1
|
Rasool A, Kanagaraj T, Herwahyu Krismastuti FS. Green approach of cobalt sulfide nanoparticles from novel red stigma of Crocus sativus and multifaceted biomedical advancement. INORG CHEM COMMUN 2025; 171:113417. [DOI: 10.1016/j.inoche.2024.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
4
|
Righini MF, Durham A, Tsoutsou PG. Hyperthermia and radiotherapy: physiological basis for a synergistic effect. Front Oncol 2024; 14:1428065. [PMID: 39165690 PMCID: PMC11333208 DOI: 10.3389/fonc.2024.1428065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
In cancer treatment, mild hyperthermia (HT) represents an old, but recently revived opportunity to increase the efficacy of radiotherapy (RT) without increasing side effects, thereby widening the therapeutic window. HT disrupts cellular homeostasis by acting on multiple targets, and its combination with RT produces synergistic antitumoral effects on specific pathophysiological mechanisms, associated to DNA damage and repair, hypoxia, stemness and immunostimulation. HT is furthermore associated to direct tumor cell kill, particularly in higher temperature levels. A phenomenon of temporary resistance to heat, known as thermotolerance, follows each HT session. Cancer treatment requires innovative concepts and combinations to be tested but, for a meaningful development of clinical trials, the understanding of the underlying mechanisms of the tested modalities is essential. In this mini-review, we aimed to describe the synergistic effects of the combination of HT with RT as well as the phenomena of thermal shock and thermotolerance, in order to stimulate clinicians in new, clinically relevant concepts and combinations, which become particularly relevant in the era of technological advents in both modalities but also cancer immunotherapy.
Collapse
Affiliation(s)
| | - André Durham
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Pelagia G. Tsoutsou
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
5
|
Dantas GDPF, Ferraz FS, Coimbra JLP, Paniago RM, Dantas MSS, Lacerda SMSN, Procópio MS, Gonçalves MF, Furtado MH, Mendes BP, López JL, Krohling AC, Martins EMN, Andrade LM, Ladeira LO, Andrade ÂL, Costa GMJ. The toxicity of superparamagnetic iron oxide nanoparticles induced on the testicular cells: In vitro study. NANOIMPACT 2024; 35:100517. [PMID: 38848992 DOI: 10.1016/j.impact.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention in biomedical research due to their potential applications. However, little is known about their impact and toxicity on testicular cells. To address this issue, we conducted an in vitro study using primary mouse testicular cells, testis fragments, and sperm to investigate the cytotoxic effects of sodium citrate-coated SPIONs (Cit_SPIONs). Herein, we synthesized and physiochemically characterized the Cit_SPIONs and observed that the sodium citrate diminished the size and improved the stability of nanoparticles in solution during the experimental time. The sodium citrate (measured by thermogravimetry) was biocompatible with testicular cells at the used concentration (3%). Despite these favorable physicochemical properties, the in vitro experiments demonstrated the cytotoxicity of Cit_SPIONs, particularly towards testicular somatic cells and sperm cells. Transmission electron microscopy analysis confirmed that Leydig cells preferentially internalized Cit_SPIONs in the organotypic culture system, which resulted in alterations in their cytoplasmic size. Additionally, we found that Cit_SPIONs exposure had detrimental effects on various parameters of sperm cells, including motility, viability, DNA integrity, mitochondrial activity, lipid peroxidation (LPO), and ROS production. Our findings suggest that testicular somatic cells and sperm cells are highly sensitive and vulnerable to Cit_SPIONs and induced oxidative stress. This study emphasizes the potential toxicity of SPIONs, indicating significant threats to the male reproductive system. Our findings highlight the need for detailed development of iron oxide nanoparticles to enhance reproductive nanosafety.
Collapse
Affiliation(s)
- Graziela de P F Dantas
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fausto S Ferraz
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - John L P Coimbra
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto M Paniago
- Department of Physics, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria S S Dantas
- Metallurgical and Materials Engineering Department, EE, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samyra M S N Lacerda
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela S Procópio
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus F Gonçalves
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo H Furtado
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Clínica MF Fertilidade Masculina, Belo Horizonte, MG, Brazil
| | | | - Jorge L López
- Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco, Acre, Brazil
| | - Alisson C Krohling
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | - Estefânia M N Martins
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | - Lídia M Andrade
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physics, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O Ladeira
- Metallurgical and Materials Engineering Department, EE, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângela L Andrade
- Department of Chemistry, ICEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Chauhan M, Basu SM, Qasim M, Giri J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. NANOSCALE 2023; 15:7384-7402. [PMID: 36751724 DOI: 10.1039/d2nr05218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticle (MNP) delivery systems are promising for targeted drug delivery, imaging, and chemo-hyperthermia of cancer; however, their uses remain limited primarily due to their toxicity associated with reactive oxygen species (ROS) generation, targeted delivery, and biodegradation. Attempts employing polymer coatings to minimize the toxicity, along with other challenges, have had limited success. We designed a novel yet generic 'one-for-all' polypropylene sulphide (PPS) coated magnetic nano-delivery system (80 ± 15 nm) as a multi-faceted approach for significant biocompatibility improvement, loading of multiple drugs, ROS-responsive delivery, and combined chemo-hyperthermia therapy for biomedical applications. Three distinct MNP systems (15 ± 1 nm) were fabricated, coated with PPS polymer, and investigated to validate our hypothesis and design. Simultaneous degradation of MNPs and PPS coatings with ROS-scavenging characteristics boosted the biocompatibility of MNPs 2-3 times towards non-cancerous fibroblasts (NIH3T3) and human epithelial cells (HEK293). In an alternating magnetic field, PPS-MNPs (MnFe) had the strongest heating characteristics (SAR value of 240 W g-1). PPS-MNP drug-loaded NPs were efficiently internalised into cells and released 80% of the drugs under tumor microenvironment-mimicking (pH 5-7, ROS) conditions, and demonstrated effective chemo-hyperthermia (45 °C) application for breast cancer cells with 95% cell death in combined treatment vs. 55% and 30% cell death in only hyperthermia and chemotherapy respectively.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Mohd Qasim
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
8
|
Subhan MA, Parveen F, Filipczak N, Yalamarty SSK, Torchilin VP. Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis. J Pers Med 2023; 13:jpm13030389. [PMID: 36983571 PMCID: PMC10051487 DOI: 10.3390/jpm13030389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The innovative development of nanomedicine has promised effective treatment options compared to the standard therapeutics for cancer therapy. However, the efficiency of EPR-targeted nanodrugs is not always pleasing as it is strongly prejudiced by the heterogeneity of the enhanced permeability and retention effect (EPR). Targeting the dynamics of the EPR effect and improvement of the therapeutic effects of nanotherapeutics by using EPR enhancers is a vital approach to developing cancer therapy. Inadequate data on the efficacy of EPR in humans hampers the clinical translation of cancer drugs. Molecular targeting, physical amendment, or physiological renovation of the tumor microenvironment (TME) are crucial approaches for improving the EPR effect. Advanced imaging technologies for the visualization of EPR-induced nanomedicine distribution in tumors, and the use of better animal models, are necessary to enhance the EPR effect. This review discusses strategies to enhance EPR effect-based drug delivery approaches for cancer therapy and imaging technologies for the diagnosis of EPR effects. The effort of studying the EPR effect is beneficial, as some of the advanced nanomedicine-based EPR-enhancing approaches are currently undergoing clinical trials, which may be helpful to improve EPR-induced drug delivery and translation to clinics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore, Punjab 54000, Pakistan
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
9
|
Kulkarni-Dwivedi N, Patel PR, Shravage BV, Umrani RD, Paknikar KM, Jadhav SH. Hyperthermia and doxorubicin release by Fol-LSMO nanoparticles induce apoptosis and autophagy in breast cancer cells. Nanomedicine (Lond) 2022; 17:1929-1949. [PMID: 36645007 DOI: 10.2217/nnm-2022-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Studies on the anticancer effects of lanthanum strontium manganese oxide (LSMO) nanoparticles (NPs)-mediated hyperthermia at cellular and molecular levels are scarce. Materials & methods: LSMO NPs conjugated with folic acid (Fol-LSMO NPs) were synthesized, followed by doxorubicin-loading (DoxFol-LSMO NPs), and their effects on breast cancer cells were investigated. Results: Hyperthermia (45°C) and combination treatments exhibited the highest (∼95%) anticancer activity with increased oxidative stress. The involvement of intrinsic mitochondria-mediated apoptotic pathway and induction of autophagy was noted. Cellular and molecular evidence confirmed the crosstalk between apoptosis and autophagy, involving Beclin1, Bcl2 and Caspase-3 genes with free reactive oxygen species presence. Conclusion: The study confirmed hyperthermia and doxorubicin release by Fol-LSMO NPs induces apoptosis and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Neha Kulkarni-Dwivedi
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Pratikshkumar R Patel
- Polymer Science & Engineering, CSIR - National Chemical Laboratory, Pune, 411008, Maharashtra, India.,Academy of Scientific & Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Bhupendra V Shravage
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.,Developmental Biology Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India
| | - Rinku D Umrani
- LJ Institute of Pharmacy, LJ University, LJ Campus, Ahmedabad, 382210, Gujarat, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Indian Institute of Technology, Powai, Mumbai, 400076, India
| | - Sachin H Jadhav
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| |
Collapse
|
10
|
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022; 20:395. [PMID: 36045386 PMCID: PMC9428887 DOI: 10.1186/s12951-022-01605-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations. Engineering the drug carrier biointerface can help overcome the main biological barriers and optimize the drug delivery in a more personalized manner. This review discusses the significant heterogeneous biological delivery barriers and how biointerface engineering can promote drug carriers to prevail over hurdles and navigate in a more personalized manner, thus ushering in the era of Precision Medicine. We also summarize the nanomedicines' current advantages and disadvantages in drug administration, from natural/synthetic sources to clinical applications. Additionally, we explore the innovative NP designs used in both non-personalized and customized applications as well as how they can attain a precise therapeutic strategy.
Collapse
Affiliation(s)
- Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy.
| |
Collapse
|
11
|
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022; 349:1009-1030. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.
Collapse
Affiliation(s)
- Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
12
|
Caizer IS, Caizer C. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy. Int J Mol Sci 2022; 23:4350. [PMID: 35457167 PMCID: PMC9029492 DOI: 10.3390/ijms23084350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we present a study by computer simulation on superparamagnetic hyperthermia with CoFe2O4 ferrimagnetic nanoparticles coated with biocompatible gamma-cyclodextrins (γ-CDs) to be used in alternative cancer therapy with increased efficacy and non-toxicity. The specific loss power that leads to the heating of nanoparticles in superparamagnetic hyperthermia using CoFe2O4-γ-CDs was analyzed in detail depending on the size of the nanoparticles, the thickness of the γ-CDs layer on the nanoparticle surface, the amplitude and frequency of the alternating magnetic field, and the packing fraction of nanoparticles, in order to find the proper conditions in which the specific loss power is maximal. We found that the maximum specific loss power was determined by the Brown magnetic relaxation processes, and the maximum power obtained was significantly higher than that which would be obtained by the Néel relaxation processes under the same conditions. Moreover, increasing the amplitude of the magnetic field led to a significant decrease in the optimal diameter at which the maximum specific loss power is obtained (e.g., for 500 kHz frequency the optimal diameter decreased from 13.6 nm to 9.8 nm when the field increased from 10 kA/m to 50 kA/m), constituting a major advantage in magnetic hyperthermia for its optimization, in contrast to the known results in the absence of cyclodextrins from the surface of immobilized nanoparticles of CoFe2O4, where the optimal diameter remained practically unchanged at ~6.2 nm.
Collapse
Affiliation(s)
- Isabela Simona Caizer
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| |
Collapse
|
13
|
Modular Representation of Physiologically Based Pharmacokinetic Models: Nanoparticle Delivery to Solid Tumors in Mice as an Example. MATHEMATICS 2022. [DOI: 10.3390/math10071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here we describe a toolkit for presenting physiologically based pharmacokinetic (PBPK) models in a modular graphical view in the BioUML platform. Firstly, we demonstrate the BioUML capabilities for PBPK modeling tested on an existing model of nanoparticles delivery to solid tumors in mice. Secondly, we provide guidance on the conversion of the PBPK model code from a text modeling language like Berkeley Madonna to a visual modular diagram in the BioUML. We give step-by-step explanations of the model transformation and demonstrate that simulation results from the original model are exactly the same as numerical results obtained for the transformed model. The main advantage of the proposed approach is its clarity and ease of perception. Additionally, the modular representation serves as a simplified and convenient base for in silico investigation of the model and reduces the risk of technical errors during its reuse and extension by concomitant biochemical processes. In summary, this article demonstrates that BioUML can be used as an alternative and robust tool for PBPK modeling.
Collapse
|
14
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
15
|
Fizesan I, Iacovita C, Pop A, Kiss B, Dudric R, Stiufiuc R, Lucaciu CM, Loghin F. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics 2021; 13:2148. [PMID: 34959431 PMCID: PMC8708233 DOI: 10.3390/pharmaceutics13122148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022] Open
Abstract
The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs' hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 μg/cm2). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 μg/cm2. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells.
Collapse
Affiliation(s)
- Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Bela Kiss
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| |
Collapse
|
16
|
Magnetoliposomes Based on Magnetic/Plasmonic Nanoparticles Loaded with Tricyclic Lactones for Combined Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13111905. [PMID: 34834322 PMCID: PMC8625448 DOI: 10.3390/pharmaceutics13111905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Liposome-like nanoarchitectures containing manganese ferrite nanoparticles covered or decorated with gold were developed for application in dual cancer therapy, combining chemotherapy and photothermia. The magnetic/plasmonic nanoparticles were characterized using XRD, UV/Visible absorption, HR-TEM, and SQUID, exhibiting superparamagnetic behavior at room temperature. The average size of the gold-decorated nanoparticles was 26.7 nm for MnFe2O4 with 5–7 nm gold nanospheres. The average size of the core/shell nanoparticles was 28.8 nm for the magnetic core and around 4 nm for the gold shell. Two new potential antitumor fluorescent drugs, tricyclic lactones derivatives of thienopyridine, were loaded in these nanosystems with very high encapsulation efficiencies (higher than 98%). Assays in human tumor cell lines demonstrate that the nanocarriers do not release the antitumor compounds in the absence of irradiation. Moreover, the nanosystems do not cause any effect on the growth of primary (non-tumor) cells (with or without irradiation). The drug-loaded systems containing the core/shell magnetic/plasmonic nanoparticles efficiently inhibit the growth of tumor cells when irradiated with red light, making them suitable for a triggered release promoted by irradiation.
Collapse
|
17
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
18
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
19
|
Day NB, Wixson WC, Shields CW. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021; 11:2172-2196. [PMID: 34522583 PMCID: PMC8424374 DOI: 10.1016/j.apsb.2021.03.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.
Collapse
Key Words
- BW, body weight
- Biomaterials
- CpG, cytosine-phosphate-guanine
- DAMP, damage associated molecular pattern
- Drug delivery
- EPR, enhanced permeability and retention
- FFR, field free region
- HS-TEX, heat-stressed tumor cell exosomes
- HSP, heat shock protein
- ICD, immunogenic cell death
- IVIS, in vivo imaging system
- Immunotherapy
- MICA, MHC class I-related chain A
- MPI, magnetic particle imaging
- Magnetic hyperthermia
- Magnetic nanoparticles
- Microrobotics
- ODNs, oligodeoxynucleotides
- PARP, poly(adenosine diphosphate-ribose) polymerase
- PDMS, polydimethylsiloxane
- PEG, polyethylene glycol
- PLGA, poly(lactic-co-glycolic acid)
- PNIPAM, poly(N-isopropylacrylamide)
- PVA, poly(vinyl alcohol)
- SDF, stromal cell derived-factor
- SID, small implantable device
- SLP, specific loss power
Collapse
Affiliation(s)
- Nicole B Day
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - William C Wixson
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - C Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
20
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
21
|
Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers (Basel) 2021; 13:cancers13133185. [PMID: 34202342 PMCID: PMC8269428 DOI: 10.3390/cancers13133185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent advances in nanotechnology gave rise to trials with various types of metallic nanoparticles (NPs) to enhance the radiosensitization of cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. This work reviews the physical and chemical mechanisms leading to the enhancement of ionizing radiation’s detrimental effects on cells and tissues, as well as the plethora of experimental procedures to study these effects of the so-called “NPs’ radiosensitization”. The paper presents the need to a better understanding of all the phases of actions before applying metallic-based NPs in clinical practice to improve the effect of IR therapy. More physical and biological experiments especially in vivo must be performed and simulation Monte Carlo or mathematical codes based on more accurate models for all phases must be developed. Abstract Many different tumor-targeted strategies are under development worldwide to limit the side effects and improve the effectiveness of cancer therapies. One promising method is to enhance the radiosensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy using metallic nanoparticles (NPs). Radiotherapy with MV photons is more commonly available and applied in cancer clinics than high LET particle radiotherapy, so the addition of high-Z NPs has the potential to further increase the efficacy of photon radiotherapy in terms of NP radiosensitization. Generally, when using X-rays, mainly the inner electron shells are ionized, which creates cascades of both low and high energy Auger electrons. When using high LET particles, mainly the outer shells are ionized, which give electrons with lower energies than when using X-rays. The amount of the produced low energy electrons is higher when exposing NPs to heavy charged particles than when exposing them to X-rays. Since ions traverse the material along tracks, and therefore give rise to a much more inhomogeneous dose distributions than X-rays, there might be a need to introduce a higher number of NPs when using ions compared to when using X-rays to create enough primary and secondary electrons to get the desired dose escalations. This raises the questions of toxicity. This paper provides a review of the fundamental processes controlling the outcome of metallic NP-boosted photon beam and ion beam radiation therapy and presents some experimental procedures to study the biological effects of NPs’ radiosensitization. The overview shows the need for more systematic studies of the behavior of NPs when exposed to different kinds of ionizing radiation before applying metallic-based NPs in clinical practice to improve the effect of IR therapy.
Collapse
Affiliation(s)
- Ioanna Tremi
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Maria Souli
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Mersini Makropoulou
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Correspondence: (A.G.G.); (L.S.)
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence: (A.G.G.); (L.S.)
| |
Collapse
|
22
|
Gupta R, Tomar R, Chakraverty S, Sharma D. Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology. RSC Adv 2021; 11:16942-16954. [PMID: 35479670 PMCID: PMC9032483 DOI: 10.1039/d1ra02376d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
Magnetic hyperthermia-based cancer therapy mediated by magnetic nanomaterials is a promising antitumoral nanotherapy, owning to its power to generate heat under the application of an alternating magnetic field. However, although the ultimate targets of these treatments, the heating potential and its relation with the magnetic behavior of the employed magnetic nanomaterials are rarely studied. Here we provide a bridge between the heating potential and magnetic properties such as anisotropy energy constant and saturation magnetization of the nano-magnets by simultaneous investigation of both hyperthermia and magnetism under a controlled set of variables given by response surface methodology. In the study, we have simultaneously investigated the effect of various synthesis parameters like cation ratio, reaction temperature and time on the magnetic response and heat generation of manganese-doped ferrite nanomaterials synthesized by a simple hydrothermal route. The optimum generation of heat and magnetization is obtained at a cationic ratio of approximately 42 at a temperature of 100 °C for a time period of 4 h. The optimized nanomaterial was then evaluated for in vitro magnetic hyperthermia application for cancer therapy against glioblastoma in terms of cell viability, effect on cellular cytoskeleton and morphological alterations. Furthermore, the correlation between the magnetic properties of the synthesized nanomaterial with its hyperthermia output was also established using K.V.M s variable where K, V and M s are the anisotropy energy constant, volume, and saturation magnetization of the nanomaterial respectively. It was found that the intensity of heat generation decreases with an increase in K.V.M s value, beyond 950 J emu g-1.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Phase 81 Mohali-140306 Punjab India
| | - Ruchi Tomar
- Institute of Nano Science and Technology Knowledge City, Phase 81 Mohali-140306 Punjab India
| | - Suvankar Chakraverty
- Institute of Nano Science and Technology Knowledge City, Phase 81 Mohali-140306 Punjab India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Phase 81 Mohali-140306 Punjab India
| |
Collapse
|
23
|
Peigneux A, Glitscher EA, Charbaji R, Weise C, Wedepohl S, Calderón M, Jimenez-Lopez C, Hedtrich S. Protein corona formation and its influence on biomimetic magnetite nanoparticles. J Mater Chem B 2021; 8:4870-4882. [PMID: 32108191 DOI: 10.1039/c9tb02480h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biomimetic magnetite nanoparticles (BMNPs) synthesized in the presence of MamC, a magnetosome-associated protein from Magnetoccus marinus MC-1, have gained interest for biomedical applications because of their unique magnetic properties. However, their behavior in biological systems, like their interaction with proteins, still has to be evaluated prior to their use in clinics. In this study, doxorubicin (DOXO) as a model drug was adsorbed onto BMNPs to form nanoassemblies. These were incubated with human plasma to trigger protein corona (PC) formation. Proteins from the human plasma stably attached to either BMNPs or DOXO-BMNP nanoassemblies. In particular, fibrinogen was detected as the main component in the PC of DOXO-BMNPs that potentially provides advantages, e.g. protecting the particles from phagocytosis, thus prolonging their circulation time. Adsorption of PC to the BMNPs did not alter their magnetic properties but improved their colloidal stability, thus reducing their toxicity in human macrophages. In addition, PC formation enhanced cellular internalization and did not interfere with DOXO activity. Overall, our data indicate that the adsorption of PC onto DOXO-BMNPs in biological environment even increases their efficiency as drug carrier systems.
Collapse
Affiliation(s)
- Ana Peigneux
- Department of Microbiology, University of Granada, Faculty of Sciences, Campus de Fuentenueva s/n, 18002 Granada, Spain.
| | - Emanuel A Glitscher
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Rawan Charbaji
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Chemistry, Takustr. 3, 14195 Berlin, Germany and POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Concepción Jimenez-Lopez
- Department of Microbiology, University of Granada, Faculty of Sciences, Campus de Fuentenueva s/n, 18002 Granada, Spain.
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2-4, 14195 Berlin, Germany and University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Carter TJ, Agliardi G, Lin FY, Ellis M, Jones C, Robson M, Richard-Londt A, Southern P, Lythgoe M, Zaw Thin M, Ryzhov V, de Rosales RTM, Gruettner C, Abdollah MRA, Pedley RB, Pankhurst QA, Kalber TL, Brandner S, Quezada S, Mulholland P, Shevtsov M, Chester K. Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005241. [PMID: 33734595 DOI: 10.1002/smll.202005241] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/20/2021] [Indexed: 05/27/2023]
Abstract
Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.
Collapse
Affiliation(s)
- Thomas J Carter
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Giulia Agliardi
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Fang-Yu Lin
- UCL Healthcare Biomagnetics Laboratory, 21 Albermarle Street, London, W1S 4BS, UK
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Cancer Sciences Unit, Cancer Research UK Centre, University of Southampton, Somers Building, Southampton, SO16 6YD, UK
| | - Clare Jones
- School of Biomedical Engineering and Imaging Sciences, King's College London (KCL), St Thomas' Hospital, London, SE1 7EH, UK
| | - Mathew Robson
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Angela Richard-Londt
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Paul Southern
- UCL Healthcare Biomagnetics Laboratory, 21 Albermarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited (RCL), London, W1S 4BS, UK
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Vyacheslav Ryzhov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London (KCL), St Thomas' Hospital, London, SE1 7EH, UK
| | - Cordula Gruettner
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, Rostock, D-18119, Germany
| | - Maha R A Abdollah
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El Shorouk City, Misr- Ismalia Desert Road, 11873, Cairo, Egypt
| | - R Barbara Pedley
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Quentin A Pankhurst
- UCL Healthcare Biomagnetics Laboratory, 21 Albermarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited (RCL), London, W1S 4BS, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Sebastian Brandner
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sergio Quezada
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Paul Mulholland
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Maxim Shevtsov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
- Technical University of Munich, Klinikum Rechts der Isar, Ismaninger str. 22, Munich, 81675, Germany
| | - Kerry Chester
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
25
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
26
|
Idiago-López J, Moreno-Antolín E, de la Fuente JM, Fratila RM. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. NANOSCALE ADVANCES 2021; 3:1261-1292. [PMID: 36132873 PMCID: PMC9419263 DOI: 10.1039/d0na00873g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
Bioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situ drug activation, study of cell-nanomaterial interactions, biosensing, etc. Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Eduardo Moreno-Antolín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
27
|
Ngen EJ, Chen Y, Azad BB, Boinapally S, Jacob D, Lisok A, Shen C, Hossain MS, Jin J, Bhujwalla ZM, Pomper MG, Banerjee SR. Prostate-specific membrane antigen (PSMA)-targeted photodynamic therapy enhances the delivery of PSMA-targeted magnetic nanoparticles to PSMA-expressing prostate tumors. Nanotheranostics 2021; 5:182-196. [PMID: 33564617 PMCID: PMC7868004 DOI: 10.7150/ntno.52361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/31/2020] [Indexed: 02/03/2023] Open
Abstract
Enhanced vascular permeability in tumors plays an essential role in nanoparticle delivery. Prostate-specific membrane antigen (PSMA) is overexpressed on the epithelium of aggressive prostate cancers (PCs). Here, we evaluated the feasibility of increasing the delivery of PSMA-targeted magnetic nanoparticles (MNPs) to tumors by enhancing vascular permeability in PSMA(+) PC tumors with PSMA-targeted photodynamic therapy (PDT). Method: PSMA(+) PC3 PIP tumor-bearing mice were given a low-molecular-weight PSMA-targeted photosensitizer and treated with fluorescence image-guided PDT, 4 h after. The mice were then given a PSMA-targeted MNP immediately after PDT and monitored with fluorescence imaging and T2-weighted magnetic resonance imaging (T2-W MRI) 18 h, 42 h, and 66 h after MNP administration. Untreated PSMA(+) PC3 PIP tumor-bearing mice were used as negative controls. Results: An 8-fold increase in the delivery of the PSMA-targeted MNPs was detected using T2-W MRI in the pretreated tumors 42 h after PDT, compared to untreated tumors. Additionally, T2-W MRIs revealed enhanced peripheral intra-tumoral delivery of the PSMA-targeted MNPs. That finding is in keeping with two-photon microscopy, which revealed higher vascular densities at the tumor periphery. Conclusion: These results suggest that PSMA-targeted PDT enhances the delivery of PSMA-targeted MNPs to PSMA(+) tumors by enhancing the vascular permeability of the tumors.
Collapse
Affiliation(s)
- Ethel J Ngen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ying Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Babak Behnam Azad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Srikanth Boinapally
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Desmond Jacob
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chentian Shen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mir S Hossain
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiefu Jin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sangeeta R Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,The F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
28
|
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. NANOMATERIALS 2020; 11:nano11010040. [PMID: 33375292 PMCID: PMC7823308 DOI: 10.3390/nano11010040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
The cancer therapy with the lowest possible toxicity is today an issue that raises major difficulties in treating malignant tumors because chemo- and radiotherapy currently used in this field have a high degree of toxicity and in many cases are ineffective. Therefore, alternative solutions are rapidly being sought in cancer therapy, in order to increase efficacy and a reduce or even eliminate toxicity to the body. One of the alternative methods that researchers believe may be the method of the future in cancer therapy is superparamagnetic hyperthermia (SPMHT), because it can be effective in completely destroying tumors while maintaining low toxicity or even without toxicity on the healthy tissues. Superparamagnetic hyperthermia uses the natural thermal effect in the destruction of cancer cells, obtained as a result of the phenomenon of superparamagnetic relaxation of the magnetic nanoparticles (SPMNPs) introduced into the tumor; SPMNPs can heat the cancer cells to 42-43 °C under the action of an external alternating magnetic field with frequency in the range of hundreds of kHz. However, the effectiveness of this alternative method depends very much on finding the optimal conditions in which this method must be applied during the treatment of cancer. In addition to the type of magnetic nanoparticles and the biocompatibility with the biological tissue or nanoparticles biofunctionalization that must be appropriate for the intended purpose a key parameter is the size of the nanoparticles. Also, establishing the appropriate parameters for the external alternating magnetic field (AMF), respectively the amplitude and frequency of the magnetic field are very important in the efficiency and effectiveness of the magnetic hyperthermia method. This paper presents a 3D computational study on specific loss power (Ps) and heating temperature (ΔT) which allows establishing the optimal conditions that lead to efficient heating of Fe3O4 nanoparticles, which were found to be the most suitable for use in superparamagnetic hyperthermia (SPMHT), as a non-invasive and alternative technique to chemo- and radiotherapy. The size (diameter) of the nanoparticles (D), the amplitude of the magnetic field (H) and the frequency (f) of AMF were established in order to obtain maximum efficiency in SPMHT and rapid heating of magnetic nanoparticles at the required temperature of 42-43 °C for irreversible destruction of tumors, without affecting healthy tissues. Also, an analysis on the amplitude of the AMF is presented, and how its amplitude influences the power loss and, implicitly, the heating temperature, observables necessary in SPMHT for the efficient destruction of tumor cells. Following our 3D study, we found for Fe3O4 nanoparticles the optimal diameter of ~16 nm, the optimal range for the amplitude of the magnetic field of 10-25 kA/m and the optimal frequency within the biologically permissible limit in the range of 200-500 kHz. Under the optimal conditions determined for the nanoparticle diameter of 16.3 nm, the magnetic field of 15 kA/m and the frequency of 334 kHz, the magnetite nanoparticles can be quickly heated to obtain the maximum hyperthermic effect on the tumor cells: in only 4.1-4.3 s the temperature reaches 42-43 °C, required in magnetic hyperthermia, with major benefits in practical application in vitro and in vivo, and later in clinical trials.
Collapse
|
29
|
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020; 15:10331-10347. [PMID: 33376324 PMCID: PMC7755349 DOI: 10.2147/ijn.s281029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer patient death in the world. There are many treatment options for lung cancer, including surgery, radiation therapy, chemotherapy, targeted therapy, and combined therapy. Despite significant progress has been made in the diagnosis and treatment of lung cancer during the past few decades, the prognosis is still unsatisfactory. Purpose To resolve the problem of chemotherapy failure, we developed a magnetite-based nanomedicine for chemotherapy acting synergistically with loco-regional hyperthermia. Methods The targeting carrier consisted of a complex of superparamagnetic iron oxide (SPIO) and poly(sodium styrene sulfonate) (PSS) at the core and a layer-by-layer shell with cisplatin (CDDP), together with methotrexate – human serum albumin conjugate (MTX−HSA conjugate) for lung cancer-specific targeting, referred to hereafter as SPIO@PSS/CDDP/HSA−MTX nanoparticles (NPs). Results SPIO@PSS/CDDP/HSA−MTX NPs had good biocompatibility and stability in physiological solutions. Furthermore, SPIO@PSS/CDDP/HSA−MTX NPs exhibited a higher temperature increase rate than SPIO nanoparticles under irradiation by a radiofrequency (RF) generator. Therefore, SPIO@PSS/CDDP/HSA−MTX NPs could be used as a hyperthermia inducer under RF exposure after nanoparticles preferentially targeted and then accumulated at tumor sites. In addition, SPIO@PSS/CDDP/HSA−MTX NPs were developed to be used during combined chemotherapy and hyperthermia therapy, exhibiting a synergistic anticancer effect better than the effect of monotherapy. Conclusion Both in vitro and in vivo results suggest that the designed SPIO@PSS/CDDP/HSA−MTX NPs are a powerful candidate nanoplatform for future antitumor treatment strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Li J, Zhang J, Guo Z, Jiang H, Zhang H, Wang X. Self-Assembly Fabrication of Honeycomb-like Magnetic-Fluorescent Fe 3O 4-QDs Nanocomposites for Bimodal Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14471-14477. [PMID: 33231462 DOI: 10.1021/acs.langmuir.0c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic-fluorescent nanocomposites have a tremendous potential in biomedicine realms as a revolutionary dual-modality probe tool for more accurate medical detection. However, complicated and inefficient postprocesses pose obstacles to obtaining high-quality magnetic-fluorescent nanocomposites. Thus, the fabrication of magnetic-fluorescent functional nanocomposites via a simple, effective, and ideal method remains a challenge and is still waiting to be tapped. The new synthesis approaches are becoming impending demands and probably enable us to address these above-mentioned problems. In this contribution, we present a novel self-assembly synthesis route for the construction of magnetic-fluorescent bimodal imaging nanocomposites rather than adopting sophisticated postpreparative processes. The Fe3O4 and quatum dots (QDs) nanocomposites were cross-linked fleetly by cerium(III) ion driven coordination bonds in which the cerium(III) ions served as the cross-connecting node and the carboxylate groups acted as bridging ligands. The potential application for dual-modality imaging capability was validated on tumor-bearing mice. This ingenious strategy was extremely efficient and handy for the magnetic-fluorescent Fe3O4-QDs nanocomposite construction. Significantly, our cerium(III) ion driven self-assembly method probably has a wide applicability for nanoparticles and organic molecules containing carboxyl groups but extensive explorations are still necessary.
Collapse
Affiliation(s)
- Jincheng Li
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jialei Zhang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zengchao Guo
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xuemei Wang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
31
|
Sahin O, Meiyazhagan A, Ajayan PM, Krishnan S. Immunogenicity of Externally Activated Nanoparticles for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12123559. [PMID: 33260534 PMCID: PMC7760497 DOI: 10.3390/cancers12123559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Recent advances in treating cancer via stimulating an anti-tumor immune system response have resulted in extraordinary results for lymphomas and leukemias; however these therapies have not performed well in solid tumors. External beam therapies, such as radiotherapy, hyperthermia, and photodynamic therapy, that are clinically used for solid tumors are now being explored in combination with nanoparticle systems to stimulate a long-term anti-tumor immune system response. In this review, we detail the novel nanoparticle complexes that are being researched to activate an anti-tumor immune response in combination with external beam therapy in both the preclinical and clinical settings. Abstract Nanoparticles activated by external beams, such as ionizing radiation, laser light, or magnetic fields, have attracted significant research interest as a possible modality for treating solid tumors. From producing hyperthermic conditions to generating reactive oxygen species, a wide range of externally activated mechanisms have been explored for producing cytotoxicity within tumors with high spatiotemporal control. To further improve tumoricidal effects, recent trends in the literature have focused on stimulating the immune system through externally activated treatment strategies that result in immunogenic cell death. By releasing inflammatory compounds known to initiate an immune response, treatment methods can take advantage of immune system pathways for a durable and robust systemic anti-tumor response. In this review, we discuss recent advancements in radiosensitizing and hyperthermic nanoparticles that have been tuned for promoting immunogenic cell death. Our review covers both preclinical and clinical results, as well as an overview of possible future work.
Collapse
Affiliation(s)
- Onur Sahin
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, USA; (O.S.); (P.M.A.)
| | - Ashokkumar Meiyazhagan
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, USA; (O.S.); (P.M.A.)
- Correspondence: (A.M.); (S.K.)
| | - Pulickel M. Ajayan
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, USA; (O.S.); (P.M.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL 32224, USA
- Correspondence: (A.M.); (S.K.)
| |
Collapse
|
32
|
Nabavinia M, Beltran-Huarac J. Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:8172-8187. [DOI: 10.1021/acsabm.0c00947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahboubeh Nabavinia
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| | - Juan Beltran-Huarac
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| |
Collapse
|
33
|
Yang SJ, Tseng SY, Wang CH, Young TH, Chen KC, Shieh MJ. Magnetic nanomedicine for CD133-expressing cancer therapy using locoregional hyperthermia combined with chemotherapy. Nanomedicine (Lond) 2020; 15:2543-2561. [DOI: 10.2217/nnm-2020-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Cells with CD133 overexpression, a theoretical cancer stem cells (CSCs) marker, have been shown to induce colorectal cancer (CRC) initiation and relapse. Therefore, the detection and treatment of CSCs are the most important factors in overcoming CRC. Materials & methods: Herein, we developed a magnetite-based nanomedicine (superparamagnetic iron oxide@poly(sodium styrene sulfonate)/irinotecan/human serum albumin-anti-CD133 nanoparticle) using loco-regional hyperthermia combined with chemotherapy for CRC- and CSC-specific targeting treatment. Results: The designed nanoparticles were highly biocompatible and exhibited a higher temperature increase rate under radiofrequency generator irradiation. The nanoparticles could be used as a T2-weighted magnetic resonance imaging contrast media, and also applied during hyperthermia and chemotherapy to display a synergistic anticancer effect. Conclusion: Therefore, the superparamagnetic iron oxide@poly(sodium styrene sulfonate)/irinotecan/human serum albumin-anti-CD133 nanoparticles are a powerful candidate for future antitumor strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Shu-Yi Tseng
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No.661, Bannan Rd., Zhonghe Dist., New Taipei City 235, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Surgery, National Taiwan University Hospital & College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital & College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
34
|
Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. NANOMATERIALS 2020; 10:nano10101919. [PMID: 32993001 PMCID: PMC7600442 DOI: 10.3390/nano10101919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
A combination of carbon ions/photons irradiation and hyperthermia as a novel therapeutic approach for the in-vitro treatment of pancreatic cancer BxPC3 cells is presented. The radiation doses used are 0–2 Gy for carbon ions and 0–7 Gy for 6 MV photons. Hyperthermia is realized via a standard heating bath, assisted by magnetic fluid hyperthermia (MFH) that utilizes magnetic nanoparticles (MNPs) exposed to an alternating magnetic field of amplitude 19.5 mTesla and frequency 109.8 kHz. Starting from 37 °C, the temperature is gradually increased and the sample is kept at 42 °C for 30 min. For MFH, MNPs with a mean diameter of 19 nm and specific absorption rate of 110 ± 30 W/gFe3o4 coated with a biocompatible ligand to ensure stability in physiological media are used. Irradiation diminishes the clonogenic survival at an extent that depends on the radiation type, and its decrease is amplified both by the MNPs cellular uptake and the hyperthermia protocol. Significant increases in DNA double-strand breaks at 6 h are observed in samples exposed to MNP uptake, treated with 0.75 Gy carbon-ion irradiation and hyperthermia. The proposed experimental protocol, based on the combination of hadron irradiation and hyperthermia, represents a first step towards an innovative clinical option for pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Brero
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| | - Martin Albino
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Antonio Antoccia
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Paolo Arosio
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Matteo Avolio
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Berardinelli
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Daniela Bettega
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Paola Calzolari
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Mario Ciocca
- Fondazione CNAO, 27100 Pavia, Italy; (M.C.); (A.F.)
| | - Maurizio Corti
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | | | - Salvatore Gallo
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Flavia Groppi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Andrea Guerrini
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Cristina Lenardi
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
- C.I.Ma.I.Na., Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Simone Manenti
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Renato Marchesini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Manuel Mariani
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Orsini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Emanuele Pignoli
- Fondazione IRCSS Istituto Nazionale dei tumori, 20133 Milano, Italy;
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Ivan Veronese
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Alessandro Lascialfari
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| |
Collapse
|
35
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
36
|
Getiren B, Çıplak Z, Gökalp C, Yıldız N. NIR
‐responsive
Fe
3
O
4
@
PPy
nanocomposite for efficient potential use in photothermal therapy. J Appl Polym Sci 2020. [DOI: 10.1002/app.49343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bengü Getiren
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Zafer Çıplak
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Ceren Gökalp
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Nuray Yıldız
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| |
Collapse
|
37
|
Wang R, Liu J, Liu Y, Zhong R, Yu X, Liu Q, Zhang L, Lv C, Mao K, Tang P. The cell uptake properties and hyperthermia performance of Zn 0.5Fe 2.5O 4/SiO 2 nanoparticles as magnetic hyperthermia agents. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191139. [PMID: 32218945 PMCID: PMC7029910 DOI: 10.1098/rsos.191139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/14/2019] [Indexed: 05/14/2023]
Abstract
Zn0.5Fe2.5O4 nanoparticles (NPs) of 22 nm are synthesized by a one-pot approach and coated with silica for magnetic hyperthermia agents. The NPs exhibit superparamagnetic characteristics, high-specific absorption rate (SAR) (1083 wg-1, f = 430 kHz, H = 27 kAm-1), large saturation magnetization (M s = 85 emu g-1), excellent colloidal stability and low cytotoxicity. The cell uptake properties have been investigated by Prussian blue staining, transmission electron microscopy and the inductively coupled plasma-mass spectrometer, which resulted in time-dependent and concentration-dependent internalization. The internalization appeared between 0.5 and 2 h, the NPs were mainly located in the lysosomes and kept in good dispersion after incubation with human osteosarcoma MG-63 cells. Then, the relationship between cell uptake and magnetic hyperthermia performance was studied. Our results show that the hyperthermia efficiency was related to the amount of internalized NPs in the tumour cells, which was dependent on the concentration and incubation time. Interestingly, the NPs could still induce tumour cells to apoptosis/necrosis when extracellular NPs were rinsed, but the cell kill efficiency was lower than that of any rinse group, which indicated that local temperature rise was the main factor that induced tumour cells to death. Our findings suggest that this high SAR and biocompatible silica-coated Zn0.5Fe2.O4 NPs could serve as new agents for magnetic hyperthermia.
Collapse
Affiliation(s)
- Runsheng Wang
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
- Department of Orthopedics, The Third Affiliated Hospital of Guangxi Traditional Chinese Medicine University, Liuzhou, Guangxi Zhuang Autonomous Region 545001, People's Republic of China
| | - Jianheng Liu
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Yihao Liu
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Rui Zhong
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Xiang Yu
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Qingzu Liu
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Li Zhang
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Chenhui Lv
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Keya Mao
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Peifu Tang
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| |
Collapse
|
38
|
Zhuang H, Lin R, Liu Y, Zhang M, Zhai D, Huan Z, Wu C. Three-Dimensional-Printed Bioceramic Scaffolds with Osteogenic Activity for Simultaneous Photo/Magnetothermal Therapy of Bone Tumors. ACS Biomater Sci Eng 2019; 5:6725-6734. [PMID: 33423490 DOI: 10.1021/acsbiomaterials.9b01095] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the postoperative treatment of bone cancer, biomaterials should possess an antitumor effect and simultaneous repair ability of bone defects. Compared with single photothermal treatment or magnetothermal treatment, photo/magnetothermal joint treatment represents a more high-efficient strategy to kill tumor cells. In this work, a 3D-printed bioceramic scaffold with a photo/magnetothermal effect was successfully designed and fabricated, which exhibited the function of killing tumor cells and excellent osteogenic bioactivity, via incorporating an Fe element into akermanite (AKT) bioceramics. After doping with ferric elements, the AKT scaffolds possessed significantly enhanced compressive strength and desirable ferromagnetic property. The ferric elements endowed the AKT scaffolds with excellent photo/magnetothermal effects, and hence the scaffolds could efficiently kill tumor cells in vitro under mild laser power density and magnetic field. In addition, the Fe-doped AKT bioceramic scaffolds significantly promoted cell proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells as compared with the original AKT scaffolds without Fe elements. The results suggest that Fe-doped bioceramic scaffolds with both photo/magnetothermal effect and in vitro osteogenic bioactivity could be a promising biomaterial for the synergistic therapy of bone cancers.
Collapse
Affiliation(s)
- Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Rongcai Lin
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road, Nanjing 210006, People's Republic of China
| | - Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| |
Collapse
|
39
|
Oltolina F, Colangelo D, Miletto I, Clemente N, Miola M, Verné E, Prat M, Follenzi A. Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1575. [PMID: 31698869 PMCID: PMC6915337 DOI: 10.3390/nano9111575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Tumor-targeted drug-loaded nanocarriers represent innovative and attractive tools for cancer therapy. Several magnetic nanoparticles (MNPs) were analyzed as potential tumor-targeted drug-loaded nanocarriers after functionalization with anti-Met oncogene (anti-Met/HGFR) monoclonal antibody (mAb) and doxorubicin (DOXO). Their cytocompatibility, stability, immunocompetence (immunoprecipitation), and their interactions with cancer cells in vitro (Perl's staining, confocal microscopy, cytotoxic assays: MTT, real time toxicity) and with tumors in vivo (Perl's staining) were evaluated. The simplest silica- and calcium-free mAb-loaded MNPs were the most cytocompatible, the most stable, and showed the best immunocompetence and specificity. These mAb-functionalized MNPs specifically interacted with the surface of Met/HGFR-positive cells, and not with Met/HGFR-negative cells; they were not internalized, but they discharged in the targeted cells DOXO, which reached the nucleus, exerting cytotoxicity. The presence of mAbs on DOXO-MNPs significantly increased their cytotoxicity on Met/HGFR-positive cells, while no such effect was detectable on Met/HGFR-negative cells. Bare MNPs were biocompatible in vivo; mAb presence on MNPs induced a better dispersion within the tumor mass when injected in situ in Met/HGFR-positive xenotumors in NOD/SCID-γnull mice. These MNPs may represent a new and promising carrier for in vivo targeted drug delivery, in which applied gradient and alternating magnetic fields can enhance targeting and induce hyperthermia respectively.
Collapse
Affiliation(s)
- Francesca Oltolina
- Laboratory of Histology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Donato Colangelo
- Laboratory of Pharmacology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Ivana Miletto
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15100 Alessandria, Italy
| | - Nausicaa Clemente
- Laboratory of Immunology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Marta Miola
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Maria Prat
- Laboratory of Histology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| | - Antonia Follenzi
- Laboratory of Histology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| |
Collapse
|
40
|
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019; 11:E395. [PMID: 31390773 PMCID: PMC6723246 DOI: 10.3390/pharmaceutics11080395] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa-BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Guillermo Iglesias
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain.
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain.
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| |
Collapse
|
41
|
Radiotherapy for Melanoma: More than DNA Damage. Dermatol Res Pract 2019; 2019:9435389. [PMID: 31073304 PMCID: PMC6470446 DOI: 10.1155/2019/9435389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Despite its reputation as a radioresistant tumour, there is evidence to support a role for radiotherapy in patients with melanoma and we summarise current clinical practice. Melanoma is a highly immunogenic tumour and in this era of immunotherapy, there is renewed interest in the potential of irradiation, not only as an adjuvant and palliative treatment, but also as an immune stimulant. It has long been known that radiation causes not only DNA strand breaks, apoptosis, and necrosis, but also immunogenic modulation and cell death through the induction of dendritic cells, cell adhesion molecules, death receptors, and tumour-associated antigens, effectively transforming the tumour into an individualised vaccine. This immune response can be enhanced by the application of clinical hyperthermia as evidenced by randomised trial data in patients with melanoma. The large fraction sizes used in cranial radiosurgery and stereotactic body radiotherapy are more immunogenic than conventional fractionation, which provides additional radiobiological justification for these techniques in this disease entity. Given the immune priming effect of radiotherapy, there is a strong but complex biological rationale and an increasing body of evidence for synergy in combination with immune checkpoint inhibitors, which are now first-line therapy in patients with recurrent or metastatic melanoma. There is great potential to increase local control and abscopal effects by combining radiotherapy with both immunotherapy and hyperthermia, and a combination of all three modalities is suggested as the next important trial in this refractory disease.
Collapse
|
42
|
Veloso SRS, Magalhães CAB, Rodrigues ARO, Vilaça H, Queiroz MJRP, Martins JA, Coutinho PJG, Ferreira PMT, Castanheira EMS. Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers. Phys Chem Chem Phys 2019; 21:10377-10390. [DOI: 10.1039/c9cp00352e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel peptide-based magnetogels, containing MnFe2O4 nanoparticles of 20 nm size, were developed and successfully tested as nanocarriers for antitumor drugs.
Collapse
Affiliation(s)
| | | | | | - H. Vilaça
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | | | - J. A. Martins
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | | | | | | |
Collapse
|
43
|
Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Fiorentini G, Sarti D, Milandri C, Dentico P, Mambrini A, Fiorentini C, Mattioli G, Casadei V, Guadagni S. Modulated Electrohyperthermia in Integrative Cancer Treatment for Relapsed Malignant Glioblastoma and Astrocytoma: Retrospective Multicenter Controlled Study. Integr Cancer Ther 2019; 18:1534735418812691. [PMID: 30580645 PMCID: PMC7240877 DOI: 10.1177/1534735418812691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There are interesting studies on glioma therapy with modulated electrohyperthermia (mEHT), which combines heat therapy with an electric field. Clinical researchers not only found the mEHT method feasible for palliation but also reported evidence of therapeutic response. PURPOSE To study the efficacy and safety of mEHT for the treatment of relapsed malignant glioma and astrocytoma versus best supportive care (BSC). METHODS We collected data retrospectively on 149 patients affected by malignant glioma and astrocytoma. Inclusion criteria were informed consent signed; >18 years old; histological diagnosis of malignant glioma or astrocytoma; relapsed after surgery, adjuvant temozolomide-based chemotherapy, and radiotherapy; and indication for treatment with mEHT in palliative setting. mEHT was performed with capacitive coupling technique keeping the skin surface at 26°C and the tumor temperature at 40°C to 42.5°C for > 90% of treatment duration (20-60 minutes). The applied power was 40 to 150 W using a step-up heating protocol. Results from patients treated with mEHT were compared with those treated with BSC. RESULTS A total of 149 consecutive patients were enrolled in the study, 111 (74%) had glioblastoma multiforme (GBM), and 38 (26%) had astrocytoma (AST). mEHT was performed for 28 (25%) of GBM and 24 (63%) of AST patients. Tumor response at the 3-month follow-up was observed in 29% and 48% of GBM and AST patients after mEHT, and in 4% and 10% of GBM and AST patients after BSC, respectively. The survival rate at first and second year in the mEHT group was 77.3% and 40.9% for AST, and 61% and 29% for GBM, respectively. The 5-year overall survival of AST was 83% after mEHT versus 25% after BSC and 3.5% after mEHT versus 1.2% after BSC for GBM. The median overall survival of mEHT was 14 months (range 2-108 months) for GBM and 16.5 months (range 3-156 months) for the AST group. We observed 4 long-term survivors in the AST and 2 in the GBM group. Two of the long survivors in AST and 1 in GBM group were treated by mEHT. CONCLUSIONS mEHT in integrative therapy may have a promising role in the treatment and palliation of relapsed GBM and AST.
Collapse
Affiliation(s)
| | - Donatella Sarti
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord”, Pesaro, Italy
| | - Carlo Milandri
- Nuovo Ospedale San Giuseppe, ASL Toscana
Centro, Empoli, Florence, Italy
| | - Patrizia Dentico
- Nuovo Ospedale San Giuseppe, ASL Toscana
Centro, Empoli, Florence, Italy
| | | | | | | | - Virginia Casadei
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord”, Pesaro, Italy
| | | |
Collapse
|
45
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
46
|
Veloso SRS, Ferreira PMT, Martins JA, Coutinho PJG, Castanheira EMS. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018; 10:E145. [PMID: 30181472 PMCID: PMC6161300 DOI: 10.3390/pharmaceutics10030145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
Drug delivery nanosystems have been thriving in recent years as a promising application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy targeting and add further features such as enhanced magnetic resonance imaging, biosensing and hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new generation of nanosystems, the magnetogels, which combine the advantages of both nanomaterials, apart from showing interesting properties unobtainable when both systems are separated. The presence of magnetic nanoparticles allows the control and targeting of the nanosystem to a specific location by an externally applied magnetic field gradient. Moreover, the application of an alternating magnetic field (AMF) not only allows therapy through hyperthermia, but also enhances drug delivery and chemotherapeutic desired effects, which combined with the hydrogel specificity, confer a high therapeutic efficiency. Therefore, the present review summarizes the magnetogels properties and critically discusses their current and recent biomedical applications, apart from an outlook on future goals and perspectives.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
47
|
Chee HL, Gan CRR, Ng M, Low L, Fernig DG, Bhakoo KK, Paramelle D. Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging. ACS NANO 2018; 12:6480-6491. [PMID: 29979569 DOI: 10.1021/acsnano.7b07572] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biocompatibility and performance of reagents for in vivo contrast-enhanced magnetic resonance imaging (MRI) are essential for their translation to the clinic. The quality of the surface coating of nanoparticle-based MRI contrast agents, such as ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs), is critical to ensure high colloidal stability in biological environments, improved magnetic performance, and dispersion in circulatory fluids and tissues. Herein, we report the design of a library of 21 peptides and ligands and identify highly stable self-assembled monolayers on the USPIONs' surface. A total of 86 different peptide-coated USPIONs are prepared and selected using several stringent criteria, such as stability against electrolyte-induced aggregation in physiological conditions, prevention of nonspecific binding to cells, and absence of cellular toxicity and contrast-enhanced in vivo MRI. The bisphosphorylated peptide 2PG-S*VVVT-PEG4-ol provides the highest biocompatibility and performance for USPIONs, with no detectable toxicity or adhesion to live cells. The 2PG-S*VVVT-PEG4-ol-coated USPIONs show enhanced magnetic resonance properties, r1 (2.4 mM-1·s-1) and r2 (217.8 mM-1·s-1) relaxivities, and greater r2/ r1 relaxivity ratios (>90) when compared to those of commercially available MRI contrast agents. Furthermore, we demonstrate the utility of 2PG-S*VVVT-PEG4-ol-coated USPIONs as a T2 contrast agent for in vivo MRI applications. High contrast enhancement of the liver is achieved as well as detection of liver tumors, with significant improvement of the contrast-to-noise ratio of tumor-to-liver contrast. It is envisaged that the reported peptide-coated USPIONs have the potential to allow for the specific targeting of tumors and hence early detection of cancer by MRI.
Collapse
Affiliation(s)
- Heng Li Chee
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way , Innovis #08-03, 138634 Singapore
| | - Ching Ruey R Gan
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way , Innovis #08-03, 138634 Singapore
| | - Michael Ng
- Singapore Bioimaging Consortium, A*STAR (Agency for Science, Technology and Research) , 11 Biopolis Way , 138667 Singapore
| | - Lionel Low
- Singapore Immunology Network , A*STAR (Agency for Science, Technology and Research) , 8a Biomedical Grove , 138648 Singapore
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Liverpool L69 7ZB , United Kingdom
| | - Kishore K Bhakoo
- Singapore Bioimaging Consortium, A*STAR (Agency for Science, Technology and Research) , 11 Biopolis Way , 138667 Singapore
| | - David Paramelle
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way , Innovis #08-03, 138634 Singapore
| |
Collapse
|
48
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
49
|
Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 2018; 154:147-157. [DOI: 10.1016/j.biomaterials.2017.10.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/22/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
50
|
Xing H, Wang Z, Shao D, Chang Z, Ge M, Li L, Wu M, Yan Z, Dong W. Janus nanocarriers for magnetically targeted and hyperthermia-enhanced curcumin therapy of liver cancer. RSC Adv 2018; 8:30448-30454. [PMID: 35546840 PMCID: PMC9085404 DOI: 10.1039/c8ra05694c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/19/2018] [Indexed: 01/05/2023] Open
Abstract
Curcumin is regarded as a promising chemotherapeutic agent due to its anti-cancer activity and excellent biosafety. Nevertheless, the poor bioavailability and insufficient therapeutic efficacy have limited its further application in the clinic. Hence, we designed Janus magnetic mesoporous silica nanoparticles (Janus M-MSNs) for magnetically targeted and hyperthermia-enhanced curcumin treatment of liver cancer. In this study, curcumin was loaded into the silica components of Janus M-MSNs via surface-decorated pH-sensitive groups. Janus M-MSNs-Cur exhibited superior superparamagnetic properties, high curcumin loading ability and a tumor microenvironment-responsive curcumin release fashion. Additionally, an external magnetic field promoted the anti-tumor effectiveness of Janus M-MSNs-Cur through increasing the cellular internalization of Janus M-MSNs-Cur. More importantly, magnetic hyperthermia therapy supplemented the chemotherapeutic effect through a synergistic effect. Our outcomes demonstrated that Janus M-MSNs-Cur possessed a high therapeutic efficiency and excellent biosafety both in vitro and in vivo, indicating that Janus M-MSNs-Cur might be a promising therapeutic agent for liver cancer treatment. Curcumin is regarded as a promising chemotherapeutic agent due to its anti-cancer activity and excellent biosafety.![]()
Collapse
Affiliation(s)
- Hao Xing
- School of Communication and Information Engineering
- Shanghai University
- Shanghai 200444
- China
- CAS Key Laboratory of Bio-Medical Diagnostics
| | - Zheng Wang
- School of Communication and Information Engineering
- Shanghai University
- Shanghai 200444
- China
- CAS Key Laboratory of Bio-Medical Diagnostics
| | - Dan Shao
- CAS Key Laboratory of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- China
| | - Zhimin Chang
- CAS Key Laboratory of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- China
| | - Mingfeng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- China
| | - Li Li
- CAS Key Laboratory of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- China
| | - Mingdi Wu
- CAS Key Laboratory of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- China
| | - Zhuangzhi Yan
- School of Communication and Information Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Wenfei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- China
| |
Collapse
|