1
|
Kim RT, Whited JL. Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations. Ann N Y Acad Sci 2024; 1540:89-103. [PMID: 39269330 PMCID: PMC11471381 DOI: 10.1111/nyas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Previous studies have implicated epithelial-mesenchymal transition (EMT) in salamander limb regeneration. In this review, we describe putative roles for EMT during each stage of limb regeneration in axolotls and other salamanders. We hypothesize that EMT and EMT-like gene expression programs may regulate three main cellular processes during limb regeneration: (1) keratinocyte migration during wound closure; (2) transient invasion of the stump by epithelial cells undergoing EMT; and (3) use of EMT-like programs by non-epithelial blastemal progenitor cells to escape the confines of their niches. Finally, we propose nontraditional roles for EMT during limb regeneration that warrant further investigation, including alternative EMT regulators, stem cell activation, and fibrosis induced by aberrant EMT.
Collapse
Affiliation(s)
- Ryan T Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Rioux JD, Boucher G, Forest A, Bouchard B, Coderre L, Daneault C, Frayne IR, Legault JT, Bitton A, Ananthakrishnan A, Lesage S, Xavier RJ, Des Rosiers C. A pilot study to identify blood-based markers associated with response to treatment with Vedolizumab in patients with Inflammatory Bowel Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24314034. [PMID: 39371119 PMCID: PMC11451768 DOI: 10.1101/2024.09.19.24314034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The inflammatory bowel diseases (IBD) known as Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the gastrointestinal tract believed to arise because of an imbalance between the epithelial, immune and microbial systems. It has been shown that biological differences (genetic, epigenetic, microbial, environmental, etc.) exist between patients with IBD, with multiple risk factors been associated with disease susceptibility and IBD-related phenotypes (e.g. disease location). It is also known that there is heterogeneity in terms of response to therapy in patients with IBD, including to biological therapies that target very specific biological pathways (e.g. TNF-alpha signaling, IL-23R signaling, immune cell trafficking, etc.). It is hypothesized that the better the match between the biology targeted by these advanced therapies and the predominant disease-associated pathways at play in each patient will favor a beneficial response. The aim of this pilot study was to identify potential biological differences associated with differential treatment response to the anti α4β7 integrin therapy known as Vedolizumab. Our approach was to measure a broad range of analytes in the serum of patients prior to initiation of therapy and at the first clinical assessment visit, to identify potential markers of biological differences between patients at baseline and to see which biomarkers are most affected by treatment in responders. Our focus on early clinical response was to study the most proximal effects of therapy and to minimize confounders such as loss of response that occurs further distal to treatment initiation. Specifically, we performed targeted analyses of >150 proteins and metabolites, and untargeted analyses of >1100 lipid entities, in serum samples from 92 IBD patients (42 CD, 50 UC) immediately prior to initiation of therapy with vedolizumab (baseline samples) and at their first clinical assessment (14-week samples). We found lower levels of SDF-1a, but higher levels of PDGF-ββ, lactate, lysine, phenylalanine, branched chain amino acids, alanine, short/medium chain acylcarnitines, and triglycerides containing myristic acid in baseline serum samples of responders as compared to non-responders. We also observed an increase in serum levels of CXCL9 and citrate, as well as a decrease in IL-10, between baseline and week 14 samples. In addition, we observed that a group of metabolites and protein analytes was strongly associated with both treatment response and BMI status, although BMI status was not associated with treatment response.
Collapse
Affiliation(s)
- John D. Rioux
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
| | | | - Anik Forest
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Lise Coderre
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | | | | | | | | | - Alain Bitton
- McGill University Health Centre, Division of Gastroenterology, Montreal, Quebec, Canada
| | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Département de Nutrition, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Shang Y, Liu T, Wang W. The potential of lenvatinib in breast cancer therapy. Med Oncol 2024; 41:233. [PMID: 39172293 DOI: 10.1007/s12032-024-02477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Breast cancer, as a highly prevalent cancer among women, is one of the main causes of female mortality due to cancer. There is a need for more treatment options to improve the survival time of breast cancer patients. Metastasis to distant organs is a standard indicator of advanced breast cancer and a primary cause of breast cancer mortality, making the control of breast cancer metastasis crucial. Targeted therapy, with its advantages of precision, high effectiveness, and minimal side effects, has garnered significant attention as a hot research topic in breast cancer treatment. Among these therapies, anti-angiogenic therapy aim to inhibit tumor angiogenesis, control tumor growth, and reduce metastasis. Additionally, anti-angiogenic therapy can restructure the tumor vasculature, enhancing the effectiveness of other anti-cancer drugs. Lenvatinib, an orally available small molecule multi-targeted tyrosine kinase inhibitor, exerts its anti-tumor effects mainly by inhibiting tumor angiogenesis and tumor cell proliferation. It has been approved for the treatment of thyroid cancer, renal cell carcinoma, and hepatocellular carcinoma. Due to its multi-targeted nature, lenvatinib not only has direct anti-tumor effects but also possesses immunomodulatory activity, which can enhance the tumor immune response. This makes it a promising candidate for a broad range of cancers. Recent studies have explored the role of lenvatinib in breast cancer, including its various mechanisms of action and its use as a monotherapy or in combination to control breast cancer progression. This review will summarize the molecular mechanisms and research progress of lenvatinib in breast cancer treatment, discussing its potential applications and therapeutic prospects in managing breast cancer.
Collapse
Affiliation(s)
- Yuefeng Shang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tong Liu
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
5
|
Mohamed T, Colciago A, Montagnani Marelli M, Moretti RM, Magnaghi V. Protein kinase C epsilon activation regulates proliferation, migration, and epithelial to mesenchymal-like transition in rat Schwann cells. Front Cell Neurosci 2023; 17:1237479. [PMID: 37645595 PMCID: PMC10461112 DOI: 10.3389/fncel.2023.1237479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Protein kinase type C-ε (PKCε) plays an important role in the sensitization of primary afferent nociceptors, promoting mechanical hyperalgesia. In accordance, we showed that PKCε is present in sensory neurons of the peripheral nervous system (PNS), participating in the control of pain onset and chronification. Recently, it was found that PKCε is also implicated in the control of cell proliferation, promoting mitogenesis and metastatic invasion in some types of cancer. However, its role in the main glial cell of the PNS, the Schwann cells (SCs), was still not investigated. Methods Rat primary SCs culture were treated with different pharmacologic approaches, including the PKCε agonist dicyclopropyl-linoleic acid (DCP-LA) 500 nM, the human recombinant brain derived neurotrophic factor (BDNF) 1 nM and the TrkB receptor antagonist cyclotraxin B 10 nM. The proliferation (by cell count), the migration (by scratch test and Boyden assay) as well as some markers of SCs differentiation and epithelial-mesenchymal transition (EMT) process (by qRT-PCR and western blot) were analyzed. Results Overall, we found that PKCε is constitutively expressed in SCs, where it is likely involved in the switch from the proliferative toward the differentiated state. Indeed, we demonstrated that PKCε activation regulates SCs proliferation, increases their migration, and the expression of some markers (e.g., glycoprotein P0 and the transcription factor Krox20) of SCs differentiation. Through an autocrine mechanism, BDNF activates TrkB receptor, and controls SCs proliferation via PKCε. Importantly, PKCε activation likely promoted a partial EMT process in SCs. Discussion PKCε mediates relevant actions in the neuronal and glial compartment of the PNS. In particular, we posit a novel function for PKCε in the transformation of SCs, assuming a role in the mechanisms controlling SCs' fate and plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Luo Y, Zhang M, Guo Z, Wijayanti D, Xu H, Jiang F, Lan X. Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits. Animals (Basel) 2023; 13:ani13091485. [PMID: 37174523 PMCID: PMC10177341 DOI: 10.3390/ani13091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Platelet-derived growth factor D (PDGFD) is a member of the PDGF gene family, and it plays an important role in the regulation of adipocyte development in mammals. Furthermore, genome-wide association studies (GWAS) have previously identified it as a candidate gene associated with fleece fiber variation, body size, and the fat-tail phenotype in domestic Chinese sheep. In this study, a total of 1919 indigenous Chinese sheep were genotyped to examine the association between nucleotide sequence variations in PDGFD and body morphology. Our results detected both a 14 bp insertion in intron 2 and a 13 bp deletion in intron 4 of PDGFD. Moreover, these two InDel loci had low to moderate polymorphism. Notably, the 13 bp deletion mutation of PDGFD was found to significantly affect sheep body size. Yearling rams in the Luxi black-headed sheep (LXBH) containing a heterozygous genotype (insertion/deletion, ID) were found to have larger body length, chest depth, and body weight than those with wild genotypes. Furthermore, adult ewes in the Guiqian semi-fine wool sheep (GSFW) containing a homozygous mutation (deletion/deletion, DD) were found to have smaller chest width than their peers. Moreover, yearling ewes in this group with the same homozygous mutation were found to have lower body weight, chest width, and cannon circumference compared to those of other individuals. This study demonstrates that PDGFD InDel polymorphisms have the potential to be effective molecular markers to improve morphological traits in domestic Chinese sheep.
Collapse
Affiliation(s)
- Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mengyang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie 551700, China
| | - Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Fugui Jiang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Gogola S, Rejzer M, Bahmad HF, Abou-Kheir W, Omarzai Y, Poppiti R. Epithelial-to-Mesenchymal Transition-Related Markers in Prostate Cancer: From Bench to Bedside. Cancers (Basel) 2023; 15:cancers15082309. [PMID: 37190236 DOI: 10.3390/cancers15082309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide, with 288,300 new cases and 34,700 deaths estimated in the United States in 2023. Treatment options for early-stage disease include external beam radiation therapy, brachytherapy, radical prostatectomy, active surveillance, or a combination of these. In advanced cases, androgen-deprivation therapy (ADT) is considered the first-line therapy; however, PCa in most patients eventually progresses to castration-resistant prostate cancer (CRPC) despite ADT. Nonetheless, the transition from androgen-dependent to androgen-independent tumors is not yet fully understood. The physiological processes of epithelial-to-non-epithelial ("mesenchymal") transition (EMT) and mesenchymal-to-epithelial transition (MET) are essential for normal embryonic development; however, they have also been linked to higher tumor grade, metastatic progression, and treatment resistance. Due to this association, EMT and MET have been identified as important targets for novel cancer therapies, including CRPC. Here, we discuss the transcriptional factors and signaling pathways involved in EMT, in addition to the diagnostic and prognostic biomarkers that have been identified in these processes. We also tackle the various studies that have been conducted from bench to bedside and the current landscape of EMT-targeted therapies.
Collapse
Affiliation(s)
- Samantha Gogola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Yumna Omarzai
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Şalva E, Özbaş S, Alan S, Özkan N, Ekentok-Atıcı C, Kabasakal L, Akbuğa J. Combination therapy with chitosan/siRNA nanoplexes targeting PDGF-D and PDGFR-β reveals anticancer effect in breast cancer. J Gene Med 2023; 25:e3465. [PMID: 36413571 DOI: 10.1002/jgm.3465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Platelet derived growth factors (PDGF)-D and the expression of its receptor increase in neoplastic progression of cancer. Co-silencing of growth factor and receptor can be suggested as an important strategy for effective cancer therapy. In the present study, we hypothesized that suppression of PDGF-D signaling pathway with small interfering RNAs (siRNAs) targeting both PDGF-D and PDGF receptor (PDGFR)-β is a promising strategy for anticancer therapy. METHODS Chitosan nanoplexes containing dual and single siRNA were prepared at different weight ratios and controlled by gel retardation assay. Characterization, cellular uptake, gene silencing and invasion studies were performed. The effect of nanoplexes on breast tumor growth, PDGF expression and apoptosis was investigated. RESULTS We have shown that downregulation of PDGF-D and PDGFR-β with chitosan/siRNA nanoplex formulations reduced proliferation and invasion in breast cancer cells. In the in vivo breast tumor model, it was determined that the intratumoral administration of chitosan/siPDGF-D/siPDGFR-β nanoplexes markedly decreased the tumor volume and PDGF-D and PDGFR-β mRNA and protein expression levels and increased apoptosis. CONCLUSIONS According to the results obtained, we evaluated the effect of PDGF-D and PDGFR-β on breast tumor development and showed that RNAi-mediated inhibition of this pathway formulated with chitosan nanoplexes can be considered as a new breast cancer therapy strategy.
Collapse
Affiliation(s)
- Emine Şalva
- Department of Pharmaceutical Biotechnology, İnönü University, Faculty of Pharmacy, Malatya, Turkey
| | - Suna Özbaş
- Department of Pharmaceutical Biotechnology, Marmara University, Faculty of Pharmacy, İstanbul, Turkey
| | - Saadet Alan
- Department of Medical Pathology, İnönü University, Faculty of Medicine, Malatya, Turkey
| | - Naziye Özkan
- Department of Pathology, Marmara University, Vocational Health School, İstanbul, Turkey
| | - Ceyda Ekentok-Atıcı
- Department of Pharmaceutical Biotechnology, Marmara University, Faculty of Pharmacy, İstanbul, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Marmara University, Faculty of Pharmacy, İstanbul, Turkey
| | - Jülide Akbuğa
- Department of Pharmaceutical Technology, Medipol University, Faculty of Pharmacy, İstanbul, Turkey
| |
Collapse
|
10
|
Banerjee P, Rodning SP, Diniz WJS, Dyce PW. Co-Expression Network and Integrative Analysis of Metabolome and Transcriptome Uncovers Biological Pathways for Fertility in Beef Heifers. Metabolites 2022; 12:metabo12080708. [PMID: 36005579 PMCID: PMC9413342 DOI: 10.3390/metabo12080708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Reproductive failure remains a significant challenge to the beef industry. The omics technologies have provided opportunities to improve reproductive efficiency. We used a multistaged analysis from blood profiles to integrate metabolome (plasma) and transcriptome (peripheral white blood cells) in beef heifers. We used untargeted metabolomics and RNA-Seq paired data from six AI-pregnant (AI-P) and six nonpregnant (NP) Angus-Simmental crossbred heifers at artificial insemination (AI). Based on network co-expression analysis, we identified 17 and 37 hub genes in the AI-P and NP groups, respectively. Further, we identified TGM2, TMEM51, TAC3, NDRG4, and PDGFB as more connected in the NP heifers’ network. The NP gene network showed a connectivity gain due to the rewiring of major regulators. The metabolomic analysis identified 18 and 15 hub metabolites in the AI-P and NP networks. Tryptophan and allantoic acid exhibited a connectivity gain in the NP and AI-P networks, respectively. The gene–metabolite integration identified tocopherol-a as positively correlated with ENSBTAG00000009943 in the AI-P group. Conversely, tocopherol-a was negatively correlated in the NP group with EXOSC2, TRNAUIAP, and SNX12. In the NP group, α-ketoglutarate-SMG8 and putrescine-HSD17B13 were positively correlated, whereas a-ketoglutarate-ALAS2 and tryptophan-MTMR1 were negatively correlated. These multiple interactions identified novel targets and pathways underlying fertility in bovines.
Collapse
|
11
|
Ma Y, Di Y, Li Q, Zhan Q, He X, Liu S, Zou H, Corpe C, Chen L, Wang J. LncRNAs as epigenetic regulators of epithelial to mesenchymal transition in pancreatic cancer. Discov Oncol 2022; 13:61. [PMID: 35819532 PMCID: PMC9276894 DOI: 10.1007/s12672-022-00522-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related mortality because of tumor metastasis. Activation of the epithelial-to-mesenchymal transition (EMT) pathway has been confirmed to be an important driver of pancreatic cancer progression from initiation to metastasis. Long noncoding RNAs (lncRNAs) have been reported to exert essential physiological functions in pancreatic cancer progression by regulating the EMT program. In this review, we have summarized the role of EMT-related lncRNAs in human pancreatic cancer and the potential molecular mechanisms by which lncRNAs can be vital epigenetic regulators of epithelial to mesenchymal transition. Specifically, EMT-activating transcription factors (EMT-TFs) regulate EMT via TGF-β/Smad, Wnt/β-catenin, and JAK/STAT pathways. In addition, the interaction between lncRNAs and HIF-1α and m6A RNA methylation also have an impact on tumor metastasis and EMT in pancreatic cancer. This review will provide insights into lncRNAs as promising biomarkers for tumor metastasis and potential therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Qilin Zhan
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Heng Zou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Christopher Corpe
- King's College London, Nutritional Science Department, 150 Stamford Street, Waterloo, London, SE19NH, UK
| | - Litian Chen
- Department of Hepatobiliary Surgery, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Kongjiang Road 1665, Shanghai, China.
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
12
|
Zheng J, Shi Z, Yang P, Zhao Y, Tang W, Ye S, Xuan Z, Chen C, Shao C, Wu Q, Sun H. ERK-Smurf1-RhoA signaling is critical for TGFβ-drived EMT and tumor metastasis. Life Sci Alliance 2022; 5:5/10/e202101330. [PMID: 35654587 PMCID: PMC9163791 DOI: 10.26508/lsa.202101330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The research uncovers a non-canonical role of ERK in TGF-beta-induced EMT, revealing ERK-mediated phosphorylation of Smurf1 is required for its sufficient binding to RhoA and the subsequent RhoA turnover. Epithelial-mesenchymal transition (EMT) has fundamental roles in various biological processes. However, there are still questions pending in this fast-moving field. Here we report that in TGFβ-induced EMT, ERK-mediated Smurf1 phosphorylation is a prerequisite step for RhoA degradation and the consequent mesenchymal state achievement. Upon TGFβ treatment, activated ERK phosphorylates Thr223 of Smurf1, a member of HECT family E3 ligase, to promote Smurf1-mediated polyubiquitination and degradation of RhoA, thereby leading to cell skeleton rearrangement and EMT. Blockade of phosphorylation of Smurf1 inhibits TGFβ-induced EMT, and accordingly, dramatically blocks lung metastasis of murine breast cancer in mice. Hence, our study reveals an unknown role of ERK in TGFβ-induced EMT and points out a potential strategy in therapeutic intervention.
Collapse
Affiliation(s)
- Jianzhong Zheng
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Pengbo Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhao
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaopei Ye
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Chen
- School of Medicine, Xiamen University, Xiamen, China.,Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingang Wu
- School of Medicine, Xiamen University, Xiamen, China .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Sun
- The Central Lab of Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China .,The Key Laboratory for Endocrine Related Cancer Precision Medicine Of Xiamen, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Wang X, Zhao S, Wang Z, Gao T. Platelets involved tumor cell EMT during circulation: communications and interventions. Cell Commun Signal 2022; 20:82. [PMID: 35659308 PMCID: PMC9166407 DOI: 10.1186/s12964-022-00887-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/24/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractDistant spreading of metastatic tumor cells is still the leading cause of tumor death. Metastatic spreading is a complex process, in which epithelial-mesenchymal transition (EMT) is the primary and key event to promote it. Presently, extensive reviews have given insights on the occurrence of EMT at the primary tumor site that depends on invasive properties of tumor cells and the tumor-associated microenvironment. However, essential roles of circulation environment involved in tumor cell EMT is not well summarized. As a main constituent of the blood, platelet is increasingly found to work as an important activator to induce EMT. Therefore, this review aims to emphasize the novel role of platelet in EMT through signal communications between platelets and circulation tumor cells, and illustrate potent interventions aiming at their communications. It may give a complementary view of EMT in addition to the tissue microenvironment, help for better understand the hematogenous metastasis, and also illustrate theoretical and practical basis for the targeted inhibition.
Collapse
|
14
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
16
|
Kim JW, Jeong MH, Kim GE, Han YB, Park YJ, Chung KH, Kim HR. Comparison of 3D airway models for the assessment of fibrogenic chemicals. Toxicol Lett 2021; 356:100-109. [PMID: 34902520 DOI: 10.1016/j.toxlet.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ga Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| |
Collapse
|
17
|
Liu Y, Zhang Y, Ding Y, Zhuang R. Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Crit Rev Oncol Hematol 2021; 167:103502. [PMID: 34662726 DOI: 10.1016/j.critrevonc.2021.103502] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence suggests that platelets play an essential role in cancer metastasis. The interactions between platelets and circulating tumor cells (CTCs) promote cancer metastasis. CTCs induce platelet activation and aggregation, and activated platelets gather and protect CTCs from shear stress and natural killer cells. Finally, platelets stimulate CTC anoikis resistance, epithelial-to-mesenchymal transition, angiogenesis, extravasation, and eventually, metastasis. Cell adhesion molecules (CAMs) have been identified as active players during the interaction of CTCs with platelets, but the specific mechanism underlying the contribution of platelet-associated CAMs to CTC metastasis remains unclear. In this review, we introduce the mechanism of platelet-related tumor metastasis and particularly focus on the role of CAMs in it.
Collapse
Affiliation(s)
- Yitian Liu
- Department of Immunology, the Fourth Military Medical University, #169 Changlexilu Road, Xi'an, Shaanxi, 710032, China; Orthopedic Department of Tangdu Hospital, the Fourth Military Medical University, #1 Xinsi Road, Xi'an, Shaanxi, 710032, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, #127 Youyixilu Road, Xi'an, Shaanxi, 710072, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, the Fourth Military Medical University, #1 Xinsi Road, Xi'an, Shaanxi, 710032, China
| | - Ran Zhuang
- Department of Immunology, the Fourth Military Medical University, #169 Changlexilu Road, Xi'an, Shaanxi, 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 Youyixilu Road, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
18
|
Safaric Tepes P, Pal D, Lindsted T, Ibarra I, Lujambio A, Jimenez Sabinina V, Senturk S, Miller M, Korimerla N, Huang J, Glassman L, Lee P, Zeltsman D, Hyman K, Esposito M, Hannon GJ, Sordella R. An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi-resistant cells by modulating miR-335 expression. eLife 2021; 10:e66109. [PMID: 34254585 PMCID: PMC8285107 DOI: 10.7554/elife.66109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/10/2021] [Indexed: 01/15/2023] Open
Abstract
Despite current advancements in research and therapeutics, lung cancer remains the leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that patients develop against chemotherapeutic agents over the course of treatment. In the context of non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as Erlotinib and Osimertinib in certain tumors with mesenchymal-like features. By studying the ontogeny of AXL-positive cells, we have identified a novel non-genetic mechanism of drug resistance based on cell-state transition. We demonstrate that AXL-positive cells are already present as a subpopulation of cancer cells in Erlotinib-naïve tumors and tumor-derived cell lines and that the expression of AXL is regulated through a stochastic mechanism centered on the epigenetic regulation of miR-335. The existence of a cell-intrinsic program through which AXL-positive/Erlotinib-resistant cells emerge infers the need of treating tumors harboring EGFR-oncogenic mutations upfront with combinatorial treatments targeting both AXL-negative and AXL-positive cancer cells.
Collapse
Affiliation(s)
- Polona Safaric Tepes
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Faculty of Pharmacy University of LjubljanaLjubljanaSlovenia
| | - Debjani Pal
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Molecular and Cellular Biology, Stony Brook UniversityStony Brook, New YorkUnited States
| | - Trine Lindsted
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Ingrid Ibarra
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, Hess Center for Science and MedicineNew YorkUnited States
| | | | - Serif Senturk
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Madison Miller
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Navya Korimerla
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Biomedical Engineering, Stony Brook UniversityNew YorkUnited States
| | - Jiahao Huang
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Lawrence Glassman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Paul Lee
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - David Zeltsman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Kevin Hyman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Michael Esposito
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Gregory J Hannon
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Cancer Research UK – Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Raffaella Sordella
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Watson School of Biological Sciences, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
19
|
Zhu N, Swietlik EM, Welch CL, Pauciulo MW, Hagen JJ, Zhou X, Guo Y, Karten J, Pandya D, Tilly T, Lutz KA, Martin JM, Treacy CM, Rosenzweig EB, Krishnan U, Coleman AW, Gonzaga-Jauregui C, Lawrie A, Trembath RC, Wilkins MR, Morrell NW, Shen Y, Gräf S, Nichols WC, Chung WK. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med 2021; 13:80. [PMID: 33971972 PMCID: PMC8112021 DOI: 10.1186/s13073-021-00891-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. METHODS To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. RESULTS Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. CONCLUSIONS Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacob J Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xueya Zhou
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yicheng Guo
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Tilly
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Katie A Lutz
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer M Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Erika B Rosenzweig
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Usha Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Anna W Coleman
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
21
|
Yeeravalli R, Kaushik K, Das A. TWIST1-mediated transcriptional activation of PDGFRβ in breast cancer stem cells promotes tumorigenesis and metastasis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166141. [PMID: 33845139 DOI: 10.1016/j.bbadis.2021.166141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) patients often exhibit poor prognosis and breast cancer relapse due to metastasis. This results in secondary tumor generation at distant-unrelated organs that account for the majority of breast cancer-related deaths. Although breast cancer stem cells (CSCs) have been attributed to metastasis, a mechanistic understanding is essential for developing therapeutic interventions to combat breast cancer relapse. Breast CSCs are generated due to Epithelial-to-mesenchymal transition (EMT), regulated by transcription factors (EMT-TF) that are implicated in tumorigenesis and metastasis. However, the underlying mechanisms mediating these processes remain elusive. In the present study, we have reported that TWIST1, an EMT-TF, exhibits positive transcriptional regulation on PDGFRβ promoter, thus identifying PDGFRβ as one of the downstream targets of EMT regulation in breast CSCs. Breast cancer cells overexpressing PDGFRβ exhibited a significant increase in physiological and molecular properties comparable to that of breast CSCs, while molecular silencing of PDGFRβ in breast CSCs perturbed these phenomena. Mechanistically, PDGFRβ overexpression induced the activation of FAK and Src leading to cell migration and invasion. Orthotopic xenograft transplantation of stable breast cancer cells and CSCs with PDGFRβ overexpression in nude mice led to a significant increase in tumorigenesis, and metastasis to lung and liver as depicted by the significant increase in human gene-specific PDGFRβ and CD44 expression, and colocalization along with an expression of human-specific Alu sequences which were perturbed with stable silencing of PDGFRβ in breast CSCs. Thus, PDGFRβ plays a crucial role in inducing breast cancer tumorigenesis and metastasis that can be a plausible therapeutic target to treat TNBC patients.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
22
|
Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells 2020; 12:1237-1254. [PMID: 33312396 PMCID: PMC7705471 DOI: 10.4252/wjsc.v12.i11.1237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Melendez-Zajgla
- Génómica funcional del cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Olmos
- Biotecnología Marina, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada 22860, Mexico
| |
Collapse
|
23
|
Kobayashi PE, Lainetti PF, Leis-Filho AF, Delella FK, Carvalho M, Cury SS, Carvalho RF, Fonseca-Alves CE, Laufer-Amorim R. Transcriptome of Two Canine Prostate Cancer Cells Treated With Toceranib Phosphate Reveals Distinct Antitumor Profiles Associated With the PDGFR Pathway. Front Vet Sci 2020; 7:561212. [PMID: 33324695 PMCID: PMC7726326 DOI: 10.3389/fvets.2020.561212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
Canine prostate cancer (PC) presents a poor antitumor response, usually late diagnosis and prognosis. Toceranib phosphate (TP) is a nonspecific inhibitor of receptor tyrosine kinases (RTKs), including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and c-KIT. This study aimed to evaluate VEGFR2, PDGFR-β, and c-KIT protein expression in two established canine PC cell lines (PC1 and PC2) and the transcriptome profile of the cells after treatment with TP. Immunofluorescence (IF) analysis revealed VEGFR2 and PDGFR-β protein expression and the absence of c-KIT protein expression in both cell lines. After TP treatment, only the viability of PC1 cells decreased in a dose-dependent manner. Transcriptome and enrichment analyses of treated PC1 cells revealed 181 upregulated genes, which were related to decreased angiogenesis and cell proliferation. In addition, we found upregulated PDGFR-A, PDGFR-β, and PDGF-D expression in PC1 cells, and the upregulation of PDGFR-β was also observed in treated PC1 cells by qPCR. PC2 cells had fewer protein-protein interactions (PPIs), with 18 upregulated and 22 downregulated genes; the upregulated genes were involved in the regulation of parallel pathways and mechanisms related to proliferation, which could be associated with the resistance observed after treatment. The canine PC1 cell line but not the PC2 cell line showed decreased viability after treatment with TP, although both cell lines expressed PDGFR and VEGFR receptors. Further studies could explain the mechanism of resistance in PC2 cells and provide a basis for personalized treatment for dogs with PC.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Patrícia F Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Antonio F Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Flávia K Delella
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Marcio Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil.,Institute of Health Sciences, Paulista University-UNIP, Bauru, Brazil
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| |
Collapse
|
24
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
25
|
Redox Regulation of NOX Isoforms on FAK (Y397)/SRC (Y416) Phosphorylation Driven Epithelial-to-Mesenchymal Transition in Malignant Cervical Epithelial Cells. Cells 2020; 9:cells9061555. [PMID: 32604782 PMCID: PMC7349918 DOI: 10.3390/cells9061555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) promulgates epithelial cell associated disease-defining characteristics in tumorigenesis and organ fibrosis. Growth factors such as epidermal growth factor and fibroblast growth factor in addition to cytokines such as transforming growth factor-β1 (TGF-β1) is said to play a prominent role in remodeling related pathological events of cancer progression such as invasion, metastasis, apoptosis, EMT, etc. through redox related cellular secondary messengers, in particular the reactive oxygen species (ROS). However, the signaling cascade underlying the redox mechanism and thereby the progression of EMT remains largely unknown. In this study, upon TGF-β1 treatment, we observed an induction in NOX isoforms-NOX2 and NOX4-that have time (early and late) and cellular localization (nucleus and autophagosome co-localized) dependent effects in mediating EMT associated cell proliferation and migration through activation of the focal adhesion kinase (FAK)/SRC pathway in HeLa, human cervical cancer cells. Upon silencing NOX2/4 gene expression and using the SRC inhibitor (AZD0530), progression of TGF-β1 induced EMT related cellular remodeling, extra cellular matrix (ECM) production, cell migration and invasion, got significantly reverted. Together, these results indicate that NOX2 and NOX4 play important, albeit distinct, roles in the activation of cytokine mediated EMT and its associated processes via tyrosine phosphorylation of the FAK/SRC pathway.
Collapse
|
26
|
Sun L, Li Q, Guo Y, Yang Q, Yin J, Ran Q, Liu L, Zhao Z, Wang Y, Li Y, Chen Y, Weng X, Cai W, Zhu X. Extract of Caulis Spatholobi, a novel platelet inhibitor,efficiently suppresses metastasis of colorectal cancer by targeting tumor cell-induced platelet aggregation. Biomed Pharmacother 2020; 123:109718. [PMID: 31918208 DOI: 10.1016/j.biopha.2019.109718] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor cell-induced platelet aggregation (TCIPA) is the core mechanism potentiating high viability for circulatory tumor cells,which is the rate-limiting factor for metastasis.Additionally,as supported by the successful application of aspirin,the pro-malignant effects during tumor-platelets interaction can be largely neutralized by pharmacological deactivation of platelets.Caulis Spatholobi is widely used as an anti-coagulation herb in traditional Chinese medicine,indicating its potential against TCIPA.In our study,three fractions of Caulis Spatholobi extracts were firstly prepared.In colorectal cancer(CRC) model,the anti-metastatic potential was evaluated both in vitro and in vivo followed by the detection of their platlet regulatory effects.Results showed that all three extracts significantly suppressed the invasion and metastasis of CRC.Mechanistically,by blocking platelet-derived PDGF-B releasing,they reversed the enhanced epithelial mesenchymal transition during MC38-platelets interation.Further,ethyl acetate fraction shows the most promising efficacy for the future application in treatment.Overall,our study have for the first time proved CaulisSpatholobi extracts,especially the ethyl acetate fraction,as a potent TCIPA inhibitor during metastatic progression,which provided a novel candidate for pharmacologically blockage of metastasis in CRC.
Collapse
Affiliation(s)
- Lidong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zheng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
27
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
28
|
Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells. JOURNAL OF ONCOLOGY 2019; 2019:1740763. [PMID: 31467533 PMCID: PMC6699388 DOI: 10.1155/2019/1740763] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
The invasive capacity of GBM is one of the key tumoral features associated with treatment resistance, recurrence, and poor overall survival. The molecular machinery underlying GBM invasiveness comprises an intricate network of signaling pathways and interactions with the extracellular matrix and host cells. Among them, PI3k/Akt, Wnt, Hedgehog, and NFkB play a crucial role in the cellular processes related to invasion. A better understanding of these pathways could potentially help in developing new therapeutic approaches with better outcomes. Nevertheless, despite significant advances made over the last decade on these molecular and cellular mechanisms, they have not been translated into the clinical practice. Moreover, targeting the infiltrative tumor and its significance regarding outcome is still a major clinical challenge. For instance, the pre- and intraoperative methods used to identify the infiltrative tumor are limited when trying to accurately define the tumor boundaries and the burden of tumor cells in the infiltrated parenchyma. Besides, the impact of treating the infiltrative tumor remains unclear. Here we aim to highlight the molecular and clinical hallmarks of invasion in GBM.
Collapse
|
29
|
Jiang X, Hou D, Wei Z, Zheng S, Zhang Y, Li J. Extracellular and intracellular microRNAs in pancreatic cancer: from early diagnosis to reducing chemoresistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers (Basel) 2019; 11:cancers11030312. [PMID: 30845654 PMCID: PMC6468412 DOI: 10.3390/cancers11030312] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event by which cancer cells acquire an invasive phenotype through the activation of specific transcription factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so far. This review summarizes the current understanding of the interplay between autophagy and EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for targeting these processes in future therapeutical approaches.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| |
Collapse
|
31
|
Olsen RS, Dimberg J, Geffers R, Wågsäter D. Possible Role and Therapeutic Target of PDGF-D Signalling in Colorectal Cancer. Cancer Invest 2019; 37:99-112. [PMID: 30836770 DOI: 10.1080/07357907.2019.1576191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Platelet-derived growth factor D (PDGF-D) has been shown to mediate cellular processes of importance in cancer progression. This study aimed to investigate the expression and putative involvement of PDGF-D signaling in colorectal carcinogenesis. PDGF-D was expressed in vascular endothelial cells in tumor and normal tissues. PDGF-D stimulation of cells altered genes of importance in carcinogenic processes. In addition, PDGF-D increased the proliferation rate while imatinib inhibited these effects. PDGF-D and its PDGF receptor beta (PDGFR-β) are expressed in colorectal cancer and blockage of PDGF-D/PDGFR-β signaling using tyrosine kinase inhibitors, such as imatinib, might be important in inhibiting tumor-promoting actions.
Collapse
Affiliation(s)
- Renate Slind Olsen
- a Department of Laboratory Medicine, Division of Medical Diagnostics , Region Jönköping County , Jönköping , Sweden.,b Division of Drug Research, Department of Medicine and Health Sciences, Faculty of Medicine and Health Sciences , Linköping University , Linköping , Sweden
| | - Jan Dimberg
- c Department of Natural Science and Biomedicine, School of Health and Welfare , Jönköping University , Jönköping , Sweden
| | - Robert Geffers
- d Genome Analytics, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Dick Wågsäter
- b Division of Drug Research, Department of Medicine and Health Sciences, Faculty of Medicine and Health Sciences , Linköping University , Linköping , Sweden
| |
Collapse
|
32
|
Rokavec M, Bouznad N, Hermeking H. Paracrine Induction of Epithelial-Mesenchymal Transition Between Colorectal Cancer Cells and its Suppression by a p53/miR-192/215/NID1 Axis. Cell Mol Gastroenterol Hepatol 2019; 7:783-802. [PMID: 30831320 PMCID: PMC6468198 DOI: 10.1016/j.jcmgh.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Intratumor heterogeneity is a common feature of colorectal cancer (CRC). Here, we analyzed whether mesenchymal-like CRC cells promote the progression of epithelial-like CRC cells via paracrine mechanisms. METHODS Six CRC cell lines that show an epithelial phenotype were treated with conditioned media (CM) from CRC cell lines that show a mesenchymal phenotype, and effects on epithelial-mesenchymal transition (EMT), migration, invasion, and chemoresistance were determined. Secreted factors potentially mediating these effects were identified by using cytokine arrays. Associations of these factors with tumor progression and patient survival were determined. RESULTS CM obtained from mesenchymal-like CRC cells induced EMT associated with increased migration, invasion, and chemoresistance in epithelial-like CRC cell lines. Notably, activation of p53 in mesenchymal-like CRC cells prevented these effects of CM. Increased concentrations of several cytokines were identified in CM from mesenchymal-like CRC cell lines and a subset of these cytokines showed repression by p53. The down-regulation of nidogen-1 (NID1) was particularly significant and was owing to p53-mediated induction of microRNA-192 and microRNA-215, which directly target the NID1 messenger RNA. NID1 was found to be required and sufficient for inducing EMT, invasion, and migration in epithelial-like CRC cells. In primary CRCs, increased NID1 expression was associated with p53 mutation and microRNA-192/215 down-regulation. Importantly, increased NID1 expression in CRCs correlated with enhanced tumor progression and poor patient survival. CONCLUSIONS Taken together, our results show that CRC cells promote tumor progression via secreting NID1, which induces EMT in neighboring tumor cells. Importantly, the interference of p53 with this paracrine signaling between tumor cells may critically contribute to tumor suppression.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany,German Cancer Consortium (DKTK), Partner site Munich, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Correspondence Address correspondence to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany. fax: (49) 89-2180-73697.
| |
Collapse
|
33
|
Chen S, Zhuang K, Sun K, Yang Q, Ran X, Xu X, Mu C, Zheng B, Lu Y, Zeng J, Dai Y, Pradhan S, Ran Y. Itraconazole Induces Regression of Infantile Hemangioma via Downregulation of the Platelet-Derived Growth Factor-D/PI3K/Akt/mTOR Pathway. J Invest Dermatol 2019; 139:1574-1582. [PMID: 30690033 DOI: 10.1016/j.jid.2018.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 02/05/2023]
Abstract
Infantile hemangioma is the most common benign vascular tumor of infancy. We have previously reported that itraconazole, a common antifungal agent, can clinically improve or cure infantile hemangioma; however, the underlying molecular mechanisms are still unclear. Here, we show that itraconazole treatment significantly inhibits proliferation and promotes apoptosis of the endothelial cells of mouse hemangioma cell line and infantile primary hemangioma endothelial cell. Itraconazole also remarkably reduced angiogenesis of hemangioma endothelial cell in vitro. We further performed transcriptome profiling via mRNA microarrays in hemangioma endothelial cell upon itraconazole treatment, and identified cytokine-cytokine receptor interaction as the top significantly enriched pathway. Importantly, itraconazole significantly reduced platelet-derived growth factor-D level, resulting in suppression of platelet-derived growth factor-β activation and inhibition of its downstream effectors, such as PI3K, Akt, 4E-BP1, and p70S6K, which are important for cellular growth and survival of infantile hemangioma. In conclusion, our results suggest that platelet-derived growth factor-D is a target of itraconazole in infantile hemangioma.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Dermatovenereology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kaiyi Sun
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Yang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoxi Xu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chan Mu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Dermatovenereology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Health and Family Planning Commission, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Zeng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yalin Dai
- Department of Medical Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Sushmita Pradhan
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
34
|
Kim HS, Yoon YM, Meang MK, Park YE, Lee JY, Lee TH, Lee JE, Kim IH, Youn BS. Reversion of in vivo fibrogenesis by novel chromone scaffolds. EBioMedicine 2019; 39:484-496. [PMID: 30611717 PMCID: PMC6355727 DOI: 10.1016/j.ebiom.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myofibroblasts are known to play a key role in the development of idiopathic pulmonary fibrosis (IPF). Two drugs, pirfenidone and nintedanib, are the only approved therapeutic options for IPF, but their applications are limited due to their side effects. Thus, curative IPF drugs represent a huge unmet medical need. METHODS A mouse hepatic stellate cell (HSC) line was established that could robustly differentiate into myofibroblasts upon treatment with TGF-β. Eupatilin was assessed in diseased human lung fibroblasts from IPF patients (DHLFs) as well as in human lung epithelial cells (HLECs). The drug's performance was extensively tested in a bleomycin-induced lung fibrosis model (BLM). Global gene expression studies and proteome analysis were performed. FINDINGS Eupatilin attenuated disease severity of BLM in both preventative and therapeutic studies. The drug inhibited the in vitro transdifferantiation of DHLFs to myofibroblasts upon stimulation with TGF-β. No such induction of the in vitro transdifferantiation was observed in TGF-β treated HLECs. Specific carbons of eupatilin were essential for its anti-fibrotic activity. Eupatilin was capable of dismantling latent TGF-β complex, specifically by eliminating expression of the latent TGF-β binding protein 1 (LTBP1), in ECM upon actin depolymerization. Unlike eupatilin, pirfenidone was unable to block fibrosis of DHLFs or HSCs stimulated with TGF-β. Eupatilin attenuated phosphorylation of Smad3 by TGF-β. Eupatilin induced myofibroblasts to dedifferentiate into intermediate HCS-like cells. INTERPRETATION Eupatilin may act directly on pathogenic myofibroblasts, disarming them, whereas the anti-fibrotic effect of pirfenidone may be indirect. Eupatilin could increase the efficacy of IPF treatment to curative levels.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Republic of Korea; Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine,Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | | | - Moon Kee Meang
- OsteoNeuroGenInc, Seoul 08501, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do 26426, Republic of Korea
| | - Tae Hee Lee
- School of Oriental Medicine, Formulae Pharmacology Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
35
|
Liu Z, Chen J, Yuan W, Ruan H, Shu Y, Ji J, Wu L, Tang Q, Zhou Z, Zhang X, Cheng Y, He S, Shu X. Nuclear factor I/B promotes colorectal cancer cell proliferation, epithelial-mesenchymal transition and 5-fluorouracil resistance. Cancer Sci 2018; 110:86-98. [PMID: 30320939 PMCID: PMC6317934 DOI: 10.1111/cas.13833] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor I/B (NFIB) is a widely studied transcription factor that participates in tumor progression; nevertheless, studies on NFIB in colorectal cancer (CRC) are limited. In our study, Western blot and RT‐PCR analyses showed that NFIB was overexpressed in CRC tissues and cell lines, which was consistent with our bioinformatic analysis results. Furthermore, NFIB expression was closely related to the TNM stage of CRC. NFIB promoted cell proliferation and migration and inhibited cell apoptosis in vitro. Meanwhile, we discovered that NFIB accelerated xenograft tumor growth in vivo. In addition, NFIB weakened the sensitivity of CRC cells to 5‐fluorouracil (5‐FU). NFIB induced epithelial‐mesenchymal transition (EMT) by upregulating snail expression, which was accompanied by decreased E‐cadherin and Zo‐1 expression and increasedd Vimentin expression. Because the Akt pathway plays an important role in CRC progression, we examined whether there was a correlation between NFIB and the Akt pathway in cell proliferation and migration. Our results showed that NFIB promoted cell proliferation and increased 5‐FU resistance by activating the Akt pathway. In summary, our findings suggested that NFIB induced EMT of CRC cells via upregulating snail expression and promoted cell proliferation and 5‐FU resistance by activating the Akt pathway.
Collapse
Affiliation(s)
- ZhengYi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JinHuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WenZheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HaiLong Ruan
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - JinTong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZiLi Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XuDan Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YiFeng Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuYa He
- General Office, Publicity and Education Center, Health and Family Planning Commission of Hubei Province, Wuhan, China
| | - XiaoGang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, Eva A, Varesio L, Pietra G, Moretta L, Mingari MC, Vitale M, Bosco MC. Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration. Front Immunol 2018; 9:2358. [PMID: 30459756 PMCID: PMC6232835 DOI: 10.3389/fimmu.2018.02358] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
Hypoxia, which characterizes most tumor tissues, can alter the function of different immune cell types, favoring tumor escape mechanisms. In this study, we show that hypoxia profoundly acts on NK cells by influencing their transcriptome, affecting their immunoregulatory functions, and changing the chemotactic responses of different NK cell subsets. Exposure of human peripheral blood NK cells to hypoxia for 16 or 96 h caused significant changes in the expression of 729 or 1,100 genes, respectively. Gene Set Enrichment Analysis demonstrated that these changes followed a consensus hypoxia transcriptional profile. As assessed by Gene Ontology annotation, hypoxia-targeted genes were implicated in several biological processes: metabolism, cell cycle, differentiation, apoptosis, cell stress, and cytoskeleton organization. The hypoxic transcriptome also showed changes in genes with immunological relevance including those coding for proinflammatory cytokines, chemokines, and chemokine-receptors. Quantitative RT-PCR analysis confirmed the modulation of several immune-related genes, prompting further immunophenotypic and functional studies. Multiplex ELISA demonstrated that hypoxia could variably reduce NK cell ability to release IFNγ, TNFα, GM-CSF, CCL3, and CCL5 following PMA+Ionomycin or IL15+IL18 stimulation, while it poorly affected the response to IL12+IL18. Cytofluorimetric analysis showed that hypoxia could influence NK chemokine receptor pattern by sustaining the expression of CCR7 and CXCR4. Remarkably, this effect occurred selectively (CCR7) or preferentially (CXCR4) on CD56bright NK cells, which indeed showed higher chemotaxis to CCL19, CCL21, or CXCL12. Collectively, our data suggest that the hypoxic environment may profoundly influence the nature of the NK cell infiltrate and its effects on immune-mediated responses within tumor tissues.
Collapse
Affiliation(s)
- Monica Parodi
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Raggi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudia Manzini
- Laboratorio di Immunologia Clinica e Sperimentale, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mirna Balsamo
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Fabiola Blengio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luigi Varesio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gabriella Pietra
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Lorenzo Moretta
- Immunology Area, Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Maria Cristina Mingari
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Carla Bosco
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
37
|
Dickson BC, Hornick JL, Fletcher CDM, Demicco EG, Howarth DJ, Swanson D, Zhang L, Sung YS, Antonescu CR. Dermatofibrosarcoma protuberans with a novel COL6A3-PDGFD fusion gene and apparent predilection for breast. Genes Chromosomes Cancer 2018; 57:437-445. [PMID: 30014607 DOI: 10.1002/gcc.22663] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Dermatofibrosarcoma protuberans is a locally aggressive superficial mesenchymal neoplasm. It typically occurs in adulthood, and has been reported to have a slight male predilection. Tumors have a characteristic histopathologic appearance, including: storiform architecture, infiltrative "honeycomb" growth within subcutaneous adipose tissue, and immunoreactivity for CD34. Virtually all molecularly characterized cases to date have been found to harbor a COL1A1-PDGFB fusion product. Following identification of an index patient with a novel COL6A3-PDGFD fusion gene, we undertook a molecular investigation, using a combination of RNA sequencing and fluorescence in situ hybridization (FISH), to assess the prevalence of PDGFD rearrangement in dermatofibrosarcoma protuberans (N = 63). Three additional patients were found to have balanced PDGFD rearrangements. Interestingly, all 4 tumors arose on the breast of females. As a result, we subsequently examined 16 additional cases of primary breast dermatofibrosarcoma protuberans, identifying 2 additional tumors with PDGFD rearrangement. The morphology and immunophenotype of all 6 cases was analogous to those with the canonical COL1A1-PDGFB fusion; none of the cases showed fibrosarcomatous transformation. This study illustrates that the COL6A3-PDGFD fusion product is rare in dermatofibrosarcoma protuberans, and associated with an apparent predilection for breast. An awareness of this variant is important for pathologists, as it will not be detected using conventional reverse transcription polymerase chain reaction or FISH-based diagnostic assays for dermatofibrosarcoma protuberans.
Collapse
Affiliation(s)
- Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jason L Hornick
- Department of Pathology, Brigham & Women's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Christopher D M Fletcher
- Department of Pathology, Brigham & Women's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Howarth
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
38
|
Wu YS, Zhu B, Luo AL, Yang L, Yang C. The Role of Cardiokines in Heart Diseases: Beneficial or Detrimental? BIOMED RESEARCH INTERNATIONAL 2018; 2018:8207058. [PMID: 29744364 PMCID: PMC5878913 DOI: 10.1155/2018/8207058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality, imposing a major disease burden worldwide. Therefore, there is an urgent need to identify new therapeutic targets. Recently, the concept that the heart acts as a secretory organ has attracted increasing attention. Proteins secreted by the heart are called cardiokines, and they play a critical physiological role in maintaining heart homeostasis or responding to myocardial damage and thereby influence the development of heart diseases. Given the critical role of cardiokines in heart disease, they might represent a promising therapeutic target. This review will focus on several cardiokines and discuss their roles in the pathogenesis of heart diseases and as potential therapeutics.
Collapse
Affiliation(s)
- Ye-Shun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B, Bando JK, Kim AH, Walker J, Andahazy M, Bugatti M, Melocchi L, Vermi W, Fremont DH, Cox S, Cella M, Schmedt C, Colonna M. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell 2017; 172:534-548.e19. [PMID: 29275861 DOI: 10.1016/j.cell.2017.11.037] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.
Collapse
Affiliation(s)
- Alexander D Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vladimir Trifonov
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Piyush Goyal
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Benjamin Bohl
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Mary Andahazy
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Laura Melocchi
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah Cox
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian Schmedt
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Kanda M, Shimizu D, Tanaka H, Shibata M, Iwata N, Hayashi M, Kobayashi D, Tanaka C, Yamada S, Fujii T, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Metastatic pathway-specific transcriptome analysis identifies MFSD4 as a putative tumor suppressor and biomarker for hepatic metastasis in patients with gastric cancer. Oncotarget 2017; 7:13667-79. [PMID: 26872374 PMCID: PMC4924669 DOI: 10.18632/oncotarget.7269] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) with hepatic metastasis remains a fatal disease. Global expression profiling was conducted using tissues from patients who had GC with synchronous hepatic metastasis, and major facilitator superfamily domain containing 4 (MFSD4) was identified as a candidate biomarker for hepatic metastasis in GC. Functional and expression analyses of this molecule in GC cell lines and clinical samples were conducted. We analyzed MFSD4 expression, DNA methylation, and copy number. RNA interference experiments evaluated the effects of MFSD4 expression on cell phenotype and apoptosis. We analyzed tissues of 200 patients with GC to assess the diagnostic performance of MFSD4 levels for predicting hepatic recurrence, metastasis, or both. Differential expression of MFSD4 mRNA by GC cell lines correlated positively with the levels of NUDT13 and OCLN mRNAs and inversely with those of BMP2. Hypermethylation of the MFSD4 promoter was detected in cells with lower levels of MFSD4 mRNA. Inhibition of MFSD4 expression significantly increased the invasiveness and motility of GC cells but did not influence cell proliferation or apoptosis. MFSD4 mRNA levels in primary GC tissues were reduced in patients with concomitant hepatic metastasis or recurrence compared with those without. Low levels of MFSD4 mRNA in primary GC tissues were an independent risk factor of hepatic recurrence and metastasis. MFSD4 expression in gastric tissues may represent a useful biomarker for identification of patients at high risk for hepatic recurrence, metastasis, or both.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Shibata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
41
|
Jiang B, Chen J, Yuan W, Ji J, Liu Z, Wu L, Tang Q, Shu X. Platelet-derived growth factor-D promotes colorectal cancer cell migration, invasion and proliferation by regulating Notch1 and matrix metalloproteinase-9. Oncol Lett 2017; 15:1573-1579. [PMID: 29434852 PMCID: PMC5777126 DOI: 10.3892/ol.2017.7510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/02/2017] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) has been one of the most common types of cancer for decades worldwide. The pathogenesis of CRC is associated with the processes of activating oncogenes and inactivating anti-oncogenes. Platelet-derived growth factor-D (PDGF-D) was confirmed to regulate migration, invasion, proliferation, apoptosis and metastasis in various cancer cells. Overexpression of PDGF-D exists in a number of human malignancies, including pancreatic, prostate and breast cancer. However, the expression and function of PDGF-D and its associated molecular mechanism in CRC remain unclear. Thus, the expression of PDGF-D was detected in CRC tissues and human colon cancer lines. Subsequently, the effects of PDGF-D on the invasion, migration and proliferation of cancer cells were investigated. The corresponding molecular mechanism had also been explored. The present study revealed that PDGF-D was upregulated not only in CRC tissues but also in CRC cell lines, and simultaneously, facilitated the processes of migration, invasion and proliferation. Silencing PDGF-D in the SW480 cell line inhibited migration, invasion and proliferation distinctly, with reduced expression of Notch1 and matrix metalloproteinase-9. Furthermore, upregulating PDGF-D in HCT116 cells led to the opposite results. These findings indicate that PDGF-D may be developed into a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinhuang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jintong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
42
|
Abstract
Recent studies suggest that neuropilin-1 (NRP-1) promotes angiogenesis mainly via VEGF and its receptors. It promotes tumorigenesis via formation of the NRP-1/ VEGF (vascular endothelial growth factor)/VEGFR2 (vascular endothelial growth factor receptor 2) complex. In addition to VEGF and its receptors, NRP-1 also binds with other growth factors such as platelet-derived growth factor (PDGF) and platelet-derived growth factor receptor (PDGFR). PDGF plays important roles in cellular proliferation and, in particular, blood vessel formation. Moreover, recent studies show that NRP-1 promotes angiogenesis via the NRP-1-ABL pathway, but independent of VEGF-VEGFR2. RAD51 is a protein involved in the signaling pathways of NRP1-ABL and PDGF(R), the expression of which is positively associated with cell radioresistance and chemoresistance. NRP-1 activates the signaling pathways of ABL and PDGF(R) to upregulate RAD51, which induces resistance to radiotherapy and chemotherapy in cancer cells. Furthermore, NRP-1 activates the tumor microenvironment by binding with fibronectin and activating ABL, thereby promoting tumor growth. Inhibition of NRP-1 may overcome the limitations of individually inhibiting the VEGF-VEGFR2 pathway in cancer therapy and provide new ideas for cancer treatment. Therefore, we review the role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China
| | - Xiaodong Jiang
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China.
| |
Collapse
|
43
|
Miwa T, Kanda M, Tanaka H, Tanaka C, Kobayashi D, Umeda S, Iwata N, Hayashi M, Yamada S, Fujii T, Fujiwara M, Kodera Y. FBXO50 Enhances the Malignant Behavior of Gastric Cancer Cells. Ann Surg Oncol 2017; 24:3771-3779. [PMID: 28560594 DOI: 10.1245/s10434-017-5882-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Challenges to our understanding the molecular mechanisms of the progression of gastric cancer (GC) must be overcome to facilitate the identification of novel biomarkers and therapeutic targets. In this article, we analyzed the expression of the gene encoding F-box-only 50 (FBXO50) and determined whether it contributes to the malignant phenotype of GC. METHODS FBXO50 messenger RNA (mRNA) levels and copy numbers of the FBXO50 locus were determined in 10 GC cell lines and a nontumorigenic epithelial cell line. Polymerase chain reaction array analysis was performed to identify genes coordinately expressed with FBXO50. The effects of inhibiting FBXO50 on GC cell proliferation, adhesion, invasiveness, and migration were evaluated using a small interfering RNA targeted to FBXO50 mRNA. To evaluate the clinical significance of FBXO50 expression, we determined the levels of FBXO50 mRNA in tissues acquired from 200 patients with GC. RESULTS The levels of FBXO50 mRNA were increased in five GC cell lines and positively correlated with those of ITGA5, ITGB1, MMP2, MSN, COL5A2, GNG11, and WNT5A. Copy number gain of the FBXO50 locus was detected in four GC cell lines. Inhibition of FBXO50 expression significantly decreased the proliferation, adhesion, migration, and invasiveness of GC cell lines. In clinical samples, high FBXO50 expression correlated with increased pT4, invasive growth, lymph node metastasis, and positive peritoneal lavage cytology. Patients with high FBXO50 expression had a significantly higher prevalence of recurrence after curative gastrectomy and were more likely to experience shorter overall survival. CONCLUSIONS FBXO50 may represent a biomarker for GC phenotypes and as a target for therapy.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
44
|
Abstract
The epithelial–mesenchymal transition (EMT) is considered to be one of the critical steps in gastric cancer cell invasion and metastasis. SAM- and SH3-domain containing 1 (SASH1), a member of the SLY family of signal adapter proteins, is a candidate for tumor suppression in several cancers. However, the biological role of SASH1 in gastric cancer remains largely unknown. Therefore, the purpose of this study was to investigate the impact of SASH1 on the biological behavior of gastric cancer cells treated with transforming growth factor (TGF)-β1. In the current study, we provide evidence that SASH1 was lowly expressed in human gastric cancer cells, and TGF-β1 also inhibited the expression of SASH1 in TSGH cells. We found that SASH1 inhibited TGF-β1-mediated EMT in TSGH cells, as well as cell migration and invasion. Furthermore, SASH1 obviously inhibited the phosphorylation of PI3K and Akt in TGF-β1-stimulated TSGH cells. In summary, our study is the first to show that overexpression of SASH1 inhibits TGF-β1-induced EMT in gastric cancer cells through the PI3K/Akt signaling pathway. These results suggest that SASH1 may be a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Zong
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, the Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
45
|
Chen J, Yuan W, Wu L, Tang Q, Xia Q, Ji J, Liu Z, Ma Z, Zhou Z, Cheng Y, Shu X. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway. Oncotarget 2017; 8:9961-9973. [PMID: 28035069 PMCID: PMC5354784 DOI: 10.18632/oncotarget.14283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) plays a crucial role in the progression of several cancers. However, its role in colorectal cancer (CRC) remains unclear. Our study showed that PDGF-D was highly expressed in CRC tissues and was positively associated with the clinicopathological features. Down-regulation of PDGF-D inhibited the tumor growth, migration and angiogenesis of SW480 cells in vitro and in vivo. Whereas up-regulation of PDGF-D promoted the malignant behaviors of HCT116 cells. Moreover, PDGF-D up-regulated the expression of Notch1 and Twist1 in CRC cells. In addition, PDGF-D expression promoted Epithelial to mesenchymal transition (EMT), which was accompanied with decreased E-cadherin and increased Vimentin expression. Consistently, PDGF-D, Notch1, and Twist1 are obviously up-regulated in transforming growth factor-beta 1 (TGF-β1) treated HCT116 cells. Since Notch1 and Twist1 play an important role in EMT and tumor progression, we examined whether there is a correlation between Notch1 and Twist1 in EMT status. Our results showed that up-regulation of Notch1 was able to rescue the effects of PDGF-D down-regulation on Twist1 expression in SW480 cells, whereas down-regulation of Notch1 reduced Twist1 expression in HCT116 cells. Furthermore, we found that Twist1 promoted EMT and aggressiveness of CRC cells. These results suggest that PDGF-D promotes tumor growth and aggressiveness of CRC, moreover, down-regulation of PDGF-D inactivates Notch1/Twist1 axis, which could reverse EMT and prevent CRC progression.
Collapse
Affiliation(s)
- Jinhuang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Gonzalez Bosquet J, Newtson AM, Chung RK, Thiel KW, Ginader T, Goodheart MJ, Leslie KK, Smith BJ. Prediction of chemo-response in serous ovarian cancer. Mol Cancer 2016; 15:66. [PMID: 27756408 PMCID: PMC5070116 DOI: 10.1186/s12943-016-0548-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/03/2016] [Indexed: 01/22/2023] Open
Abstract
Background Nearly one-third of serous ovarian cancer (OVCA) patients will not respond to initial treatment with surgery and chemotherapy and die within one year of diagnosis. If patients who are unlikely to respond to current standard therapy can be identified up front, enhanced tumor analyses and treatment regimens could potentially be offered. Using the Cancer Genome Atlas (TCGA) serous OVCA database, we previously identified a robust molecular signature of 422-genes associated with chemo-response. Our objective was to test whether this signature is an accurate and sensitive predictor of chemo-response in serous OVCA. Methods We first constructed prediction models to predict chemo-response using our previously described 422-gene signature that was associated with response to treatment in serous OVCA. Performance of all prediction models were measured with area under the curves (AUCs, a measure of the model’s accuracy) and their respective confidence intervals (CIs). To optimize the prediction process, we determined which elements of the signature most contributed to chemo-response prediction. All prediction models were replicated and validated using six publicly available independent gene expression datasets. Results The 422-gene signature prediction models predicted chemo-response with AUCs of ~70 %. Optimization of prediction models identified the 34 most important genes in chemo-response prediction. These 34-gene models had improved performance, with AUCs approaching 80 %. Both 422-gene and 34-gene prediction models were replicated and validated in six independent datasets. Conclusions These prediction models serve as the foundation for the future development and implementation of a diagnostic tool to predict response to chemotherapy for serous OVCA patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0548-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesus Gonzalez Bosquet
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Andreea M Newtson
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Rebecca K Chung
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Timothy Ginader
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Biostatistics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Brian J Smith
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Biostatistics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Cytochrome P450 1B1 Contributes to the Development of Angiotensin II-Induced Aortic Aneurysm in Male Apoe(-/-) Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2204-2219. [PMID: 27301358 DOI: 10.1016/j.ajpath.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (CYP) 1B1 is implicated in vascular smooth muscle cell migration, proliferation, and hypertension. We assessed the contribution of CYP1B1 to angiotensin (Ang) II-induced abdominal aortic aneurysm (AAA). Male Apoe(-/-)/Cyp1b1(+/+) and Apoe(-/-)/Cyp1b1(-/-) mice were infused with Ang II or its vehicle for 4 weeks; another group of Apoe(-/-)/Cyp1b1(+/+) mice was coadministered the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS) every third day for 4 weeks. On day 28 of Ang II infusion, AAAs were analyzed by ultrasound and ex vivo by Vernier calipers, mice were euthanized, and tissues were harvested. Ang II produced AAAs in Apoe(-/-)/Cyp1b1(+/+) mice; mice treated with TMS or Apoe(-/-)/Cyp1b1(-/-) mice had reduced AAAs. Ang II enhanced infiltration of macrophages, T cells, and platelets and increased platelet-derived growth factor D, Pdgfrb, Itga2, and matrix metalloproteinases 2 and 9 expression in aortic lesions; these changes were inhibited in mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice. Oxidative stress resulted in cyclooxygenase-2 expression in aortic lesions. These effects were minimized in Apoe(-/-)/Cyp1b1(+/+) mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice and by concurrent treatment with the superoxide scavenger 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl. CYP1B1 contributed to the development of Ang II-induced AAA and associated pathogenic events in mice, likely by enhancing oxidative stress and associated signaling events. Thus, CYP1B1 may serve as a target for therapeutic agents for AAA in males.
Collapse
|
48
|
Duan Q, Pang C, Chang N, Zhang J, Liu W. Overexpression of PAD4 suppresses drug resistance of NSCLC cell lines to gefitinib through inhibiting Elk1-mediated epithelial-mesenchymal transition. Oncol Rep 2016; 36:551-8. [PMID: 27176594 DOI: 10.3892/or.2016.4780] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
Abstract
It is reported that epithelial-to-mesenchymal transition (EMT) could induce resistance in tumor cells, and knockdown of peptidylarginine deiminase IV (PAD4) induces the activity of EMT. However, the role of PAD4 in gefitinib‑acquired resistance in non-small cell lung cancer (NSCLC) remains unclear. In this study, we aimed to investigate the role of PAD4 in the resistance of NSCLC to gefitinib. The cells resistant to gefitinib were established in accordance with the literature, and were derived from NSCLC cell lines HCC827 and H1650. Real-time quantitative PCR and western blot results showed that PAD4 was obviously downregulated in the cells resistant to gefitinib. Overexpression of PAD4 distinctly inhibited gefitinib resistance, whereas PAD4 downregulation had the opposite effect. Further data indicated that PAD4 upregulation could restrain EMT activity via controlling the expression of ETS-domain containing protein (Elk1). Conversely, inhibition of PAD4 showed the reverse function compared with PAD4 upregulation. Above all, our study showed that overexpression of PAD4 constrains the activity of EMT via suppressing Elk1 expression, and inhibits resistance of NSCLC to gefitinib.
Collapse
Affiliation(s)
- Qiong Duan
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Cui Pang
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ning Chang
- Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ju Zhang
- Institute of Gene Diagnosis, State Key Laboratory of Cancer Biology, School of Pharmacology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenchao Liu
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
49
|
Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD. Proc Natl Acad Sci U S A 2016; 113:E864-73. [PMID: 26831065 DOI: 10.1073/pnas.1509384113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.
Collapse
|
50
|
The PDGF-D/miR-106a/Twist1 pathway orchestrates epithelial-mesenchymal transition in gemcitabine resistance hepatoma cells. Oncotarget 2016; 6:7000-10. [PMID: 25760076 PMCID: PMC4466665 DOI: 10.18632/oncotarget.3193] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence demonstrates that platelet-derived growth factor-D (PDGF-D) plays a critical role in epithelial-mesenchymal transition (EMT) and drug resistance in hepatocellular carcinoma (HCC) cells. However, the underlying mechanism has not been fully elucidated. The objective is to explore the molecular mechanism of PDGF-D-mediated EMT in drug resistance HCC cells. To achieve our goal, we used multiple approaches including Western blotting, real-time RT-PCR, wound healing assay, invasion assay, luciferase activity assay, transfection, and immunohistochemistry. We found that PDGF-D is highly expressed in gemcitabine-resistant (GR) HCC cells. Moreover, PDGF-D markedly inhibited miR-106a expression and subsequently upregulated Twist1 expression. Notably, PDGF-D expression was associated with miR-106a and Twist1 in HCC patients. Our findings provide a possible molecular mechanism for understanding GR chemoresistance in HCC cells. Therefore, inactivation of PDGF-D/Twist or activation of miR-106a could be a novel strategy for the treatment of HCC.
Collapse
|