1
|
Zhao Z, Chen M, Sun K, Gu X. CD8+ T cell associated scoring model helps prognostic diagnosis and immunotherapy selection in patients with colon adenocarcinoma. Heliyon 2024; 10:e37998. [PMID: 39386801 PMCID: PMC11462492 DOI: 10.1016/j.heliyon.2024.e37998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Objective T cell-mediated immunity plays a crucial role in the immune response against tumors, with CD 8+ T cells playing a leading role in the eradication of cancer cells. Material and methods A total of 5 datasets were included in this study. Single cell transcriptome data were used to discover CD8+ T cell marker genes, and Bulk transcriptome data from TCGA and GEO were jointly analyzed to screen candidate prognostic genes. lasso regression was performed to construct prognostic models. Immunotherapy cohort (IMvigor 210 and GSE78220) was applied to validate the diagnostic power of markers. Result Single-cell transcriptome data identified 65 CD8+ T cell marker genes, highlighting their importance in T cell-mediated immune responses. Among these, 11 genes were identified as CD8+ T-associated differential genes through analysis of bulk data from TCGA and GEO. A prognostic model for 5 genes was identified based on Lasso regression, dividing colon adenocarcinoma (COAD) patients into high- and low-risk groups. This model exhibited higher prognostic accuracy compared to traditional clinicopathological characteristics (age, pathological stage, histological grading). Moreover, the risk score derived from this model successfully differentiated patient responses to immunotherapy, as validated in the IMvigor 210 and GSE78220 cohorts. Conclusion Our research introduces a novel prognostic signature based on CD8+ T cell marker genes, demonstrating significant predictive power for prognosis and immunotherapy response in COAD patients. This model offers a potential tool for improving patient stratification and personalizing treatment strategies.
Collapse
Affiliation(s)
- Zheng Zhao
- Deparment of General Surgery, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Mingkai Chen
- Deparment of Gastroenterlogy, Zhengzhou Yihe Hospital, Zhengzhou, China
| | - Kuanxue Sun
- Deparment of General Surgery, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Xinqi Gu
- Department of Gastroenterlogy, Shanghai Pudong Hospital, Pudong Medical Center of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhang N, Chang J, Liu P, Tian X, Yu J. Prognostic significance of programmed cell death ligand 1 blood markers in non-small cell lung cancer treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2024; 15:1400262. [PMID: 38915398 PMCID: PMC11194356 DOI: 10.3389/fimmu.2024.1400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are effective for non-small cell lung cancer (NSCLC) treatment, but the response rate remains low. Programmed cell death ligand 1 (PD-L1) in peripheral blood, including soluble form (sPD-L1), expression on circulating tumor cells (CTCs PD-L1) and exosomes (exoPD-L1), are minimally invasive and promising markers for patient selection and management, but their prognostic significance remains inconclusive. Here, we performed a meta-analysis for the prognostic value of PD-L1 blood markers in NSCLC patients treated with ICIs. Methods Eligible studies were obtained by searching PubMed, EMBAS, Web of Science, and Cochrane Library prior to November 30, 2023. The associations between pre-treatment, post-treatment and dynamic changes of blood PD-L1 levels and progression-free survival (PFS)/over survival (OS) were analyzed by estimating hazard ratio (HR) and 95% confidence interval (CI). Results A total of 26 studies comprising 1606 patients were included. High pre- or post-treatment sPD-L1 levels were significantly associated with worse PFS (pre-treatment: HR=1.49, 95%CI 1.13-1.95; post-treatment: HR=2.09, 95%CI 1.40-3.12) and OS (pre-treatment: HR=1.83, 95%CI 1.25-2.67; post-treatment: HR=2.60, 95%CI 1.09-6.20, P=0.032). High pre-treatment exoPD-L1 levels predicted a worse PFS (HR=4.24, 95%CI 2.82-6.38, P<0.001). Pre-treatment PD-L1+ CTCs tended to be correlated with prolonged PFS (HR=0.63, 95%CI 0.39-1.02) and OS (HR=0.58, 95%CI 0.36-0.93). Patients with up-regulated exoPD-L1 levels, but not sPD-L1, after ICIs treatment had significantly favorable PFS (HR=0.36, 95%CI 0.23-0.55) and OS (HR=0.24, 95%CI 0.08-0.68). Conclusion PD-L1 blood markers, including sPD-L1, CTCs PD-L1 and exoPD-L1, can effectively predict prognosis, and may be potentially utilized for patient selection and treatment management for NSCLC patients receiving ICIs.
Collapse
Affiliation(s)
| | | | | | | | - Junyan Yu
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
3
|
Zhu L, Yang K, Ren Z, Yin D, Zhou Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl Oncol 2024; 44:101945. [PMID: 38555742 PMCID: PMC10998183 DOI: 10.1016/j.tranon.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Metformin, as the preferred antihyperglycemic drug for type 2 diabetes, has been found to have a significant effect in inhibiting tumor growth in recent years. However, metformin alone in cancer treatment has the disadvantages of high dose concentrations and few targeted cancer types. Increasing studies have confirmed that metformin can be used in combination with conventional anticancer therapy to obtain more promising clinical benefits, which is expected to be rapidly transformed and applied in clinic. Some combination therapy strategies including metformin combined with chemotherapy, radiotherapy, targeted therapy and immunotherapy have been proven to have more significant antitumor effects and longer survival time than monotherapy. In this review, we summarize the synergistic antitumor effects and mechanisms of metformin in combination with other current conventional anticancer therapies. In addition, we update the research progress and the latest prospect of the metformin-combined application in the cancer treatment. This work could provide more evidence and future direction for the clinical application of metformin in antitumor.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Kaiqing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhe Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
4
|
Horiguchi H, Kadomatsu T, Yamashita T, Yumoto S, Horino T, Sato M, Terada K, Miyata K, Ichigozaki Y, Kimura T, Fukushima S, Moroishi T, Oike Y. Tumor stroma-derived ANGPTL2 potentiates immune checkpoint inhibitor efficacy. Cancer Gene Ther 2024; 31:933-940. [PMID: 38467764 DOI: 10.1038/s41417-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic. We recently reported that tumor stroma-derived angiopoietin-like protein 2 (ANGPTL2) has tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses. However, a direct impact of ANGPTL2 on ICI anti-tumor effect remains unclear. Here, we use a murine syngeneic model to show that host ANGPTL2 facilitates CD8+ T cell cross-priming and contributes to anti-tumor responses to ICIs in this context. Importantly, our analysis of public datasets indicated that ANGPTL2 expression is associated with positive responses to ICI therapy by human melanoma patients. We conclude that ANGPTL2-mediated stromal cell crosstalk facilitates anti-tumor immunity and ICI responsiveness. These findings overall provide novel insight into ANGPTL2 anti-tumor function and regulation of ICI-induced anti-tumor immunity.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tomoya Yamashita
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuki Ichigozaki
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshihiro Kimura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
5
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Ali DS, Gad HA, Hathout RM. Enhancing Effector Jurkat Cell Activity and Increasing Cytotoxicity against A549 Cells Using Nivolumab as an Anti-PD-1 Agent Loaded on Gelatin Nanoparticles. Gels 2024; 10:352. [PMID: 38920901 PMCID: PMC11202840 DOI: 10.3390/gels10060352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
The current research investigated the use of gelatin nanoparticles (GNPs) for enhancing the cytotoxic effects of nivolumab, an immune checkpoint inhibitor. The unique feature of GNPs is their biocompatibility and functionalization potential, improving the delivery and the efficacy of immunotherapeutic drugs with fewer side effects compared to traditional treatments. This exploration of GNPs represents an innovative direction in the advancement of nanomedicine in oncology. Nivolumab-loaded GNPs were prepared and characterized. The optimum formulation had a particle size of 191.9 ± 0.67 nm, a polydispersity index of 0.027 ± 0.02, and drug entrapment of 54.67 ± 3.51%. A co-culture experiment involving A549 target cells and effector Jurkat cells treated with free nivolumab solution, and nivolumab-loaded GNPs, demonstrated that the latter had significant improvements in inhibition rate by scoring 87.88 ± 2.47% for drug-loaded GNPs against 60.53 ± 3.96% for the free nivolumab solution. The nivolumab-loaded GNPs had a lower IC50 value, of 0.41 ± 0.01 µM, compared to free nivolumab solution (1.22 ± 0.37 µM) at 72 h. The results indicate that administering nivolumab-loaded GNPs augmented the cytotoxicity against A549 cells by enhancing effector Jurkat cell activity compared to nivolumab solution treatment.
Collapse
Affiliation(s)
- Dalia S. Ali
- Department of Biotechnology, Central Administration of Biological, Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 11566, Egypt
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
7
|
Brun SS, Hansen TF, Wen SWC, Nyhus CH, Bertelsen L, Jakobsen A, Hansen TS, Nederby L. Soluble programmed death ligand 1 as prognostic biomarker in non-small cell lung cancer patients receiving nivolumab, pembrolizumab or atezolizumab therapy. Sci Rep 2024; 14:8993. [PMID: 38637655 PMCID: PMC11026506 DOI: 10.1038/s41598-024-59791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Many studies have focused on the prognostic role of soluble programmed death ligand 1 (sPD-L1) in non-small cell lung cancer (NSCLC), but outcomes are ambiguous and further investigations are needed. We addressed the matter by studying sPD-L1 in baseline samples and in longitudinal samples taken prior to three subsequent cycles of anti-PD-1/anti-PD-L1 treatments. Eighty patients with NSCLC were enrolled. Median sPD-L1 level at baseline was 52 pg/mL [95% confidence interval (CI) 49-57]. In patients treated with pembrolizumab and nivolumab, the concentration of sPD-L1 remained rather stable throughout treatment. In contrast, sPD-L1 rose by 50-fold following the first cycle of atezolizumab therapy. We found the baseline level of sPD-L1 to be related to overall survival (OS) after two years of follow-up in simple Cox analysis (p = 0.006) and multiple Cox Regression, hazard ratio 1.02 (95% CI 1.00-1.03) (p = 0.033). There was no association between sPD-L1 and tissue PD-L1 expression, overall response rate, or progression free survival. In conclusion, sPD-L1 measured in baseline serum samples may be associated with OS in NSCLC patients receiving anti-PD1/anti-PD-L1 treatment. Importantly, the results signify that further research is warranted to explore the clinical utility of sPD-L1 in patients treated with anti-PD-L1.
Collapse
Affiliation(s)
- Sinne Søberg Brun
- Department of Oncology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, J. B. Winslowsvej 19, 3, 5000 Odense, Denmark
| | - Sara Witting Christensen Wen
- Department of Oncology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, J. B. Winslowsvej 19, 3, 5000 Odense, Denmark
| | - Christa Haugaard Nyhus
- Department of Oncology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Lisbeth Bertelsen
- Department of Oncology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Anders Jakobsen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, J. B. Winslowsvej 19, 3, 5000 Odense, Denmark
| | - Torben Schjødt Hansen
- Department of Oncology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Line Nederby
- Department of Biochemistry and Immunology, Vejle Hospital-University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark.
| |
Collapse
|
8
|
Sun P, Mo C, Bai L, Wang M, Chen Z, Zhang M, Han Y, Liang H, Tang G. Synthesis and preclinical evaluation of a novel molecular probe [ 18F]AlF-NOTA-PEG 2-Asp 2-PDL1P for PET imaging of PD-L1 positive tumor. Bioorg Chem 2024; 145:107193. [PMID: 38442611 DOI: 10.1016/j.bioorg.2024.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Immunotherapy has brought great benefits to cancer patients, but only some patients benefit from it. Noninvasive, real-time and dynamic monitoring of the effectiveness of immunotherapy through PET imaging may provide assistance for the treatment plan of immunotherapy. In this study, we designed and synthesized a new targeted PD-L1 peptide NOTA-PEG2-Asp2-PDL1P, which was labeled with nuclide 18F to obtain a new imaging agent [18F]AlF-NOTA-PEG2-Asp2-PDL1P. The total radiochemical yield of [18F]AlF-NOTA-PEG2-Asp2-PDL1P was 13.7 % (Uncorrected radiochemical yield, n > 5). [18F]AlF-NOTA-PEG2-Asp2-PDL1P achieved high radiochemical purity (>95 %) with a molar activity more than 51.2 GBq/μmol. [18F]AlF-NOTA-PEG2-Asp2-PDL1P exhibited good hydrophilicity and had good stability both in vivo and in vitro, it can specifically targets B16F10 tumor with PD-L1 expression, and had a relatively high retention in tumor, a relatively fast clearance in vivo and a higher tumor-to-non-target ratio, all of which could make [18F]AlF-NOTA-PEG2-Asp2-PDL1P a potential tracer for PD-L1 prediction before clinical immunotherapy.
Collapse
Affiliation(s)
- Penghui Sun
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Chunwei Mo
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Lu Bai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Zihao Chen
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Meilian Zhang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Yanjiang Han
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Haoran Liang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China; Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Khorasani M, Alaei M. cGAS-STING and PD1/PDL-1 pathway in breast cancer: a window to new therapies. J Recept Signal Transduct Res 2024; 44:1-7. [PMID: 38470108 DOI: 10.1080/10799893.2024.2325353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is a complex malignancy with diverse molecular and cellular subtypes and clinical outcomes. Despite advances in treatment, breast cancer remains a significant health challenge. However, recent advances in cancer immunotherapy have shown promising results in the treatment of breast cancer, particularly the use of inhibitors that target the immune checkpoint PD1/PDL1. Also, the cGAS-STING pathway, an important part of the innate immune response, has been considered as a major potential therapeutic target for breast cancer. In this narrative review, we provide an overview of the cGAS-STING and PD1/PDL-1 pathway in breast cancer, including their role in tumor development, progression, and response to treatment. We also discuss potential future directions for research.
Collapse
Affiliation(s)
- Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Clinical Biochemistry, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Alaei
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Nguyen CTT, Van TNK, Huong PT. Predictability of Neutrophile to Lymphocyte Ratio and Platelet to Lymphocyte Ratio on the Effectiveness of Immune Checkpoint Inhibitors in Non-small Cell Lung Cancer patients: A Meta-Analysis. Cancer Control 2024; 31:10732748241285474. [PMID: 39285591 PMCID: PMC11406641 DOI: 10.1177/10732748241285474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVES The associations between the neutrophil-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) with the responses of non-small cell lung cancer (NSCLC) patients receiving immune checkpoint inhibitors (ICI) and the NLR/PLR predictive potential were evaluated via meta-analysis. METHODS A systematic review was conducted using the PubMed, Embase, and The Cochrane Library databases until October 2021. The relationship between NLR/PLR and overall survival (OS) and progression-free survival (PFS) was evaluated using pooled hazard ratios (HR). The relationship between NLR/PLR and overall response rate (ORR) and disease control rate (DCR) was assessed via pooled odds ratios (OR). Heterogeneity between studies, publication bias, subgroup and sensitivity analyses, trim and fill meta-analysis, and the contour-enhanced funnel plot were performed using the R software. RESULTS A total of 44 (out of 875) studies met the eligibility criteria, providing a sample size of 4597 patients. Patients with a high NLR were statistically significantly associated with worse outcomes, including OS (pooled HR = 2.44; P < 0.001), PFS (pooled HR = 2.06; P < 0.001), DCR (pooled OR = 0.71; P < 0.001), and ORR (pooled OR = 0.33; P < 0.001). Similarly, a high PLR was associated with poorer outcomes in response to ICI drugs, including OS (pooled HR = 2.13; P < 0.001) and PFS (pooled HR = 1.61; P < 0.001). CONCLUSION High NLR and PLR were associated with a statistically significant reduction in the efficacy of ICI drugs in NSCLC patients. Thereby, it is possible to use NLR and PLR as potential and available biomarkers in the clinical practice to predict the outcome of ICI treatment in NSCLC patients.
Collapse
Affiliation(s)
- Cuc Thi Thu Nguyen
- Faculty of Pharmaceutical Management and Economics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
11
|
Wu J, Wang X, Li Z, Yi X, Hu D, Wang Q, Zhong T. Small extracellular vesicles promote the formation of the pre-metastatic niche through multiple mechanisms in colorectal cancer. Cell Cycle 2024; 23:131-149. [PMID: 38341861 PMCID: PMC11037293 DOI: 10.1080/15384101.2024.2311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent global malignancies, posing significant threats to human life and health due to its high recurrence and metastatic potential. Small extracellular vesicles (sEVs) released by CRC play a pivotal role in the formation of the pre-metastatic niche (PMN) through various mechanisms, preparing the groundwork for accelerated metastatic invasion. This review systematically describes how sEVs promote CRC metastasis by upregulating inflammatory factors, promoting immunosuppression, enhancing angiogenesis and vascular permeability, promoting lymphangiogenesis and lymphatic network remodeling, determining organophilicity, promoting stromal cell activation and remodeling and inducing the epithelial-to-mesenchymal transition (EMT). Furthermore, we explore potential mechanisms by which sEVs contribute to PMN formation in CRC and propose novel insights for CRC diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qi Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Zhang H, Chen K, Guo K, Tao J, Song L, Ren S, Zhao Y, Teng Z, Qiu W, Wang Z. Multimodal Imaging-Guided Photoimmunotherapy of Pancreatic Cancer by Organosilica Nanomedicine. Adv Healthc Mater 2024; 13:e2302195. [PMID: 37792547 DOI: 10.1002/adhm.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Immune checkpoint blockade (ICB) treatments have contributed to substantial clinical progress. However, challenges persist, including inefficient drug delivery and penetration into deep tumor areas, inadequate response to ICB treatments, and potential risk of inflammation due to over-activation of immune cells and uncontrolled release of cytokines following immunotherapy. In response, this study, for the first time, presents a multimodal imaging-guided organosilica nanomedicine (DCCGP) for photoimmunotherapy of pancreatic cancer. The novel DCCGP nanoplatform integrates fluorescence, magnetic resonance, and real-time infrared photothermal imaging, thereby enhancing diagnostic precision and treatment efficacy for pancreatic cancer. In addition, the incorporated copper sulfide nanoparticles (CuS NPs) lead to improved tumor penetration and provide external regulation of immunotherapy via photothermal stimulation. The synergistic immunotherapy effect is realized through the photothermal behavior of CuS NPs, inducing immunogenic cell death and relieving the immunosuppressive tumor microenvironment. Coupling photothermal stimulation with αPD-L1-induced ICB, the platform amplifies the clearance efficiency of tumor cells, achieving an optimized synergistic photoimmunotherapy effect. This study offers a promising strategy for the clinical application of ICB-based combined immunotherapy and presents valuable insights for applications of organosilica in precise tumor immunotherapy and theranostics.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kai Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| |
Collapse
|
13
|
Zhang L, Zhao L, Lin X, Zhao S, Pan W, Wang D, Sun Z, Li J, Liang Z, Zhang R, Jiang H. Comparison of Tumor Non-specific and PD-L1 Specific Imaging by Near-Infrared Fluorescence/Cerenkov Luminescence Dual-Modality In-situ Imaging. Mol Imaging 2024; 23:15353508241261473. [PMID: 38952401 PMCID: PMC11208884 DOI: 10.1177/15353508241261473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Background Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.
Collapse
Affiliation(s)
- Linhan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianmeng Zhao
- Ultrasound Department, Heilongjiang Provincial Hospital, Harbin, China
| | - Xue Lin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinping Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zonghui Liang
- Department of Radiology, Jing’an District Centre Hospital (Jing’an Branch of Huashan Hospital), Shanghai, China
| | | | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
15
|
Zhou R, Chen S, Wu Q, Liu L, Wang Y, Mo Y, Zeng Z, Zu X, Xiong W, Wang F. CD155 and its receptors in cancer immune escape and immunotherapy. Cancer Lett 2023; 573:216381. [PMID: 37660884 DOI: 10.1016/j.canlet.2023.216381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
In recent years, there have been multiple breakthroughs in cancer immunotherapy, with immune checkpoint inhibitors becoming the most promising treatment strategy. However, available drugs are not always effective. As an emerging immune checkpoint molecule, CD155 has become an important target for immunotherapy. This review describes the structure and function of CD155, its receptors TIGIT, CD96, and CD226, and summarizes that CD155 expressed by tumor cells can upregulate its expression through the DNA damage response pathway and Ras-Raf-MEK-ERK signaling pathway. This review also elaborates the mechanism of immune escape after binding CD155 to its receptors TIGIT, CD96, and CD226, and summarizes the current progress of immunotherapy research regarding CD155 and its receptors. Besides, it also discusses the future direction of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Ruijia Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyin Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiwen Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyun Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Lin X, Liu YH, Zhang HQ, Wu LW, Li Q, Deng J, Zhang Q, Yang Y, Zhang C, Li YL, Hu J. DSCC1 interacts with HSP90AB1 and promotes the progression of lung adenocarcinoma via regulating ER stress. Cancer Cell Int 2023; 23:208. [PMID: 37742009 PMCID: PMC10518103 DOI: 10.1186/s12935-023-03047-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths, and the most common type is lung adenocarcinoma (LUAD). LUAD is frequently diagnosed in people who never smoked, patients are always diagnosed at advanced inoperable stages, and the prognosis is ultimately poor. Thus, there is an urgent need for the development of novel targeted therapeutics to suppress LUAD progression. In this study, we demonstrated that the expression of DNA replication and sister chromatid cohesion 1 (DSCC1) was higher in LUAD samples than normal tissues, and the overexpression of DSCC1 or its coexpressed genes were highly correlated with poor outcomes of LUAD patients, highlighting DSCC1 might be involved in LUAD progression. Furthermore, the expression of DSCC1 was positively correlated with multiple genetic mutations which drive cancer development, including TP53, TTN, CSMD, and etc. More importantly, DSCC1 could promote the cell proliferation, stemness, EMT, and metastatic potential of LUAD cells. In addition, DSCC1 interacted with HSP90AB1 and promoted the progression of LUAD via regulating ER stress. Meanwhile, DSCC1 expression negatively correlated with immune cell infiltration in lung cancer, and DSCC1 positively regulated the expression of PD-L1 in LUAD cells. Collectively, this study revealed that DSCC1 is a novel therapeutic target to treat LUAD and a biomarker for predicting the efficiency of PD-1/PD-L1 blockade treatment.
Collapse
Affiliation(s)
- Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ye-Han Liu
- School of Medicine, Hangzhou City University, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huan-Qi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Wen Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jun Deng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuhong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chong Zhang
- School of Medicine, Hangzhou City University, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China.
| | - Yang-Ling Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Cohen-Nowak AJ, Dressler DB, Rock A, Mojica K, Woo D, Zuckerman LM, Chow W, Agulnik M. Role of immunotherapy in chondrosarcoma: A case report and review of the literature. Ther Adv Med Oncol 2023; 15:17588359231199877. [PMID: 37745839 PMCID: PMC10515522 DOI: 10.1177/17588359231199877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Chondrosarcomas (CSs) consist of a heterogenous group of primary bone cancers arising from malignant cells which produce cartilaginous matrix. As the second most common primary bone cancer, CS are often resistant to systemic chemotherapy due to poor vascularization, slow proliferation, and expression of multidrug-resistant pumps. Immune checkpoint inhibitors have transformed the field of oncology and are now designated as frontline therapy for many solid tumor cancers. Several studies have demonstrated increased expression of programed cell death 1 (PD-1) and PD-L1 in CS tissue in vitro, which has led to the development of multiple clinical trials for immunotherapy in patients with aggressive CS. In this review, we highlight the ongoing investigation into the role for immunotherapy in CS. We also report the case of a 44-year-old female with a history of stage IV primary CS of the right shoulder who underwent radical resection with recurrence and demonstrated a spectacular sustained response to pembrolizumab at our center. Our review highlights the need for further studies investigating the role of immunotherapy in the treatment of aggressive bone sarcomas that are resistant to standard surgical resection, chemotherapy, and radiation treatment.
Collapse
Affiliation(s)
| | | | - Adam Rock
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Doni Woo
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Warren Chow
- University of California, Irvine, Irvine, CA, USA
| | - Mark Agulnik
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Liang S, Wang H, Tian H, Xu Z, Wu M, Hua D, Li C. The prognostic biological markers of immunotherapy for non-small cell lung cancer: current landscape and future perspective. Front Immunol 2023; 14:1249980. [PMID: 37753089 PMCID: PMC10518408 DOI: 10.3389/fimmu.2023.1249980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
The emergence of immunotherapy, particularly programmed cell death 1 (PD-1) and programmed cell death ligand-1 (PD-L1) produced profound transformations for treating non-small cell lung cancer (NSCLC). Nevertheless, not all NSCLC patients can benefit from immunotherapy in clinical practice. In addition to limited response rates, exorbitant treatment costs, and the substantial threats involved with immune-related adverse events, the intricate interplay between long-term survival outcomes and early disease progression, including early immune hyperprogression, remains unclear. Consequently, there is an urgent imperative to identify robust predictive and prognostic biological markers, which not only possess the potential to accurately forecast the therapeutic efficacy of immunotherapy in NSCLC but also facilitate the identification of patient subgroups amenable to personalized treatment approaches. Furthermore, this advancement in patient stratification based on certain biological markers can also provide invaluable support for the management of immunotherapy in NSCLC patients. Hence, in this review, we comprehensively examine the current landscape of individual biological markers, including PD-L1 expression, tumor mutational burden, hematological biological markers, and gene mutations, while also exploring the potential of combined biological markers encompassing radiological and radiomic markers, as well as prediction models that have the potential to better predict responders to immunotherapy in NSCLC with an emphasis on some directions that warrant further investigation which can also deepen the understanding of clinicians and provide a reference for clinical practice.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Hanyu Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Haixia Tian
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Zhicheng Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Min Wu
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Dong Hua
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
19
|
Cossu G, La Rosa S, Brouland JP, Pitteloud N, Harel E, Santoni F, Brunner M, Daniel RT, Messerer M. PD-L1 Expression in Pituitary Neuroendocrine Tumors/Pituitary Adenomas. Cancers (Basel) 2023; 15:4471. [PMID: 37760441 PMCID: PMC10526513 DOI: 10.3390/cancers15184471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND AIM About a third of Pituitary Neuroendocrine Tumors (PitNETs) may show aggressive behavior. Many efforts have been performed for identifying possible predictive factors to early determine the future behavior of PitNETs. Programmed cell death ligand 1 (PD-L1) expression was associated with a more aggressive biology in different solid tumors, but its role in PitNET is not well-established yet. Our study aims to analyze PD-L1 expression in a surgical cohort of PitNETs to determine its association with radiological invasion and pathology findings, as well as with long-term recurrence rates. METHODS We performed a retrospective analysis in a series of 86 PitNETs. Clinical presentation and radiological features of the preoperative period were collected, as well as pathological data and follow-up data. The rate of PD-L1 expression was immunohistochemically evaluated and expressed as a tumor proportion score (TPS). We assessed its relationship with cavernous sinus invasion and Trouillas' classification as primary outcomes. Secondary outcomes included the TPS' relationship with histopathological markers of proliferation, hormonal expression, tumor size and long-term recurrence rates. We calculated the optimal cut-point for the primary outcomes while maximizing the product of the sensitivity and specificity and then we evaluated the significance of secondary outcomes with logistic regression analysis. RESULTS Eighty-six patients were included in the analysis; 50 cases were non-functional PitNETs. The TPS for PD-L1 showed a highly right-skewed distribution in our sample, as 30.2% of patients scored 0. Using Trouillas' classification, we found that "proliferative" cases have a significantly higher probability to express PD-L1 in more than 30% of tumor cells (OR: 5.78; CI 95%: 1.80-18.4). This same cut-point was also associated with p53 expression. A positive association was found between PD-L1 expression and GH expression (p = 0.001; OR: 5.44; CI 95%: 1.98-14.98), while an inverse relationship was found with FSH/LH expression (p = 0.014; OR = 0.27, CI 95%: 0.10-0.76). No association was found with CS invasion, tumor size, bone erosion or dura invasion. We could not find any association between PD-L1 expression and recurrence. CONCLUSIONS PD-L1 expression was associated with proliferative grades of Trouillas' classification and p53 expression. We also confirmed a higher expression of PD-L1 in somatotroph tumors. Larger studies are necessary to investigate the relationship between PD-L1 expression and aggressive behaviors.
Collapse
Affiliation(s)
- Giulia Cossu
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
- Department of Laboratory Medicine and Pathology, Institute of Pathology, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Jean Philippe Brouland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Nelly Pitteloud
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Ethan Harel
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Federico Santoni
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Maxime Brunner
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Roy Thomas Daniel
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Mahmoud Messerer
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| |
Collapse
|
20
|
Yu A, Xu X, Pang Y, Li M, Luo J, Wang J, Liu L. PD-L1 Expression is Linked to Tumor-Infiltrating T-Cell Exhaustion and Adverse Pathological Behavior in Pheochromocytoma/Paraganglioma. J Transl Med 2023; 103:100210. [PMID: 37406931 DOI: 10.1016/j.labinv.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Pheochromocytoma/paraganglioma (PPGL) is an endocrine-related tumor associated with excessive catecholamine release and has limited treatment options once metastasis occurs. Although recent phase 2 clinical trials of immune checkpoint inhibitors in the treatment of PPGL have preliminarily shown promising results, the fundamentals of immunotherapy for PPGL have not yet been established. In the early research, using bulk RNA sequencing of tumor samples from 7 PPGL patients, we found that PPGL tumor tissues exhibited high PD-L1 mRNA expression compared with adjacent normal adrenal medulla tissues, and this was related to T-cell exhaustion biomarkers. To further validate the association, in this study (n = 60), we first stratified all PPGL samples according to PD-L1 expression as determined by immunohistochemical staining, and then subjected 23 fresh PPGL tumor samples from the cohort to a quantitative polymerase chain reaction (n = 16), flow cytometry (n = 7), and multiplex-immunofluorescence staining. Subsequently, we evaluated the pathological manifestations of all 60 PPGL tumor samples and analyzed the correlation among PD-L1 expression, adverse pathological behavior, various clinicopathological data, and genotypes in PPGL. The results showed that PD-L1-positive expression correlated with the exhaustion of tumor-infiltrating T cells, preoperative abnormal elevation of plasma norepinephrine, high Ki67 index, and adverse pathological behavior in PPGL but not with genetic mutation or metastatic disease, possibly due to the limitation of the small number of patients with metastatic disease (n = 4) in the study cohort. In conclusion, our findings reveal that PD-L1 expression is associated with T-cell exhaustion and adverse pathological behavior in PPGL. These results are expected to provide a new theoretical basis and clinical guidance for the treatment of PPGL.
Collapse
Affiliation(s)
- Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowen Xu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Junhang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
MacDonald M, Poei D, Leyba A, Diep R, Chennapan K, Leon C, Xia B, Nieva JJ, Hsu R. Real world prognostic utility of platelet lymphocyte ratio and nutritional status in first-line immunotherapy response in stage IV non-small cell lung cancer. Cancer Treat Res Commun 2023; 36:100752. [PMID: 37611343 PMCID: PMC11160511 DOI: 10.1016/j.ctarc.2023.100752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Elevated platelet lymphocyte ratio (PLR) and low body mass index (BMI) are associated with inferior survival in non-small cell lung cancer (NSCLC) patients receiving immunotherapy (IO). We evaluated real-world prognostic utility of PLR, BMI, and albumin level in stage IV NSCLC patients receiving first line (1L) IO. METHODS We identified 75 stage IV patients who received 1L IO therapy at USC Norris Comprehensive Cancer Center and Los Angeles General Medical Center from 2015 to 2022. The primary outcome was overall survival (OS) from time of IO with attention to pre-treatment BMI < 22, albumin < 3.5 g/dL, and PLR > 180. RESULTS Median age was 66.5 years with 49 (65.3%) males. 25 (33.3%) had BMI < 22. 45/75 (60%) had PLR > 180. Patients with BMI < 22 had inferior OS (13.1 months (m) vs. 37.4 m in BMI > 28, p-value = 0.042) along with patients with albumin<3.5 g/dL (OS: 2.8 m vs. 14.6 m, p-value = 0.0027), and patients with PLR>180 (OS: 8.7 m vs. 23.0 m, p = 0.028). Composite BMI < 22, PLR > 180 had the worst OS, p-value = 0.0331. Multivariate analysis controlling for age, smoking, gender, PD-L1 tumor proportion score (TPS), and histology (adenocarcinoma, squamous, adenosquamous, and large cell) showed that BMI (HR: 0.8726, 95% CI: 0.7892-0.954) and PLR > 180 (HR: 2.48, 95% CI: 1.076-6.055) were significant in OS mortality risk. CONCLUSION Patients with a composite of BMI < 22, albumin < 3.5 g/dL, and PLR > 180 had significantly worse OS. This highlights the importance of screening for poor nutritional status and high PLR to better inform stage IV NSCLC patients receiving IO therapy of their prognosis and supportive care. MICROABSTRACT We evaluated real-world prognostic utility of platelet lymphocyte ratio (PLR), body mass index (BMI), and albumin level in 75 Stage IV NSCLC patients receiving first line IO. Patients with a composite of BMI < 22, albumin < 3.5 g/dL, and PLR > 180 had significantly worse OS. This highlights the importance of screening for poor nutritional status and high PLR to better inform stage IV NSCLC patients of their prognosis and to emphasize supportive care needs.
Collapse
Affiliation(s)
- Madeline MacDonald
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darin Poei
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, United States
| | - Alexis Leyba
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, United States
| | - Raymond Diep
- California University of Science and Medicine SOM, Colton, CA, United States
| | - Krithika Chennapan
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christopher Leon
- Department of Surgery, University of Southern California, Los Angeles, CA, United States
| | - Bing Xia
- Department of Internal Medicine, Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jorge J Nieva
- Department of Internal Medicine, Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Robert Hsu
- Department of Internal Medicine, Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, United States.
| |
Collapse
|
22
|
Zhang L, Wan SC, Zhang J, Zhang MJ, Yang QC, Zhang B, Wang WY, Sun J, Kwok RTK, Lam JWY, Deng H, Sun ZJ, Tang BZ. Activation of Pyroptosis Using AIEgen-Based sp 2 Carbon-Linked Covalent Organic Frameworks. J Am Chem Soc 2023; 145:17689-17699. [PMID: 37550880 DOI: 10.1021/jacs.3c04027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as a promising class of crystalline porous materials for cancer phototherapy, due to their exceptional characteristics, including light absorption, biocompatibility, and photostability. However, the aggregation-caused quenching effect and apoptosis resistance often limit their therapeutic efficacy. Herein, we demonstrated for the first time that linking luminogens with aggregation-induced emission effect (AIEgens) into COF networks via vinyl linkages was an effective strategy to construct nonmetallic pyroptosis inducers for boosting antitumor immunity. Mechanistic investigations revealed that the formation of the vinyl linkage in the AIE COF endowed it with not only high brightness but also strong light absorption ability, long lifetime, and high quantum yield to favor the generation of reactive oxygen species for eliciting pyroptosis. In addition, the synergized system of the AIE COF and αPD-1 not only effectively eradicated primary and distant tumors but also inhibited tumor recurrence and metastasis in a bilateral 4T1 tumor model.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemistry, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jianyu Zhang
- Department of Chemistry, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Boxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wu-Yin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jianwei Sun
- Department of Chemistry, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan 430072, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ben Zhong Tang
- Department of Chemistry, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
23
|
Wang Y, Yang S, Wan L, Ling W, Chen H, Wang J. New developments in the mechanism and application of immune checkpoint inhibitors in cancer therapy (Review). Int J Oncol 2023; 63:86. [PMID: 37326100 PMCID: PMC10308343 DOI: 10.3892/ijo.2023.5534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has been demonstrated in the treatment of numerous types of cancer and ICIs have remained a key focus of cancer research. However, improvements in survival rates only occur in a subset of patients, due to the complexity of drug resistance. Therefore, further investigations are required to identify predictive biomarkers that distinguish responders and non‑responders. Combined therapeutics involving ICIs and other modalities demonstrate potential in overcoming resistance to ICIs; however, further preclinical and clinical trials are required. Concurrently, prompt recognition and intervention of immune‑related adverse events are crucial to optimize the use of ICIs in clinical treatment. The present study aimed to review the current literature surrounding the mechanisms and application of ICIs, with the aim of providing a theoretical basis for clinicians.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510062
| | - Shuo Yang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Li Wan
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| |
Collapse
|
24
|
Asghar K, Bashir S, Ali Rana I, Abu Bakar M, Farooq A, Hassan M, Asif Z, Afzal M, Masood I, Ishaq M, Tahseen M, Bilal S, Mehmood S, Kanwal N, Ud Din I, Loya A. PD-L1 is Fascinating but IDO Needs Attention in Non-HCV and Non-HBV-Associated Hepatocellular Carcinoma Patients. J Hepatocell Carcinoma 2023; 10:921-934. [PMID: 37350801 PMCID: PMC10284167 DOI: 10.2147/jhc.s409741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Aim Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer that is modulated by the immune system. Programmed cell death ligand-1 (PD-L1) has emerged as a novel therapeutic target in various cancers. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that is associated with poor prognoses in various cancer types. The aim of this study was to investigate the PD-L1 expression, and clinicopathological features of non-HCV and non-HBV-associated HCC patients, including IDO expression. Patients and Methods In this study, immunohistochemical analysis was performed to analyze the expression of PD-L1 and IDO. Formalin-fixed paraffin-embedded HCC tumor tissues (n=50) were obtained from the pathology department, at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) in Lahore, Pakistan between 2005 and 2022. All the patients were HBV and HCV negative. Furthermore, it was a rare group of patients with no previous history of any viral hepatitis. In addition, for categorical and continuous variables chi-square or Fisher exact test and Mann-Whitney U-test was performed. Results Of 50 tissue specimens, PD-L1+ was observed in 21 [high: 12 (24%), low: 9 (18%)] and PD-L1- was observed in 29 HCC patients. IDO+ was observed in all 50 specimens [high: 42 (84%), low: 8 (16%)]. Additionally, both PD-L1 and IDO had high expression in 11 (22%) patients. While both PD-L1 and IDO had low expression in 2 (4%) patients. Furthermore, in IDO+/PD-L1- group, 20 (69%) out of 29 patients died while in the IDO+/PD-L1+ group, 9 (43%) out of 21 patients died. Conclusion Evaluation of IDO and PD-L1 expression may add therapeutic advantage in non-HCV and non-HBV-associated HCC patients that overexpress IDO. Further validation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shaarif Bashir
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iftikhar Ali Rana
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asim Farooq
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Hassan
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Zukhruf Asif
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Mahnoor Afzal
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iqra Masood
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Ishaq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Sundus Bilal
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shafqat Mehmood
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Nosheen Kanwal
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Islah Ud Din
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| |
Collapse
|
25
|
Silver A, Ho C, Ye Q, Zhang J, Janzen I, Li J, Martin M, Wu L, Wang Y, Lam S, MacAulay C, Melosky B, Yuan R. Prediction of Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer with High PD-L1 Expression Using Baseline CT Disease Quantification and Smoking Pack Years. Curr Oncol 2023; 30:5546-5559. [PMID: 37366902 DOI: 10.3390/curroncol30060419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Health Canada approved pembrolizumab in the first-line setting for advanced non-small-cell lung cancer with PD-L1 ≥ 50% and no EGFR/ALK aberration. The keynote 024 trial showed 55% of such patients progress with pembrolizumab monotherapy. We propose that the combination of baseline CT and clinical factors can help identify those patients who may progress. In 138 eligible patients from our institution, we retrospectively collected their baseline variables, including baseline CT findings (primary lung tumor size and metastatic site), smoking pack years, performance status, tumor pathology, and demographics. The treatment response was assessed via RECIST 1.1 using the baseline and first follow-up CT. Associations between the baseline variables and progressive disease (PD) were tested by logistic regression analyses. The results showed 46/138 patients had PD. The baseline CT "number of involved organs" by metastasis and smoking pack years were independently associated with PD (p < 0.05), and the ROC analysis showed a good performance of the model that integrated these variables in predicting PD (AUC: 0.79). This pilot study suggests that the combination of baseline CT disease and smoking PY can identify who may progress on pembrolizumab monotherapy and can potentially facilitate decision-making for the optimal first-line treatment in the high PD-L1 cohort.
Collapse
Affiliation(s)
- Ali Silver
- Department of Radiology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl Ho
- BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
- Department of Medical Oncology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Qian Ye
- Department of Statistics, Faculty of Science, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Ian Janzen
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue Vancouver, BC V5Z 1L3, Canada
| | - Jessica Li
- Department of Radiology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Montgomery Martin
- Department of Radiology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
- BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Lang Wu
- Department of Statistics, Faculty of Science, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ying Wang
- BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
- Department of Medical Oncology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Stephen Lam
- BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue Vancouver, BC V5Z 1L3, Canada
- Department of Respirology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Calum MacAulay
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue Vancouver, BC V5Z 1L3, Canada
| | - Barbara Melosky
- BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
- Department of Medical Oncology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ren Yuan
- Department of Radiology, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
- BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
26
|
Zhou Y, Zhou J, Hao X, Shi H, Li X, Wang A, Hu Z, Yang Y, Jiang Z, Wang T. Efficacy relevance of PD-L1 expression on circulating tumor cells in metastatic breast cancer patients treated with anti-PD-1 immunotherapy. Breast Cancer Res Treat 2023:10.1007/s10549-023-06972-6. [PMID: 37227611 DOI: 10.1007/s10549-023-06972-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Breast cancer has become the leading cause of cancer mortality in women. Although immune checkpoint inhibitors targeting programmed death-1 (PD-1) are promising, it remains unclear whether PD-L1 expression on circulating tumor cells (CTCs) has predictive and prognostic values in predicting and stratifying metastatic breast cancer (MBC) patients who can benefit from anti-PD-1 immunotherapy. METHODS Twenty six MBC patients that received anti-PD-1 immunotherapy were enrolled in this study. The peptide-based Pep@MNPs method was used to isolate and enumerate CTCs from 2.0 ml of peripheral venous blood. The expression of PD-L1 on CTCs was evaluated by an established immunoscoring system categorizing into four classes (negative, low, medium, and high). RESULTS Our data showed that 92.3% (24/26) of patients had CTCs, 83.3% (20/26) of patients had PD-L1-positive CTCs, and 65.4% (17/26) of patients had PD-L1-high CTCs. We revealed that the clinical benefit rate (CBR) of patients with a cut-off value of ≥ 35% PD-L1-high CTCs (66.6%) was higher than the others (29.4%). We indicated that PD-L1 expression on CTCs from MBC patients treated with anti-PD-1 monotherapy was dynamic. We demonstrated that MBC patients with a cut-off value of ≥ 35% PD-L1-high CTCs had longer PFS (P = 0.033) and OS (P = 0.00058) compared with patients with a cut-off value of < 35% PD-L1-high CTCs. CONCLUSION Our findings suggested that PD-L1 expression on CTCs could predict the therapeutic response and clinical outcomes, providing a valuable predictive and prognostic biomarker for patients treated with anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Jinmei Zhou
- Breast Cancer Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaopeng Hao
- Department of General Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haoyuan Shi
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xuejie Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Anqi Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Zhiyuan Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Zefei Jiang
- Breast Cancer Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Tao Wang
- Breast Cancer Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Anhui Medical University, Hefei, China.
- Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Vornholz L, Isay SE, Kurgyis Z, Strobl DC, Loll P, Mosa MH, Luecken MD, Sterr M, Lickert H, Winter C, Greten FR, Farin HF, Theis FJ, Ruland J. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. SCIENCE ADVANCES 2023; 9:eadd8564. [PMID: 36921054 PMCID: PMC10017047 DOI: 10.1126/sciadv.add8564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Immune checkpoint inhibitors (ICIs) enhance anticancer immunity by releasing repressive signals into tumor microenvironments (TMEs). To be effective, ICIs require preexisting immunologically "hot" niches for tumor antigen presentation and lymphocyte recruitment. How the mutational landscape of cancer cells shapes these immunological niches remains poorly defined. We found in human and murine colorectal cancer (CRC) models that the superior antitumor immune response of mismatch repair (MMR)-deficient CRC required tumor cell-intrinsic activation of cGAS-STING signaling triggered by genomic instability. Subsequently, we synthetically enforced STING signaling in CRC cells with intact MMR signaling using constitutively active STING variants. Even in MMR-proficient CRC, genetically encoded gain-of-function STING was sufficient to induce cancer cell-intrinsic interferon signaling, local activation of antigen-presenting cells, recruitment of effector lymphocytes, and sensitization of previously "cold" TMEs to ICI therapy in vivo. Thus, our results introduce a rational strategy for modulating cancer cell-intrinsic programs via engineered STING enforcement to sensitize resistant tumors to ICI responsiveness.
Collapse
Affiliation(s)
- Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Sophie E. Isay
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Zsuzsanna Kurgyis
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Dermatology and Allergology, Technical University of Munich, Munich, Germany
| | - Daniel C. Strobl
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Department of Computational Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Patricia Loll
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mohammed H. Mosa
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Malte D. Luecken
- Institute of Computational Biology, Department of Computational Health, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Neuherberg, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich partner site, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henner F. Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Department of Computational Health, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich partner site, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
- German Center for Infection Research (DZIF), Munich partner site, Germany
| |
Collapse
|
28
|
Effect of Cancer-Related Cachexia and Associated Changes in Nutritional Status, Inflammatory Status, and Muscle Mass on Immunotherapy Efficacy and Survival in Patients with Advanced Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15041076. [PMID: 36831431 PMCID: PMC9953791 DOI: 10.3390/cancers15041076] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI)-based immunotherapy has significantly improved the survival of patients with advanced non-small cell lung cancer (NSCLC); however, a significant percentage of patients do not benefit from this approach, and predictive biomarkers are needed. Increasing evidence demonstrates that cachexia, a complex syndrome driven by cancer-related chronic inflammation often encountered in patients with NSCLC, may impair the immune response and ICI efficacy. Herein, we carried out a prospective study aimed at evaluating the prognostic and predictive role of cachexia with the related changes in nutritional, metabolic, and inflammatory parameters (assessed by the multidimensional miniCASCO tool) on the survival and clinical response (i.e., disease control rate) to ICI-based immunotherapy in patients with advanced NSCLC. We included 74 consecutive patients. Upon multivariate regression analysis, we found a negative association between IL-6 levels (odds ratio (OR) = 0.9036; 95%CI = 0.8408-0.9711; p = 0.0025) and the miniCASCO score (OR = 0.9768; 95%CI = 0.9102-0.9999; p = 0.0310) with the clinical response. As for survival outcomes, multivariate COX regression analysis found that IL-6 levels and miniCASCO-based cachexia severity significantly affected PFS (hazard ratio (HR) = 1.0388; 95%CI = 1.0230-1.0548; p < 0.001 and HR = 1.2587; 95%CI = 1.0850-1.4602; p = 0.0024, respectively) and OS (HR = 1.0404; 95%CI = 1.0221-1.0589; p < 0.0001 and HR = 2.3834; 95%CI = 1.1504-4.9378; p = 0.0194, respectively). A comparison of the survival curves by Kaplan-Meier analysis showed a significantly lower OS in patients with cachexia versus those without cachexia (p = 0.0323), as well as higher miniCASCO-based cachexia severity (p = 0.0428), an mGPS of 2 versus those with a lower mGPS (p = 0.0074), and higher IL-6 levels (>6 ng/mL) versus those with lower IL-6 levels (≤6 ng/mL) (p = 0.0120). In conclusion, our study supports the evidence that cachexia, with its related changes in inflammatory, body composition, and nutritional parameters, is a key prognostic and predictive factor for ICIs. Further larger studies are needed to confirm these findings and to explore the potential benefit of counteracting cachexia to improve immunotherapy efficacy.
Collapse
|
29
|
Multiomics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Biosci Rep 2023; 43:232355. [PMID: 36545914 PMCID: PMC9842950 DOI: 10.1042/bsr20222230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a significant epigenetic regulator that plays a critical role in the development and progression of cancer. However, the multiomics features and immunological effects of EZH2 in pan-cancer remain unclear. Transcriptome and clinical raw data of pan-cancer samples were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and subsequent data analyses were conducted by using R software (version 4.1.0). Furthermore, numerous bioinformatics analysis databases also reapplied to comprehensively explore and elucidate the oncogenic mechanism and therapeutic potential of EZH2 from pan-cancer insight. Finally, quantitative reverse transcription polymerase chain reaction and immunohistochemical assays were performed to verify the differential expression of EZH2 gene in various cancers at the mRNA and protein levels. EZH2 was widely expressed in multiple normal and tumor tissues, predominantly located in the nucleoplasm. Compared with matched normal tissues, EZH2 was aberrantly expressed in most cancers either at the mRNA or protein level, which might be caused by genetic mutations, DNA methylation, and protein phosphorylation. Additionally, EZH2 expression was correlated with clinical prognosis, and its up-regulation usually indicated poor survival outcomes in cancer patients. Subsequent analysis revealed that EZH2 could promote tumor immune evasion through T-cell dysfunction and T-cell exclusion. Furthermore, expression of EZH2 exhibited a strong correlation with several immunotherapy-associated responses (i.e., immune checkpoint molecules, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) status, and neoantigens), suggesting that EZH2 appeared to be a novel target for evaluating the therapeutic efficacy of immunotherapy.
Collapse
|
30
|
Dabbs DJ, Huang RS, Ross JS. Novel markers in breast pathology. Histopathology 2023; 82:119-139. [PMID: 36468266 DOI: 10.1111/his.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Breast pathology is an ever-expanding database of information which includes markers, or biomarkers, that detect or help treat the disease as prognostic or predictive information. This review focuses on these aspects of biomarkers which are grounded in immunohistochemistry, liquid biopsies and next-generation sequencing.
Collapse
Affiliation(s)
- David J Dabbs
- PreludeDx, Laguna Hills, CA, USA.,Department of Pathology, University of Pittsburgh, Board Member, CASI (Consortium for Analytical Standardization in Immunohistochemistry), Pittsburgh, PA, USA
| | - Richard S Huang
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | | |
Collapse
|
31
|
Tang G, Liu J, Qi L, Li Y. The evolving role of checkpoint inhibitors in the treatment of urothelial carcinoma. Br J Clin Pharmacol 2023; 89:93-113. [PMID: 35997657 DOI: 10.1111/bcp.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The most prevalent pathological subtype of bladder and upper urinary tract malignancy is urothelial carcinoma (UC). Traditional therapies mainly include surgical resection, chemotherapy and radiotherapy. Checkpoint inhibitors, which are monoclonal antibodies developed to specifically target immune checkpoint molecules, have recently emerged as potential treatment options for UC patients, especially those targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1). However, anti-PD-1/PD-L1 therapy does not work for a considerable number of UC patients. Current antitumour immunotherapy research hotspots include seeking biomarkers that might predict therapeutic effects and exploring novel immune checkpoint molecules crucial for the antitumour immune response. Hence, we will recapitulate the latest preclinical and clinical trials of 5 PD-1/PD-L1 inhibitors, 1 cytotoxic T-lymphocyte-associated protein 4 inhibitor and combination therapies for UC treatment, including combined immunotherapy and immunotherapy with chemotherapy or radiotherapy. We will also summarize other potential immune checkpoint molecules found in ongoing UC studies. Moreover, we will highlight the role of biomarkers linked with the oncological efficacy of anti-PD-1/PD-L1 immunotherapy and address the mechanisms of immunotherapy drug resistance in UC, with the hope of providing more systematic guidance for its application and development.
Collapse
Affiliation(s)
- Guyu Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
33
|
Karjula T, Elomaa H, Niskakangas A, Mustonen O, Puro I, Kuopio T, Ahtiainen M, Mecklin JP, Seppälä TT, Wirta EV, Sihvo E, Väyrynen JP, Yannopoulos F, Helminen O. CD3 + and CD8 + T-Cell-Based Immune Cell Score and PD-(L)1 Expression in Pulmonary Metastases of Microsatellite Stable Colorectal Cancer. Cancers (Basel) 2022; 15:cancers15010206. [PMID: 36612204 PMCID: PMC9818882 DOI: 10.3390/cancers15010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to evaluate the prognostic value of CD3+ and CD8+ based immune cell score (ICS), programmed death -1 (PD-1) and programmed death ligand -1 (PD-L1) in pulmonary metastases of proficient mismatch repair colorectal cancer (CRC) patients. A total of 101 pulmonary metastases and 62 primary CRC tumours were stained for CD3+, CD8+, PD-1 and PD-L1 expression. The prognostic value of ICS, PD-1/PD-L1 expression in 67 first pulmonary metastases and 61 primary CRC tumour was analysed. Comparative analysis was also performed between primary tumours and pulmonary metastases, as well as between T-cell densities and PD-1/PD-L1 expression. The 5-year overall survival rates of low, intermediate, and high ICS in pulmonary metastases were 10.0%, 25.5% and 47.0% (p = 0.046), respectively. Patients with high vs. low ICS in pulmonary metastases had a significantly better 5-year survival (adjusted HR 0.25, 95% CI 0.09-0.75, p = 0.013). High tumour cell PD-L1 expression in the pulmonary metastases was associated with improved survival (p = 0.024). Primary tumour CD8+ expression was significantly correlated with all T-cell densities in pulmonary metastases. Conclusion: The ICS evaluated from the resected pulmonary metastases of CRC showed significant prognostic value. High PD-L1 expression in pulmonary metastases is associated with favourable prognosis.
Collapse
Affiliation(s)
- Topias Karjula
- Surgery Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Correspondence:
| | - Hanna Elomaa
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Education and Research, Central Finland Health Care District, 40620 Jyväskylä, Finland
| | - Anne Niskakangas
- Surgery Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Olli Mustonen
- Surgery Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Iiris Puro
- Surgery Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Pathology, Central Finland Health Care District, 40620 Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Central Finland Health Care District, 40620 Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Central Finland Health Care District, 40620 Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Toni T. Seppälä
- Faculty of Medicine and Health Technology, Tampere University and TAYS Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
- Applied Tumour Genomics, Research Program Unit, University of Helsinki, 00290 Helsinki, Finland
| | - Erkki-Ville Wirta
- Faculty of Medicine and Health Technology, Tampere University and TAYS Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, 33520 Tampere, Finland
| | - Eero Sihvo
- Central Hospital of Central Finland, 40014 Jyväskylä, Finland
| | - Juha P. Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Fredrik Yannopoulos
- Surgery Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Department of Cardiothoracic Surgery, Oulu University Hospital, 90014 Oulu, Finland
| | - Olli Helminen
- Surgery Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
34
|
Prognostic Value of Lymphocyte-to-Monocyte Ratio (LMR) in Cancer Patients Undergoing Immune Checkpoint Inhibitors. DISEASE MARKERS 2022; 2022:3610038. [PMID: 36590752 PMCID: PMC9803580 DOI: 10.1155/2022/3610038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Background There is accumulating evidence that the lymphocyte-to-monocyte ratio (LMR) is related to the outcomes of cancer patients treated with immune checkpoint inhibitors (ICIs). However, the results remain controversial. Method Electronic databases were searched to retrieve the studies that explore the relationship between LMR and the efficacy of ICIs. The primary endpoints were overall survival (OS) and progression-free survival (PFS), evaluated by the hazard ratios (HRs) with 95% confidence intervals (CI), and the secondary endpoints included disease control rate (DCR) and immune-related adverse events (irAEs), assessed by the odd ratios (ORs) with 95% CI. Results A total of 27 studies involving 4,322 patients were eligible for analysis. The results indicated that increased LMR at baseline was associated with a superior OS (HR: 0.46, 95% CI: 0.39-0.56, p < 0.001), PFS (HR: 0.60, 95% CI: 0.49-0.74, p < 0.001), and DCR (OR: 3.16, 95% CI: 1.70-5.87, p < 0.001). Posttreatment LMR was linked to a better PFS (HR: 0.46, 95% CI: 0.29-0.71, p = 0.001), but failed to show this correlation in the analysis of OS and DCR. No correlation existed between LMR and irAEs regardless of the testing time (baseline or posttreatment). Subgroup analyses focusing on baseline LMR revealed that higher baseline LMR possessed a better OS in renal cell cancer (RCC) arm, nonsmall cell lung cancer (NSCLC) arm, multiple cancer arm, monotherapy arm, LMR <2 arm, LMR ≥2 arm, western countries arm, eastern countries arm, and anti-PD-1 arm. Higher baseline LMR correlated with better PFS in RCC arm, NSCLC arm, gastric cancer (GC) arm, multiple cancer arm, LMR <2 arm, LMR ≥2 arm, western countries arm, and eastern countries arm. Conclusions Higher LMR at baseline was positively correlated with a superior OS, PFS, and DCR for ICIs, but not with irAEs.
Collapse
|
35
|
Chang W, Li H, Zhong L, Zhu T, Chang Z, Ou W, Wang S. Development of a copper metabolism-related gene signature in lung adenocarcinoma. Front Immunol 2022; 13:1040668. [PMID: 36524120 PMCID: PMC9744782 DOI: 10.3389/fimmu.2022.1040668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The dysregulation of copper metabolism is closely related to the occurrence and progression of cancer. This study aims to investigate the prognostic value of copper metabolism-related genes (CMRGs) in lung adenocarcinoma (LUAD) and its characterization in the tumor microenvironment (TME). Methods The differentially expressed CMRGs were identified in The Cancer Genome Atlas (TCGA) of LUAD. The least absolute shrinkage and selection operator regression (LASSO) and multivariate Cox regression analysis were used to establish the copper metabolism-related gene signature (CMRGs), which was also validated in Gene Expression Omnibus (GEO) database (GSE72094). The expression of key genes was verified by quantitative real-time PCR (qRT-PCR). Then, the CMRGS was used to develop a nomogram to predict the 1-year, 3-year, and 5-year overall survival (OS). In addition, differences in tumor mutation burden (TMB), biological characteristics and immune cell infiltration between high-risk and low-risk groups were systematically analyzed. Immunophenoscore (IPS) and an anti-PD-L1 immunotherapy cohort (IMvigor210) were used to verify whether CMRGS can predict the response to immunotherapy in LUAD. Results 34 differentially expressed CMRGs were identified in the TCGA dataset, 11 of which were associated with OS. The CMRGS composed of 3 key genes (LOXL2, SLC31A2 and SOD3) had showed good clinical value and stratification ability in the prognostic assessment of LUAD patients. The results of qRT-PCR confirmed the expression of key CMRGs in LUAD and normal tissues. Then, all LUAD patients were divided into low-risk and high-risk groups based on median risk score. Those in the low-risk group had a significantly longer OS than those in the high-risk group (P<0.0001). The area under curve (AUC) values of the nomogram at 1, 3, and 5 years were 0.734, 0.735, and 0.720, respectively. Calibration curves comparing predicted and actual OS were close to ideal model, indicating a good consistency between prediction and actual observation. Functional enrichment analysis showed that the low-risk group was enriched in a large number of immune pathways. The results of immune infiltration analysis also confirmed that there were a variety of immune cell infiltration in the low-risk group. In addition, multiple immune checkpoints were highly expressed in the low-risk group and may benefit better from immunotherapy. Conclusion CMRGS is a promising biomarker to assess the prognosis of LUAD patients and may be serve as a guidance on immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ou
- *Correspondence: Siyu Wang, ; Wei Ou,
| | - Siyu Wang
- *Correspondence: Siyu Wang, ; Wei Ou,
| |
Collapse
|
36
|
Hadrava Vanova K, Uher O, Meuter L, Ghosal S, Talvacchio S, Patel M, Neuzil J, Pacak K. PD-L1 expression and association with genetic background in pheochromocytoma and paraganglioma. Front Oncol 2022; 12:1045517. [PMID: 36439433 PMCID: PMC9691952 DOI: 10.3389/fonc.2022.1045517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
Metastatic pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors associated with poor prognosis and limited therapeutic options. Recent advances in oncology-related immunotherapy, specifically in targeting of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathways, have identified a new treatment potential in a variety of tumors, including advanced and rare tumors. Only a fraction of patients being treated by immune checkpoint inhibitors have shown to benefit from it, displaying a need for strategies which identify patients who may most likely show a favorable response. Building on recent, promising outcomes in a clinical study of metastatic PPGL using pembrolizumab, a humanized IgG4κ monoclonal antibody targeting the PD-1/PD-L1 pathway, we examined PD-L1 and PD-L2 expression in relation to oncogenic drivers in our PPGL patient cohort to explore whether expression can predict metastatic potential and/or be considered a predictive marker for targeted therapy. We evaluated RNA expression in the NIH cohort of 48 patients with known genetic predisposition (sporadic; pseudohypoxia: SDHB, VHL, EPAS1, EGLN1; kinase signaling: RET, NF1) and 6 normal medulla samples (NAM). For comparison, 72 PPGL samples from The Cancer Genome Atlas (TCGA) were used for analysis of gene expression based on the variant status (pseudohypoxia: SDHB, VHL, EPAS1, EGLN1; kinase signaling: NF1, RET). Expression of PD-L1 was elevated in the PPGL cohort compared to normal adrenal medulla, aligning with the TCGA analysis, whereas PD-L2 was not elevated. However, expression of PD-L1 was lower in the pseudohypoxia cluster compared to the sporadic and the kinase signaling subtype cluster, suggesting that sporadic and kinase signaling cluster PPGLs could benefit from PD-1/PD-L1 therapy more than the pseudohypoxia cluster. Within the pseudohypoxia cluster, expression of PD-L1 was significantly lower in both SDHB- and non-SDHB-mutated tumors compared to sporadic tumors. PD-L1 and PD-L2 expression was not affected by the metastatic status. We conclude that PD-L1 and PD-L2 expression in our cohort of PPGL tumors was not linked to metastatic behavior, however, the presence of PPGL driver mutation could be a predictive marker for PD-L1-targeted therapy and an important feature for further clinical studies in patients with PPGL.
Collapse
Affiliation(s)
- Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
- Faculty of Science and 1st Medical Faculty, Charles University, Prague, Czechia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Ku SC, Liu HL, Su CY, Yeh IJ, Yen MC, Anuraga G, Ta HDK, Chiao CC, Xuan DTM, Prayugo FB, Wang WJ, Wang CY. Comprehensive analysis of prognostic significance of cadherin (CDH) gene family in breast cancer. Aging (Albany NY) 2022; 14:8498-8567. [PMID: 36315446 PMCID: PMC9648792 DOI: 10.18632/aging.204357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Breast cancer is one of the leading deaths in all kinds of malignancies; therefore, it is important for early detection. At the primary tumor site, tumor cells could take on mesenchymal properties, termed the epithelial-to-mesenchymal transition (EMT). This process is partly regulated by members of the cadherin (CDH) family of genes, and it is an essential step in the formation of metastases. There has been a lot of study of the roles of some of the CDH family genes in cancer; however, a holistic approach examining the roles of distinct CDH family genes in the development of breast cancer remains largely unexplored. In the present study, we used a bioinformatics approach to examine expression profiles of CDH family genes using the Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), cBioPortal, MetaCore, and Tumor IMmune Estimation Resource (TIMER) platforms. We revealed that CDH1/2/4/11/12/13 messenger (m)RNA levels are overexpressed in breast cancer cells compared to normal cells and were correlated with poor prognoses in breast cancer patients’ distant metastasis-free survival. An enrichment analysis showed that high expressions of CDH1/2/4/11/12/13 were significantly correlated with cell adhesion, the extracellular matrix remodeling process, the EMT, WNT/beta-catenin, and interleukin-mediated immune responses. Collectively, CDH1/2/4/11/12/13 are thought to be potential biomarkers for breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of General Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hsin-Liang Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Che-Yu Su
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Chung-Chieh Chiao
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40676, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
38
|
Zhang L, Zhao S, Jiang H, Zhang R, Zhang M, Pan W, Sun Z, Wang D, Li J. Radioimmunotherapy study of 131I-labeled Atezolizumab in preclinical models of colorectal cancer. EJNMMI Res 2022; 12:70. [DOI: 10.1186/s13550-022-00939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Programmed cell death 1 ligand 1(PD-L1) is overexpressed in many tumors. The radionuclide-labeled anti-PD-L1 monoclonal antibody can be used for imaging and therapy of PD-L1 overexpressing cancer. Here, we described 131I-labeled Atezolizumab (131I-Atezolizumab, targeting PD-L1) as a therapeutic agent for colorectal cancer with PD-L1 overexpression.
Methods
131I-Atezolizumab was prepared by the Iodogen method. The expression levels of PD-L1 in different human colorectal cells were determined by flow cytometry, western blot and cell binding assay. The immunoreactivity of 131I-Atezolizumab to PD-L1 high-expressing cells was determined by immunoreactive fraction. The killing abilities of different concentrations of 131I-Atezolizumab on cells with high and low expression of PD-L1 were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Cerenkov luminescence imaging (CLI) and radioimmunotherapy (RIT) of 131I-Atezolizumab were performed on two human colorectal cancer models. The distribution and tumor targeting of 131I-Atezolizumab were evaluated by imaging. Tumor volume and survival time were used as indicators to evaluate the anti-tumor effect of 131I-Atezolizumab.
Results
The expression level of PD-L1 in vitro determined by the cell binding assay was related to the data of flow cytometry and western blot. 131I-Atezolizumab can specifically bind to PD-L1 high-expressing cells in vitro to reflect the expression level of PD-L1. Immunoreactive fraction of PD-L1 high-expressing RKO cells with 131I-Atezolizumab was 52.2%. The killing ability of 131I-Atezolizumab on PD-L1 high-expressing cells was higher than that of low-expressing cells. CLI proved that the specific uptake level of tumors depends on the expression level of PD-L1. Effect of 131I-Atezolizumab RIT showed an activity-dependent tumor suppressor effect on RKO tumor-bearing mice with high PD-L1 expression. 131I-Atezolizumab (37 MBq) can improve the median survival time of mice (34 days), compared to untreated mice (27 days) (P = 0.027). Although a single activity(37 MBq) of 131I-Atezolizumab also inhibited the tumors of HCT8 tumor-bearing mice with low PD-L1 expression (P < 0.05), it could not prolong the survival of mice(P = 0.29).
Conclusion
131I-Atezolizumab can be used as a CLI agent for screening PD-L1 expression levels. It may be used as a radioimmunotherapy drug target for PD- L1 overexpressing tumors.
Collapse
|
39
|
Liu S, Zhao L, Zhou G. Peripheral blood markers predict immunotherapeutic efficacy in patients with advanced non-small cell lung cancer: A multicenter study. Front Genet 2022; 13:1016085. [DOI: 10.3389/fgene.2022.1016085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to investigate the prognostic impact of peripheral blood markers in patients with advanced non-small cell lung cancer (NSCLC) undergoing immunotherapy. In the current multicenter study, 157 advanced NSCLC cases treated by immunotherapy at three institutions were included. Biochemical parameters in baseline peripheral blood were collected. The associations between biochemical parameters and prognosis were investigated by the Kaplan–Meier survival analyses and Cox regression, and the predictive performances of biomarkers were evaluated via receiver operating characteristic analysis. The neutrophil-to-lymphocyte ratio (NLR) (progression-free survival [PFS]: hazard ratio [HR], 1.766; 95% confidence interval [CI], 1.311–2.380; p < 0.001; overall survival [OS]: HR, 1.283; 95% CI, 1.120–1.469; p < 0.001) and red blood cell distribution width (RDW) (PFS: HR, 1.052; 95% CI, 1.005–1.102; p = 0.031; OS: HR, 1.044; 95% CI, 1.001–1.091; p = 0.042) were revealed as independent predictors for both PFS and OS. In addition, NLR ≥3.79 (1-year PFS, 24.2% [95% CI, 15.2%–38.4%] versus 27.3% [95% CI, 18.2%–41.1%], p = 0.041; 1-year OS, 44.2% [95% CI, 32.5%–60.1%] versus 71.8% [95% CI, 60.6%–85.2%], p < 0.001) or RDW ≥44.8 g/L (1-year PFS, 19.2% [95% CI, 11.4%–32.3%] versus 31.7% [95% CI, 21.9%–46.0%], p = 0.049; 1-year OS, 54.0% [95% CI, 42.7%–68.3%] versus 63.1% [95% CI, 50.6%–78.6%], p = 0.014) was significantly correlated to poorer PFS and OS than NLR < 3.79 or RDW <44.8 g/L. Moreover, NLR and RDW achieved areas under the curve with 0.651 (95% CI, 0.559–0.743) and 0.626 (95% CI, 0.520–0.732) for predicting PFS, and 0.660 (95% CI, 0.567–0.754) and 0.645 (95% CI, 0.552–0.739), for OS. Therefore, PLR and RDW could help predict the immunotherapeutic efficacy of advanced NSCLC.
Collapse
|
40
|
Li J, Wuethrich A, Zhang Z, Wang J, Lin LL, Behren A, Wang Y, Trau M. SERS Multiplex Profiling of Melanoma Circulating Tumor Cells for Predicting the Response to Immune Checkpoint Blockade Therapy. Anal Chem 2022; 94:14573-14582. [PMID: 36222247 DOI: 10.1021/acs.analchem.2c02398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable success in many cancers including melanoma. However, ICB therapy benefits only a small proportion of patients and produces severe side effects for some patients. Thus, there is an urgent need to identify patients who are more likely to respond to ICB therapy to improve outcomes and minimize side effects. To predict ICB therapy responses, we design a surface-enhanced Raman scattering (SERS) assay for multiplex profiling of circulating tumor cells (CTCs) under basal and interferon-γ (IFN-γ) stimulation. Through simultaneous ensemble and single-cell measurements of CTCs, the SERS assay can reveal tumor heterogeneity and offer a comprehensive CTC phenotype for decision-making. Anisotropic gold-silver alloy nanoboxes are utilized as SERS plasmonic substrates for improved signal readouts of CTC surface biomarkers. By generating a unique CTC signature with four surface biomarkers, the developed assay enables the differentiation of CTCs from three different patient-derived melanoma cell lines. Significantly, in a cohort of 14 melanoma patients who received programmed cell death-1 blockade therapy, the changes of CTC signature induced by IFN-γ stimulation to CTCs show the potential to predict responders. We expect that the SERS assay can help select patients for receiving ICB therapy in other cancers.
Collapse
Affiliation(s)
- Junrong Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, P. R. China.,Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou350007, P. R. China
| | - Lynlee L Lin
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD4102, Australia
| | - Andreas Behren
- Oliva Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC3086, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC3010, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW2109, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
41
|
Prat A, Paz-Ares L, Juan M, Felip E, Garralda E, González B, Arance A, Martín-Liberal J, Gavilá J, López-González A, Cejalvo JM, Izarzugaza Y, Amillano K, Corbacho JG, Saura C, Racca F, Hierro C, Sanfeliu E, Gonzalez X, Canes J, Villacampa G, Salvador F, Pascual T, Mesía R, Cervantes A, Tabernero J. SOLTI-1904 ACROPOLI TRIAL: efficacy of spartalizumab monotherapy across tumor-types expressing high levels of PD1 mRNA. Future Oncol 2022; 18:3791-3800. [PMID: 36200668 DOI: 10.2217/fon-2022-0660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Improved selection of cancer patients who are most likely to respond to immune checkpoint inhibitors remains an unmet clinical need. Recently, a positive correlation between levels of PD1 mRNA and clinical outcome in response to PD1 blockade across diverse tumor histologies has been confirmed in several datasets. ACROPOLI is a parallel cohort, non-randomized, phase II study that aims to evaluate the efficacy of the anti-PD1 immune checkpoint inhibitor spartalizumab as monotherapy in metastatic patients with solid tumors that express high levels of PD1 (cohort 1; n = 111). An additional cohort of 30 patients with tumors expressing low levels of PD1, where PD1/PD-L1 antibodies in monotherapy are standard treatment, will also be included (cohort 2). Primary end point is overall response rate in cohort 1. Trial registration number: NCT04802876 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Aleix Prat
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Instituto de Salud Carlos III, Madrid (Spain)
| | - Manel Juan
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Immunology Department, Immunotherapy Platforms, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Hospital Campus, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Garralda
- Vall d'Hebron Hospital Campus, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Blanca González
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Pathology department Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Joaquín Gavilá
- SOLTI Cancer Research Group, Barcelona, Spain
- Instituto Valenciano de Oncología (IVO), Valencia, Spain
| | | | - Juan Miguel Cejalvo
- Hospital Clínico Universitario de Valencia, INCLIVA (Instituto de investigación sanitaria), Universidad Valencia, Spain
| | - Yann Izarzugaza
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | - Javier García Corbacho
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Cristina Saura
- SOLTI Cancer Research Group, Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Cinta Hierro
- Medical Oncology Department, Catalan Institute of Oncology (ICO)-Badalona, Badalona-Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP); Badalona, Barcelona, Spain
| | - Esther Sanfeliu
- SOLTI Cancer Research Group, Barcelona, Spain
- Pathology department Hospital Clinic de Barcelona, Barcelona, Spain
| | - Xavier Gonzalez
- SOLTI Cancer Research Group, Barcelona, Spain
- Institut Oncològic Dr. Rosell. Hospital Universitari General de Catalunya, Sant Cugat del Vallès, Spain
| | - Jordi Canes
- SOLTI Cancer Research Group, Barcelona, Spain
| | - Guillermo Villacampa
- SOLTI Cancer Research Group, Barcelona, Spain
- Oncology Data Science, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Tomás Pascual
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ricard Mesía
- Medical Oncology Department, Catalan Institute of Oncology (ICO)-Badalona, Badalona-Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP); Badalona, Barcelona, Spain
| | - Andrés Cervantes
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Instituto de Salud Carlos III, Madrid (Spain)
- Hospital Clínico Universitario de Valencia, INCLIVA (Instituto de investigación sanitaria), Universidad Valencia, Spain
| | - Josep Tabernero
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Instituto de Salud Carlos III, Madrid (Spain)
- Vall d'Hebron Hospital Campus, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- IOB-Hospital Quironsalud Barcelona, Spain
| |
Collapse
|
42
|
Do Early Phase Oncology Trials Predict Clinical Efficacy in Subsequent Biomarker-Enriched Phase III Randomized Trials? Target Oncol 2022; 17:665-674. [PMID: 36197635 DOI: 10.1007/s11523-022-00920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 10/10/2022]
Abstract
BACKGROUND Promising early phase trial results of biomarker-targeted therapies have occasionally led to regulatory approval. OBJECTIVE We examined if early phase trials were predictive of efficacy in randomized controlled trials (RCTs) with matching treatment settings. PATIENTS AND METHODS Cancer drug RCTs conducted between January 2006 and March 2021 were identified through Clinicaltrials.gov. Biomarker-enriched RCTs and associated matching early phase trials were included. Trial pairs were compared using objective response rate (ORR) and progression-free survival (PFS). We examined whether early phase trials results were associated with RCT results using logistic regression. RESULTS The search yielded 2157 unique RCTs and 27 RCTs pairing with early phase trials were included. Based on average difference of trial pairs, ORR was similar (1.6%; 95% confidence interval (CI) - 2.5 to 5.6, p = 0.50) and median PFS was higher in early phase trials (2.0 months; 95% CI 0.9-3.0, p < 0.05). On an individual pair basis, there was large variability in difference for ORR (range - 23.9 to 20.2%) and median PFS (range - 0.8 to 7.4 months). The probability of the RCT meeting its primary endpoint is 95% (95% prediction interval (PI) 72.8-99.3%) when the early phase trial ORR is 77.7%. CONCLUSIONS Overall, in early phase trials, ORR has minimal bias and median PFS appears to be slightly overestimated. Substantial variability between trials suggests early phase trial results may be inconsistent with subsequent RCT. Early phase trial results may be associated with RCTs meeting their primary endpoint when ORR is very high; however, caution must be exercised when using early phase trials as representative of RCTs.
Collapse
|
43
|
Kang W, Tong Y, Zhang W, Jian M, Zhang A, Ren G, Fan H, Yang J. Computational Biology Predicts the Efficacy of Tumor Immune Checkpoint Blockade. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6087751. [PMID: 36212709 PMCID: PMC9534640 DOI: 10.1155/2022/6087751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022]
Abstract
Tumor immunotherapy is considered as one of the most promising methods in cancer treatment in recent years. Immune checkpoint blockade (ICB) can activate immune cells to destroy tumors by relieving the inhibitory pathway of tumor cells to immune cells. In silico prediction of the ICB response is an important step toward achieving effective and personalized cancer immunotherapy. Although immune checkpoint inhibitors have shown exciting clinical effects in the treatment of many types of tumors, there are still some clinical problems in practical application, such as low response rate and large individualized differences. How to predict the efficacy of effective individualized immune checkpoint inhibitors for tumor patients based on specific biomarkers and computational models is one of the key issues in the immunotherapy of this kind of tumor. In our work, from the five levels of genome level, transcription level, epigenetic level, microbial taxonomy level, and the immune cell infiltration profile level, the biomarkers and in silico calculation methods that affect the efficacy of tumor immune checkpoint inhibitors are comprehensively summarized.
Collapse
Affiliation(s)
- Wenyi Kang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000 Hubei, China
| | - Yao Tong
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China 430061
| | - Weijia Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000 Hubei, China
| | - Mengru Jian
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000 Hubei, China
| | - Anqi Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000 Hubei, China
| | - Guoqing Ren
- Department of Laboratory Medicine, Chuzhou Maternal and Child Health Care and Family Planning Service Center, Chuzhou 239000, China
| | - Hao Fan
- Huanggang Central Hospital of Yangtze University, Huanggang 43800, China
| | - Jiyuan Yang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000 Hubei, China
| |
Collapse
|
44
|
Krishnamurthy N, Kato S, Lippman S, Kurzrock R. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J Immunother Cancer 2022. [PMCID: PMC9442488 DOI: 10.1136/jitc-2022-004669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chromatin regulation involves four subfamilies composed of ATP-dependent multifunctional protein complexes that remodel the way DNA is packaged. The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex subfamily mediates nucleosome reorganization and hence activation/repression of critical genes. The SWI/SNF complex is composed of the BRG-/BRM-associated factor and Polybromo-associated BAF complexes, which in turn have multiple subunits. Significantly, ~20% of malignancies harbor alterations in >1 of these subunits, making the genes encoding SWI/SNF family members among the most vulnerable to genomic aberrations in cancer. ARID1A is the largest subunit of the SWI/SNF complex and is altered in ~40%–50% of ovarian clear cell cancers and ~15%–30% of cholangiocarcinomas, in addition to a variety of other malignancies. Importantly, outcome was improved after immune checkpoint blockade (ICB) in patients with ARID1A-altered versuss wild-type tumors, and this result was independent of microsatellite instability or tumor mutational burden. Another subunit—PBRM1—is mutated in ~40% of clear cell renal cell carcinomas and ~12% of cholangiocarcinomas; there are contradictory reports regarding ICB responsiveness. Two other SWI/SNF subunits of interest are SMARCA4 and SMARCB1. SMARCA4 loss is the hallmark of small cell carcinoma of the ovary hypercalcemic type (and is found in a variety of other malignancies); SMARCA4 germline alterations lead to rhabdoid tumor predisposition syndrome-2; SMARCB1 germline alterations, rhabdoid tumor predisposition syndrome-1. Remarkable, although anecdotal, responses to ICB have been reported in both SMARCA4-aberrant and SMARCB1-aberrant advanced cancers. This review focuses on the role that SWI/SNF chromatin remodeling subunits play in carcinogenesis, the immune microenvironment, and in immunotherapy responsiveness.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Yale University, New Haven, Connecticut, USA
| | - Shumei Kato
- Yale University, New Haven, Connecticut, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Scott Lippman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Razelle Kurzrock
- Worldwide Innovative Network for Personalized Cancer Therapy, San Diego, California, USA
| |
Collapse
|
45
|
Xu X, Li J, Yang Y, Sang S, Deng S. The correlation between PD-L1 expression and metabolic parameters of 18FDG PET/CT and the prognostic value of PD-L1 in non-small cell lung cancer. Clin Imaging 2022; 89:120-127. [DOI: 10.1016/j.clinimag.2022.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/08/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
|
46
|
Choi YJ, Cho YL, Chae JR, Park JY, Cho H, Kang WJ. In vivo positron emission tomography imaging for PD-L1 expression in cancer using aptamer. Biochem Biophys Res Commun 2022; 620:105-112. [DOI: 10.1016/j.bbrc.2022.06.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
|
47
|
Gao LM, Zhang YH, Shi X, Liu Y, Wang J, Zhang WY, Liu WP. The Role of PD-L1 Expression in Prediction and Stratification of Recurrent or Refractory Extranodal Natural Killer/T-Cell Lymphoma. Front Oncol 2022; 12:821918. [PMID: 35619907 PMCID: PMC9128790 DOI: 10.3389/fonc.2022.821918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Background and Aims The clinical outcome of relapsed and refractory (RR) extranodal natural killer/T-cell lymphoma (ENKTL) is poor. It is necessary to identify RR patients in ENKTL and find novel therapeutic targets to improve the prognosis of patients with RR ENKTL. Methods A total of 189 ENKTL patients with effective clinical characteristics were enrolled. Paraffin specimens were collected for PD-L1 expression identification. Kaplan-Meier curve analysis was performed for survival analysis. Whole exome sequencing (WES) was performed for identifying the mutational characterization of RR and effective treatment (ET) patients. Results Univariate and multivariate Cox proportional hazards regression analysis showed that negative PD-L1 expression (HR = 1.132, 95% CI = 0.739-1.734, P = 0.036) was an independent predictor of poor prognosis in patients with ENKTL. The overall survival (OS) of PD-L1 positive patients was significantly higher than that of PD-L1 negative patients (P = 0.009). Then, we added PD-L1 expression as a risk factor to the model of Prognostic Index of Natural Killer Lymphoma (PINK), and named as PINK+PD-L1. The PINK+PD-L1 model can significantly distinguish RR patients, ET patients, and the whole cohort. Moreover, our data showed that PD-L1 expression was lower than 25% in most RR patients, suggesting that RR subtypes may be associated with low expression of PD-L1 (P = 0.019). According to the whole exome sequencing (WES), we found that the mutation frequencies of JAK-STAT (P = 0.001), PI3K-AKT (P = 0.02) and NF-kappa B (P < 0.001) pathways in RR patients were significantly higher than those in ET patients. Conclusion Patients tend to show RR when PD-L1 expression is lower than 25%. The model of PINK+PD-L1 can stratify the risk of different groups and predict OS in ENKTL patients. The mutational profile of ENKTL patients with RR is different from that of patients with ET.
Collapse
Affiliation(s)
- Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yue-Hua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoliang Shi
- Department of Medical Product, OrigiMed, Inc., Shanghai, China
| | - Yang Liu
- Department of Medical Product, OrigiMed, Inc., Shanghai, China
| | - Junwei Wang
- Department of Medical Product, OrigiMed, Inc., Shanghai, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
48
|
The worsening impact of programmed cell death ligand 1 in ovarian clear cell carcinomas. Arch Gynecol Obstet 2022; 306:2133-2142. [PMID: 35507079 DOI: 10.1007/s00404-022-06582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To investigate the clinical significance of programmed cell death ligand 1 (PD-L1) expression in ovarian clear cell carcinoma (CCC). MATERIALS AND METHODS Patients with CCC who underwent primary surgery at our hospital between 1984 and 2014 were enrolled in this study. PD-L1 and mismatch repair (MMR) protein expression in tumor cells, tumor-infiltrating lymphocytes (TILs), including cluster of differentiation (CD) 8, CD4, forkhead box P3 (FOXP3), programmed cell death 1 (PD-1), and BAF250a, were evaluated using immunohistochemistry. The association between PD-L1 expression, clinicopathological features, prognosis, and expression of several proteins was investigated. RESULTS Of the 125 patients with CCC, 17 had negative PD-L1 and 108 had positive PD-L1. Patients with positive PD-L1 expression showed a lower response to chemotherapy (p = 0.01). In addition, patients with positive PD-L1 showed worse progression-free survival (PFS, p = 0.01) and overall survival (OS, p = 0.01) than that in patients with negative PD-L1 expression. Multivariate analyses for PFS and OS showed that PD-L1 expression was an independent prognostic factor for PFS (hazard ratio [HR] 7.81, p < 0.01) and OS (HR 12.90, p < 0.01). PD-L1 expression was not associated with the expression of several TILs or proteins. CONCLUSION The expression of PD-L1 was related to a lower response to chemotherapy and worse prognosis in CCC. These results may be useful for the development of new treatments.
Collapse
|
49
|
The clinicopathological significance of PD-L1 expression assessed by the combined positive score (CPS) in head and neck squamous cell carcinoma. Pathol Res Pract 2022; 236:153934. [DOI: 10.1016/j.prp.2022.153934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
|
50
|
Cui G. Towards a precision immune checkpoint blockade immunotherapy in patients with colorectal cancer: Strategies and perspectives. Biomed Pharmacother 2022; 149:112923. [DOI: 10.1016/j.biopha.2022.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
|