiss
- Department of Pediatrics, University of California-San Francisco Medical School, San Francisco, California
- Department of Neurology, University of California-San Francisco Medical School, San Francisco, California
- Department of Neurological Surgery, University of California-San Francisco Medical School, San Francisco, California
- Brain Tumor Research Center, University of California-San Francisco Medical School, San Francisco, California
- Comprehensive Cancer Center, University of California-San Francisco Medical School, San Francisco, California
| |
Collapse
|
26
|
Qiao J, Kang JH, Cree J, Evers BM, Chung DH. Ets1 transcription factor mediates gastrin-releasing peptide-induced IL-8 regulation in neuroblastoma cells. Neoplasia 2007; 9:184-91. [PMID: 17401458 PMCID: PMC1838576 DOI: 10.1593/neo.06841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis plays a critical role in tumor progression in various cancers, including neuroblastoma. We have previously shown that gastrin-releasing peptide (GRP) stimulates neuroblastoma growth and that its cell surface receptors, gastrin-releasing peptide receptors (GRP-R), are overexpressed in advanced-stage human neuroblastomas; however, the effects of GRP on angiogenesis are not clearly elucidated. Interleukin (IL) 8, a proinflammatory chemokine, plays an important role during tumor angiogenesis. Ets transcription factors, such as oncoproteins, cause tumor development and are also known to induce IL-8 expression. In the present study, we found an increased expression of Ets1 in more undifferentiated human neuroblastomas. Stable transfection of SK-N-SH human neuroblastoma cells with Ets1 plasmid resulted in increased IL-8 luciferase activity and IL-8 secretion into cell culture media. Conversely, silencing of Ets1 resulted in a significant decrease in IL-8 secretion in SK-N-SH cells. Moreover, exogenous GRP treatment increased Ets1 (T38) phosphorylation and Ets1 nuclear accumulation, and enhanced Ets1 binding to its DNA consensus sequence, resulting in the stimulation of IL-8 mRNA expression and protein secretion. Our findings demonstrate that GRP upregulates proangiogenic IL-8 expression in an Ets1-dependent manner, suggesting a critical role of this process during GRP-induced neuroblastoma angiogenesis and metastasis.
Collapse
Affiliation(s)
- Jingbo Qiao
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
| | - Jung-Hee Kang
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
| | - Jeremy Cree
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
| | - B Mark Evers
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
| | - Dai H. Chung
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0353, USA
| |
Collapse
|
27
|
Kang JH, Ishola TA, Baregamian N, Mourot JM, Rychahou PG, Evers BM, Chung DH. Bombesin induces angiogenesis and neuroblastoma growth. Cancer Lett 2007; 253:273-81. [PMID: 17383815 PMCID: PMC2709810 DOI: 10.1016/j.canlet.2007.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/12/2022]
Abstract
Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is a trophic factor for highly vascular neuroblastomas; its mechanisms of action in vivo are unknown. We sought to determine the effects of BBS on the growth of neuroblastoma xenografts and on angiogenesis. BBS significantly increased the growth of SK-N-SH and BE(2)-C human neuroblastomas; tumors demonstrated increased expression of angiogenic markers, PECAM-1 and VEGF, as well as phosphorylated (p)-Akt levels. RC-3095, a BBS/GRP antagonist, attenuated BBS-stimulated tumor growth and angiogenesis in vivo. GRP or GRPR silencing significantly inhibited VEGF as well as p-Akt and p-mTOR expression in vitro. Our findings demonstrate that BBS stimulates neuroblastoma growth and the expression of angiogenic markers. Importantly, these findings suggest that novel therapeutic agents, targeting BBS-mediated angiogenesis, may be useful adjuncts in patients with advanced-stage neuroblastomas.
Collapse
Affiliation(s)
- Jung-Hee Kang
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Titilope A. Ishola
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Naira Baregamian
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Joshua M. Mourot
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Piotr G. Rychahou
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - B. Mark Evers
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Dai H. Chung
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| |
Collapse
|
28
|
Kitlinska J. Neuropeptide Y (NPY) in neuroblastoma: effect on growth and vascularization. Peptides 2007; 28:405-12. [PMID: 17229489 DOI: 10.1016/j.peptides.2006.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/08/2006] [Indexed: 10/23/2022]
Abstract
Neuroblastomas are pediatric tumors of sympathetic origin, expressing neuronal markers, such as NPY and its receptors. Due to this, neuroblastomas are often associated with elevated plasma levels of NPY, which correlates with poor clinical outcome of the disease. This clinical data corroborates the recent discovery of growth-promoting actions of NPY in neuroblastomas. The peptide has been shown to stimulate proliferation of neuroblastoma cells in an autocrine manner and induce tumor vascularization. Since both processes are mediated by the same Y2 and Y5 receptors, targeting this pathway may be a potential bidirectional therapy for these children's tumors.
Collapse
Affiliation(s)
- Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown University Medical Center, Basic Science Building Rm. 234, Washington, DC 20057, United States.
| |
Collapse
|
29
|
Bahramsoltani M, Plendl J. Different ways to antiangiogenesis by angiostatin and suramin, and quantitation of angiostatin-induced antiangiogenesis. APMIS 2007; 115:30-46. [PMID: 17223849 DOI: 10.1111/j.1600-0463.2007.apm_405.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis, i.e. sprouting of new vessels, their remodelling and regression, is a prerequisite for growth and differentiation of organs and tissues. It is involved in many pathological processes, particularly growth and metastasis of tumours. Angiostatic therapy is a promising new strategy in the treatment of cancer. Angiogenesis inhibitors could intervene in the different phases of the angiogenic cascade, i.e. migration, proliferation, differentiation and three-dimensional organisation of endothelial cells, to inhibit the generation of tumour vessels. The aim of this study was to explore whether in a previously validated in vitro model for quantitation of angiogenesis the effects of the angiostatic factors angiostatin and suramin can be investigated and quantified. Examination of angiostatin and suramin showed that angiostatin-induced antiangiogenesis resulted in inverse angiogenesis. The addition of suramin initially resulted in increased angiogenesis. However, long-term incubation ultimately led to disintegration of endothelial structures, thus establishing the angiostatic effects of suramin. Antiangiogenesis was not only quantified using the previously validated method. It also lent itself to assessment of the extent of antiangiogenesis within the various phases of the angiogenic cascade. This method may therefore be employed in trial studies of potential angiostatic substances and related cellular mechanisms.
Collapse
|
30
|
Lagodny J, Jüttner E, Kayser G, Niemeyer CM, Rössler J. Lymphangiogenesis and its regulation in human neuroblastoma. Biochem Biophys Res Commun 2006; 352:571-7. [PMID: 17140547 DOI: 10.1016/j.bbrc.2006.11.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 11/13/2006] [Indexed: 11/16/2022]
Abstract
For the first time, we could detect lymph vessels in neuroblastoma (NB) by immunohistochemistry with the antibody D2_40. Furthermore, we demonstrate expression of the lymphangiogenic factors VEGF-C and VEGF-D and their receptors VEGFR-2 and VEGFR-3 in NB in vitro and in vivo by RT-PCR. However, addition of recombinant human VEGF-C or -D results in the absence of autocrine growth stimulus in NB cells. Treatment of NB cells with retinoic acid did not lead to a change in VEGF-C or VEGF-D mRNA expression. Incubation of the NB cells Lan-5 with 5-Aza-2'-deoxycytidine led to the up-regulation of VEGF-C mRNA expression, suggesting that the promotor of VEGF-C is methylated. Finally, VEGF-C mRNA expression could be effectively down-regulated by transfection with a specific siRNA in the NB cells Kelly. We conclude that lymphangiogenesis is involved in NB biology and that siRNA directed against VEGF-C may have a future role in anti-lymphangiogenic strategies in NB.
Collapse
Affiliation(s)
- Jeanette Lagodny
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mathilsdenstr. 1, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Brignole C, Marimpietri D, Pastorino F, Nico B, Di Paolo D, Cioni M, Piccardi F, Cilli M, Pezzolo A, Corrias MV, Pistoia V, Ribatti D, Pagnan G, Ponzoni M. Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. J Natl Cancer Inst 2006; 98:1142-57. [PMID: 16912267 DOI: 10.1093/jnci/djj309] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bortezomib is a selective and reversible inhibitor of the 26S proteasome that shows potent antitumor activity in vitro and in vivo against several human cancers of adulthood. No data are available on bortezomib activity against human pediatric neuroblastoma. METHODS Ten neuroblastoma cell lines and suspensions of primary neuroblastoma cells from three patients were tested for sensitivity to bortezomib. Colony formation, cell proliferation, cell cycle progression, and apoptosis were evaluated by a clonogenic assay and by measuring 3H-thymidine incorporation, bromodeoxyuridine uptake, DNA fragmentation, and phosphatidylserine exposure and propidium iodide staining, respectively. Angiogenesis was assessed by the chick embryo chorioallantoic membrane (CAM) assay. Two mouse xenograft models that mimic the growth and spread of neuroblastoma in humans were used to examine in vivo sensitivity of neuroblastoma to bortezomib. All statistical tests were two-sided. RESULTS Bortezomib inhibited proliferation and colony formation of neuroblastoma cell lines in a time- and dose-dependent manner. The mean bortezomib concentration that caused 50% inhibition of growth was 6.1 nM (95% confidence interval [CI] = 0.9 to 11.3 nM) at 72 hours. Bortezomib-treated neuroblastoma cells were arrested at G2/M and underwent apoptosis (mean percentage of apoptotic cells in four neuroblastoma cell lines treated with 20 nM bortezomib for 24 hours ranged from 20% to 35%, and caspases were activated by two- to fivefold with respect to untreated cells). Similar results were obtained for primary neuroblastoma cells exposed to bortezomib. Bortezomib inhibited angiogenesis in CAMs stimulated by conditioned medium from neuroblastoma cell lines, by neuroblastoma xenografts, and by primary neuroblastoma biopsy specimens (microvessel area: 2.9 x 10(-2) mm2, 95% CI = 1.8 x 10(-2) to 3.8 x 10(-2) mm2 in CAMs treated with biopsy specimens alone and 1.3 x 10(-2) mm2, 95% CI = 1 x 10(-2) to 1.5 x 10(-2) mm2 in CAMs treated with biopsy specimens plus bortezomib, P = .024). In both mouse models, mice treated with bortezomib lived statistically significantly longer than control mice (mean survival time in the pseudometastatic model: 74.2 versus 50.3 days, P<.001; mean survival time in the orthotopic model: 72.3 versus 50.6 days, P<.001). CONCLUSIONS Bortezomib is an effective inhibitor of neuroblastoma cell growth and angiogenesis. These findings provide the rationale for further clinical investigation of bortezomib in pediatric neuroblastoma.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Oncology, G. Gaslini Children's Hospital, Largo G. Gaslini 5, 16147 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ribatti D, Nico B, Pezzolo A, Vacca A, Meazza R, Cinti R, Carlini B, Parodi F, Pistoia V, Corrias MV. Angiogenesis in a human neuroblastoma xenograft model: mechanisms and inhibition by tumour-derived interferon-gamma. Br J Cancer 2006; 94:1845-52. [PMID: 16721359 PMCID: PMC2361332 DOI: 10.1038/sj.bjc.6603186] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumour progression in neuroblastoma (NB) patients correlates with high vascular index. We have previously shown that the ACN NB cell line is tumorigenic and angiogenic in immunodeficient mice, and that interferon-γ (IFN-γ) gene transfer dampens ACN tumorigenicity. As IFN-γ represses lymphocyte-induced tumour angiogenesis in various murine models and inhibits proliferation and migration of human endothelial cells, we have investigated the antiangiogenic activity of tumour-derived IFN-γ and the underlying mechanism(s). In addition, we characterised the tumour vasculature of the ACN xenografts, using the chick embryo chorioallantoic membrane assay. We show that the ACN/IFN-γ xenografts had a lower microvessel density and less in vivo angiogenic potential than the vector-transfected ACN/neo. The vascular channels of both xenografts were formed by a mixed endothelial cell population of murine and human origin, as assessed by the FICTION (fluorescence immunophenotyping and interphase cytogenetics) technique. With respect to ACN/neo, the ACN/IFN-γ xenografts showed more terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive human and murine endothelial cells, suggesting that inhibition of angiogenesis by IFN-γ was dependent on the induction of apoptosis, likely mediated by nitric oxide. Once the dual origin of tumour vasculature is confirmed in NB patients, the xenograft model described here will prove useful in testing the efficacy of different antiangiogenic compounds.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kitlinska J. Neuropeptide Y in neural crest-derived tumors: effect on growth and vascularization. Cancer Lett 2006; 245:293-302. [PMID: 16513255 DOI: 10.1016/j.canlet.2006.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/14/2006] [Accepted: 01/16/2006] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter recently found to be a potent growth and angiogenic factor. The peptide and its receptors are abundant in neural crest-derived tumors, such as sympathetic neuroblastomas and pheochromocytomas, as well as parasympathetic Ewing's sarcoma family of tumors. NPY regulates their growth directly, by an autocrine activation of tumor cell proliferation or apoptosis, and indirectly, by its angiogenic activity. The overall effect of the peptide on tumor growth depends on a balance between these processes and the type of receptors expressed in the tumor cells. Thus, NPY and its receptors may become targets for the treatment of neural tumors, directed against both tumor cell proliferation and angiogenesis.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Humans
- Models, Biological
- Neoplasms, Nerve Tissue/metabolism
- Neoplasms, Nerve Tissue/pathology
- Neoplasms, Nerve Tissue/physiopathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Neural Crest/metabolism
- Neural Crest/pathology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/physiopathology
- Neuropeptide Y/biosynthesis
- Neuropeptide Y/physiology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/physiopathology
Collapse
Affiliation(s)
- Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown Universitty Medical Center, Basic Science Building Rm. 234, Washington, DC 20057.
| |
Collapse
|
34
|
Stauffer JK, Khan T, Salcedo R, Hixon JA, Lincoln E, Back TC, Wigginton JM. Multicolor fluorescence-based approaches for imaging cytokine-induced alterations in the neovascularization, growth, metastasis, and apoptosis of murine neuroblastoma tumors. J Immunother 2006; 29:151-64. [PMID: 16531816 DOI: 10.1097/01.cji.0000190167.76663.c7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuroblastoma is one of the most common solid tumors in children. The prognosis of patients with advanced neuroblastoma is poor overall despite standard therapeutic modalities and has stimulated substantial interest in the potential role for biologics such as immunotherapeutic and/or antiangiogenic agents for the treatment of neuroblastoma. To facilitate preclinical investigation of the efficacy and mechanisms of action of new biologic agents for the treatment of neuroblastoma, a comprehensive panel of disease-specific fluorescence-based model systems has been developed by our group to image the growth, neovascularization, metastasis, and apoptosis of neuroblastoma tumors. These model systems use fluorescent proteins to monitor cytokine-induced alterations in the growth and metastasis of neuroblastoma and allow for monitoring and/or quantitation of even minimal residual disease that is localized to visceral organ sites such as the liver, lung, and/or bone marrow. Further, based on the differential spectra of red fluorescent protein, green fluorescent protein (GFP), and agents such as 4'-6-diamidino-2-phenylindole (DAPI) (blue) and fluorescein isothiocyanate-dextran (green), multicolor systems have now been established by our group that allow for combined assessment of parameters, including the macroscopic relation of tumors to their associated vasculature and, within tissue sections, simultaneous quantitation of tumor neovascularization and evaluation of therapy-induced apoptosis within the tumor and vascular endothelial compartments. Further, by engineering cells to express specific mediators of apoptosis that have been linked to GFP (ie, BID-EGFP), these systems can also be used to dissect mechanisms by which neuroblastoma cells are induced to undergo apoptosis in vitro as well as in vivo. Collectively, these model systems provide important tools for investigation of the biology of neuroblastoma tumors and evaluation of mechanisms that mediate the regression of these tumors in response to novel therapeutic agents, including cytokines such as interleukin-12.
Collapse
Affiliation(s)
- Jimmy K Stauffer
- Pediatric Oncology Branch, National Cancer Institute (NCI)--Center for Cancer Research (CCR), NCI at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|