1
|
Gu L, Pillay RP, Aronson R, Kaur M. Cholesteryl ester transfer protein knock-down in conjunction with a cholesterol-depleting agent decreases tamoxifen resistance in breast cancer cells. IUBMB Life 2024; 76:712-730. [PMID: 38733508 DOI: 10.1002/iub.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 05/13/2024]
Abstract
The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. CETP knock-down resulted in a >50% decrease in cell proliferation in both 'estrogen receptor-positive' (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and 'triple-negative' breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of CETP together with the combination treatment of tamoxifen (5 μM) and acetyl plumbagin (a cholesterol-depleting agent) (5 μM) resulted in twofold to threefold increase in apoptosis in both cell lines. CETP knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT2 Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-CETP knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated CETP's role as a cancer survival gene as knock-down of CETP stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.
Collapse
Affiliation(s)
- Liang Gu
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruvesh Pascal Pillay
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruth Aronson
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mandeep Kaur
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Wang WJ, Gao L, Wang S, Huang W, Meng XY, Hu H, Chen Z, Sun J, Yuan Y, Zhou Y, Diao X, Huang R, Li J, Chen XH. Discovery of Orally Bioavailable and Potent CDK9 Inhibitors for Targeting Transcription Regulation in Triple-Negative Breast Cancer. J Med Chem 2024; 67:10035-10056. [PMID: 38885173 DOI: 10.1021/acs.jmedchem.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, effective therapies for TNBC are very limited and remain a significant unmet clinical need. Targeting the transcription-regulating cyclin-dependent kinase 9 (CDK9) has emerged as a promising avenue for therapeutic treatment of TNBC. Herein, we report the design, synthesis, optimization, and evaluation of a new series of aminopyrazolotriazine compounds as orally bioavailable, potent, and CDK9/2 selectivity-improved inhibitors, enabling efficacious inhibition of TNBC cell growth, as well as notable antitumor effect in TNBC models. The compound C35 demonstrated low-nanomolar potency with substantially improved CDK9/2 selectivity, downregulated the CDK9-downstream targets (e.g., MCL-1), and induced apoptosis in TNBC cell lines. Moreover, with the desired oral bioavailability, oral administration of C35 could significantly suppress the tumor progression in two TNBC mouse models. This study demonstrates that target transcriptional regulation is an effective strategy and holds promising potential as a targeted therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Wen-Jing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Gao
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Simei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensi Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yu Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziqiang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yali Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Bartsch R, Rinnerthaler G, Petru E, Egle D, Gnant M, Balic M, Sliwa T, Singer C. Updated Austrian treatment algorithm for metastatic triple-negative breast cancer. Wien Klin Wochenschr 2024; 136:347-361. [PMID: 37682349 PMCID: PMC11156740 DOI: 10.1007/s00508-023-02254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
Approximately 15% of newly diagnosed breast cancer patients have neither hormone receptors expression nor HER2 overexpression and/or HER2/neu gene amplification. This subtype of breast cancer is known as Triple Negative Breast Cancer (TNBC), and carries a significantly elevated risk of local and distant recurrence. In comparison with other breast cancer subtypes, there is a higher rate of visceral and brain metastases. The majority of metastases of TNBC are diagnosed within three years after initial breast cancer diagnosis. While there have been major advances in hormone-receptor- positive and in human epidermal growth factor receptor 2 (HER2)-positive disease over the past two decades, only limited improvements in outcomes for patients with triple negative breast cancer (TNBC) have been observed. A group of Austrian breast cancer specialists therefore convened an expert meeting to establish a comprehensive clinical risk-benefit profile of available mTNBC therapies and discuss the role sacituzumab govitecan may play in the treatment algorithm of the triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gabriel Rinnerthaler
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Edgar Petru
- Department of Gynecology and Obstetrics, Division of Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marija Balic
- Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Thamer Sliwa
- 3rd Medical Department, Hematology and Oncology, Hanusch Hospital, Heinrich-Collin-Straße 30, 1140, Vienna, Austria
| | - Christian Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Rezqallah A, Torres-Esquius S, Llop-Guevara A, Cruellas M, Martinez MT, Romey M, Denkert C, Serra V, Chirivella I, Balmaña J. Two Germline Pathogenic Variants in Cancer Susceptibility Genes and Their Null Implication in Breast Cancer Pathogenesis: The Importance of Tumoral Homologous Recombination Deficiency Testing. JCO Precis Oncol 2024; 8:e2300446. [PMID: 38513169 DOI: 10.1200/po.23.00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/23/2024] Open
Abstract
Homologous recombination proficiency in patients with breast cancer despite germline PALB2/RAD51C pathogenic variants.
Collapse
Affiliation(s)
- Alejandra Rezqallah
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mara Cruellas
- Medical Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María T Martinez
- Medical Oncology Department, INCLIVA Biomedical Research Institute, Hospital Clínico de València, University of Valencia, Valencia, Spain
| | - Marcel Romey
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Isabel Chirivella
- Medical Oncology Department, INCLIVA Biomedical Research Institute, Hospital Clínico de València, University of Valencia, Valencia, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
6
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Jan N, Sofi S, Qayoom H, Haq BU, Shabir A, Mir MA. Targeting breast cancer stem cells through retinoids: A new hope for treatment. Crit Rev Oncol Hematol 2023; 192:104156. [PMID: 37827439 DOI: 10.1016/j.critrevonc.2023.104156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Breast cancer is a complex and diverse disease accounting for nearly 30% of all cancers diagnosed in females. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. With over half a million deaths annually, it is imperative to explore new therapeutic approaches to combat the disease. Within a breast tumor, a small sub-population of heterogeneous cells, with a unique ability of self-renew and differentiation and responsible for tumor formation, initiation, and recurrence are referred to as breast cancer stem cells (BCSCs). These BCSCs have been identified as one of the main contributors to chemoresistance in breast cancer, making them an attractive target for developing novel therapeutic strategies. These cells exhibit surface biomarkers such as CD44+, CD24-/LOW, ALDH, CD133, and CD49f phenotypes. Higher expression of CD44+ and ALDH activity has been associated with the formation of tumors in various cancers. Moreover, the abnormal regulation of signaling pathways, including Hedgehog, Notch, β-catenin, JAK/STAT, and P13K/AKT/mTOR, leads to the formation of cancer stem cells, resulting in the development of tumors. The growing drug resistance in BC is a significant challenge, highlighting the need for new therapeutic strategies to combat this dreadful disease. Retinoids, a large group of synthetic derivatives of vitamin A, have been studied as chemopreventive agents in clinical trials and have been shown to regulate various crucial biological functions including vision, development, inflammation, and metabolism. On a cellular level, the retinoid activity has been well characterized and translated and is known to induce differentiation and apoptosis, which play important roles in the outcome of the transformation of tissues into malignant. Retinoids have been investigated extensively for their use in the treatment and prevention of cancer due to their high receptor-binding affinity to directly modulate gene expression programs. Therefore, in this study, we aim to summarize the current understanding of BCSCs, their biomarkers, and the associated signaling pathways. Retinoids, such as Adapalene, a third-generation retinoid, have shown promising anti-cancer potential and may serve as therapeutic agents to target BCSCs.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Aisha Shabir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
9
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
10
|
Kaur J, Chandrashekar DS, Varga Z, Sobottka B, Janssen E, Gandhi K, Kowalski J, Kiraz U, Varambally S, Aneja R. Whole-Exome Sequencing Reveals High Mutational Concordance between Primary and Matched Recurrent Triple-Negative Breast Cancers. Genes (Basel) 2023; 14:1690. [PMID: 37761830 PMCID: PMC10531222 DOI: 10.3390/genes14091690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a molecularly complex and heterogeneous breast cancer subtype with distinct biological features and clinical behavior. Although TNBC is associated with an increased risk of metastasis and recurrence, the molecular mechanisms underlying TNBC metastasis remain unclear. We performed whole-exome sequencing (WES) analysis of primary TNBC and paired recurrent tumors to investigate the genetic profile of TNBC. METHODS Genomic DNA extracted from 35 formalin-fixed paraffin-embedded tissue samples from 26 TNBC patients was subjected to WES. Of these, 15 were primary tumors that did not have recurrence, and 11 were primary tumors that had recurrence (nine paired primary and recurrent tumors). Tumors were analyzed for single-nucleotide variants and insertions/deletions. RESULTS The tumor mutational burden (TMB) was 7.6 variants/megabase in primary tumors that recurred (n = 9); 8.2 variants/megabase in corresponding recurrent tumors (n = 9); and 7.3 variants/megabase in primary tumors that did not recur (n = 15). MUC3A was the most frequently mutated gene in all groups. Mutations in MAP3K1 and MUC16 were more common in our dataset. No alterations in PI3KCA were detected in our dataset. CONCLUSIONS We found similar mutational profiles between primary and paired recurrent tumors, suggesting that genomic features may be retained during local recurrence.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Darshan S. Chandrashekar
- Department of Pathology—Molecular and Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.S.C.); (S.V.)
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; (Z.V.); (B.S.)
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; (Z.V.); (B.S.)
| | - Emiel Janssen
- Department of Pathology, Stavanger University Hospital, Health Stavanger HF, 4068 Stavanger, Norway; (E.J.); (U.K.)
| | - Khanjan Gandhi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Jeanne Kowalski
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Health Stavanger HF, 4068 Stavanger, Norway; (E.J.); (U.K.)
| | - Sooryanarayana Varambally
- Department of Pathology—Molecular and Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.S.C.); (S.V.)
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
12
|
Krishnan A, Spegg V, Dettwiler S, Schraml P, Moch H, Dedes K, Varga Z, Altmeyer M. Analysis of the PARP1, ADP-Ribosylation, and TRIP12 Triad With Markers of Patient Outcome in Human Breast Cancer. Mod Pathol 2023; 36:100167. [PMID: 36990278 DOI: 10.1016/j.modpat.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
PARP inhibitors (PARPi) are increasingly used in breast cancer therapy, including high-grade triple-negative breast cancer (TNBC) treatment. Varying treatment responses and PARPi resistance with relapse currently pose limitations to the efficacy of PARPi therapy. The pathobiological reasons why individual patients respond differently to PARPi are poorly understood. In this study, we analyzed expression of PARP1, the main target of PARPi, in normal breast tissue, breast cancer, and its precursor lesions using human breast cancer tissue microarrays covering a total of 824 patients, including more than 100 TNBC cases. In parallel, we analyzed nuclear adenosine diphosphate (ADP)-ribosylation as a marker of PARP1 activity and TRIP12, an antagonist of PARPi-induced PARP1 trapping. Although we found PARP1 expression to be generally increased in invasive breast cancer, PARP1 protein levels and nuclear ADP-ribosylation were lower in higher tumor grade and TNBC samples than non-TNBCs. Cancers with low levels of PARP1 and low levels of nuclear ADP-ribosylation were associated with significantly reduced overall survival. This effect was even more pronounced in cases with high levels of TRIP12. These results indicate that PARP1-dependent DNA repair capacity may be compromised in aggressive breast cancers, potentially fueling enhanced accumulation of mutations. Moreover, the results revealed a subset of breast cancers with low PARP1, low nuclear ADP-ribosylation, and high TRIP12 levels, which may compromise their response to PARPi, suggesting a combination of markers for PARP1 abundance, enzymatic activity, and trapping capabilities might aid patient stratification for PARPi therapy.
Collapse
Affiliation(s)
- Aswini Krishnan
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Susanne Dettwiler
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Konstantin Dedes
- Department of Gynecology, University Hospital of Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Pan M, Sha Y, Qiu J, Chen Y, Liu L, Luo M, Huang A, Xia J. RAD51 Inhibition Shows Antitumor Activity in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:7905. [PMID: 37175611 PMCID: PMC10178757 DOI: 10.3390/ijms24097905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the major type of liver cancer, causes a high annual mortality worldwide. RAD51 is the critical recombinase responsible for homologous recombination (HR) repair in DNA damage. In this study, we identified that RAD51 was upregulated in HCC and that RAD51 silencing or inhibition reduced the proliferation, migration, and invasion of HCC cells and enhanced cell apoptosis and DNA damage. HCC cells with the combinatorial treatments of RAD51 siRNA or inhibitor and sorafenib demonstrated a synergistic effect in inhibiting HCC cell proliferation, migration, and invasion, as well as inducing cell apoptosis and DNA damage. Single RAD51 silencing or sorafenib reduced RAD51 protein expression and weakened HR efficiency, and their combination almost eliminated RAD51 protein expression and inhibited HR efficiency further. An in vivo tumor model confirmed the RAD51 inhibitor's antitumor activity and synergistic antitumor activity with sorafenib in HCC. RNA-Seq and gene set enrichment analysis (GSEA) in RAD51-inactivated Huh7 cells indicated that RAD51 knockdown upregulated cell apoptosis and G1/S DNA damage checkpoint pathways while downregulating mitotic spindle and homologous recombination pathways. Our findings suggest that RAD51 inhibition exhibits antitumor activities in HCC and synergizes with sorafenib. Targeting RAD51 may provide a novel therapeutic approach in HCC.
Collapse
Affiliation(s)
- Mingang Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yu Sha
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunmeng Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Lele Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Muyu Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Pandurangi RS, Cseh O, Luchman HA, Ma CX, Senadheera SN, Forrest ML. Rational Drug Design of Targeted and Enzyme-Cleavable Vitamin E Analogs as a Neoadjuvant to Chemotherapy: In Vitro and In Vivo Evaluation on Reduction of the Cardiotoxicity Side Effect of Doxorubicin. ACS Pharmacol Transl Sci 2023; 6:372-386. [PMID: 36926453 PMCID: PMC10012254 DOI: 10.1021/acsptsci.2c00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 02/09/2023]
Abstract
Traditional drug design focuses on specific biological targets where specific receptors or biomarkers are overexpressed by cancer cells. Cancer cells circumvent the interventions by activating survival pathways and/or downregulating cell death pathways for their survival. A priori activation of apoptosis pathways of tumor (AAAPT) is a novel tumor-sensitizing technology that sensitizes tumor cells that are not responding well to the current treatments by targeting specific survival pathways involved in the desensitization of tumor cells and tries to revive them selectively in cancer cells, sparing normal cells. Several vitamin E derivatives (AMP-001, AMP-002, AMP-003, and AMP-004) were synthesized, characterized, and studied for their anti-tumorigenic properties and their synergistic potential with the standard chemotherapy doxorubicin in various cancer cells including brain cancer stem cells in vitro. Preliminary studies revealed that AAAPT drugs (a) reduced the invasive potential of brain tumor stem cells, (b) synergized with Federal Drug Application-approved doxorubicin, and (c) enhanced the therapeutic index of doxorubicin in the triple-negative breast cancer tumor rat model, preserving the ventricular function compared to cardiotoxic doxorubicin alone at therapeutic dose. The AAAPT approach has the advantage of inhibiting survival pathways and activating cell death pathways selectively in cancer cells by using targeting, linkers cleavable by tumor-specific Cathepsin B, and PEGylation technology to enhance the bioavailability. We propose AAAPT drugs as a neoadjuvant to chemotherapy and not as stand-alone therapy, which is shown to be effective in expanding the therapeutic index of doxorubicin and making it work at lower doses.
Collapse
Affiliation(s)
- Raghu S. Pandurangi
- Sci-Engi-Medco
Solutions Inc. (SEMCO), 573, Lexington Landing Pl, St. Charles, Missouri 63303, United States
| | - Orsolya Cseh
- HRIC
2A25, 3330 Hospital Drive NW, Calgary, AB T2N 4N, Canada
| | | | - Cynthia Xiuguang Ma
- Siteman
Cancer Center, Washington University School
of Medicine, St. Louis, Missouri 63110, United States
| | - Sanjeewa N. Senadheera
- Department
of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - Marcus Laird Forrest
- Department
of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
15
|
Li J, Li Q, Zhang L, Zhang S, Dai Y. Poly-ADP-ribose polymerase (PARP) inhibitors and ovarian function. Biomed Pharmacother 2023; 157:114028. [PMID: 36410122 DOI: 10.1016/j.biopha.2022.114028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Poly-ADP-ribose polymerase (PARP) plays an important role in DNA damage detection and repair. PARP inhibitors (PARPi) are a novel class of targeted agents used widely in the treatment of female cancer patients with BRCA mutations, including younger patients. However, the impact of PARPi on ovarian function remains a considerable problem in clinical practice. In this review article, we summarize the current understanding of PARPi's effects on the function of ovary and discuss their potential underlying mechanisms, highlighting the significance of further investigation on the criterion for ovarian failure and its preventive approaches during PARPi treatment.
Collapse
Affiliation(s)
- Jiajia Li
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lingyi Zhang
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China; Gynecology and Obstetrics Department, Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Taurin S, Rosengren RJ. Raloxifene potentiates the effect of gefitinib in triple-negative breast cancer cell lines. Med Oncol 2022; 40:45. [PMID: 36494506 DOI: 10.1007/s12032-022-01909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Triple-negative breast cancers (TNBCs) are characterized by a lack of approved targeted therapies and remain a challenge in the clinic. Several overexpressed proteins, including epidermal growth factor receptor (EGFR), have been associated with TNBCs and are considered potential therapeutic targets. However, EGFR inhibitors alone failed to demonstrate a cutting-edge advantage for treating TNBCs over conventional chemotherapies. Studies have shown that selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene also affect TNBC cell viability. The combination of gefitinib and raloxifene was assessed against TNBC cell lines in vitro. Two TNBC cell lines, MDA-MB-231 and MDA-MB-468, were used to investigate the combination of gefitinib and raloxifene on cell viability, DNA synthesis, and apoptosis. The combination was assessed on intracellular signaling pathways, colony formation, migration, and angiogenesis. In the present study, raloxifene, in combination with gefitinib, decreased cell viability. The combination potentiates apoptosis and affects the expression and phosphorylation pattern of proteins involved in cell proliferation, such as NFκB, β-catenin, and EGFR. Furthermore, evidence of apoptosis activation was also observed, along with a decreased cell migration and tumorigenicity of TNBC cells. Moreover, the combined treatment decreased the ability of neovascularization as assessed by tube formation of endothelial cells. These results suggested the potential of the combination of raloxifene and gefitinib for the prevention of TNBC growth and the appearance of metastatic events. Our findings provide the basis for future studies on the mechanism involved in raloxifene-gefitinib inhibition of ER-negative tumor growth.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Building 293, Road 2904 Block 329, Manama, 007, Kingdom of Bahrain.
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Cho YS, Kim HR, Park SJ, Chung SW, Ko YG, Yeo JH, Lee J, Kim SK, Choi JU, Kim SY, Byun Y. Sustained potentiation of bystander killing via PTEN-loss driven macropinocytosis targeted peptide-drug conjugate therapy in metastatic triple-negative breast cancer. Biomaterials 2022; 289:121783. [DOI: 10.1016/j.biomaterials.2022.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
18
|
Combination of Talazoparib and Calcitriol Enhanced Anticancer Effect in Triple−Negative Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15091075. [PMID: 36145297 PMCID: PMC9504984 DOI: 10.3390/ph15091075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Monotherapy for triple−negative breast cancer (TNBC) is often ineffective. This study aimed to investigate the effect of calcitriol and talazoparib combination on cell proliferation, migration, apoptosis and cell cycle in TNBC cell lines. Monotherapies and their combination were studied for (i.) antiproliferative effect (using real−time cell analyzer assay), (ii.) cell migration (CIM−Plate assay), and (iii.) apoptosis and cell cycle analysis (flow cytometry) in MDA−MB−468 and BT−20 cell lines. The optimal antiproliferative concentration of talazoparib and calcitriol in BT−20 was 91.6 and 10 µM, respectively, and in MDA−MB−468, it was 1 mM and 10 µM. Combined treatment significantly increased inhibition of cell migration in both cell lines. The combined treatment in BT−20 significantly increased late apoptosis (89.05 vs. control 0.63%) and S and G2/M populations (31.95 and 24.29% vs. control (18.62 and 12.09%)). Combined treatment in MDA−MB−468 significantly increased the S population (45.72%) and decreased G0/G1 (45.86%) vs. the control (26.79 and 59.78%, respectively). In MDA−MB−468, combined treatment significantly increased necrosis, early and late apoptosis (7.13, 33.53 and 47.1% vs. control (1.5, 3.1 and 2.83%, respectively)). Talazoparib and calcitriol combination significantly affected cell proliferation and migration, induction of apoptosis and necrosis in TNBC cell lines. This combination could be useful as a formulation to treat TNBC.
Collapse
|
19
|
Yang J, Chang Y, Tien JCY, Wang Z, Zhou Y, Zhang P, Huang W, Vo J, Apel IJ, Wang C, Zeng VZ, Cheng Y, Li S, Wang GX, Chinnaiyan AM, Ding K. Discovery of a Highly Potent and Selective Dual PROTAC Degrader of CDK12 and CDK13. J Med Chem 2022; 65:11066-11083. [PMID: 35938508 PMCID: PMC9876424 DOI: 10.1021/acs.jmedchem.2c00384] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/28/2023]
Abstract
Selective degradation of the cyclin-dependent kinases 12 and 13 (CDK12/13) presents a novel therapeutic opportunity for triple-negative breast cancer (TNBC), but there is still a lack of dual CDK12/13 degraders. Here, we report the discovery of the first series of highly potent and selective dual CDK12/13 degraders by employing the proteolysis-targeting chimera (PROTAC) technology. The optimal compound 7f effectively degraded CDK12 and CDK13 with DC50 values of 2.2 and 2.1 nM, respectively, in MDA-MB-231 breast cancer cells. Global proteomic profiling demonstrated the target selectivity of 7f. In vitro, 7f suppressed expression of core DNA damage response (DDR) genes in a time- and dose-dependent manner. Further, 7f markedly inhibited proliferation of multiple TNBC cell lines including MFM223, with an IC50 value of 47 nM. Importantly, 7f displayed a significantly improved antiproliferative activity compared to the structurally similar inhibitor 4, suggesting the potential advantage of a CDK12/13 degrader for TNBC targeted therapy.
Collapse
Affiliation(s)
- Jianzhang Yang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Yu Chang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jean Ching-Yi Tien
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhen Wang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Yang Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Pujuan Zhang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Josh Vo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ingrid J. Apel
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cynthia Wang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victoria Zhixuan Zeng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yunhui Cheng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuqin Li
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - George Xiaoju Wang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard Hughes
Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
- Institute
of Basic Medicine and Cancer (IBMC), Chinese
Academy of Sciences, Hangzhou, Zhejiang 310022, People’s Republic of China
- The
First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601
Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
20
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
21
|
Uchimiak K, Badowska-Kozakiewicz AM, Sobiborowicz-Sadowska A, Deptała A. Current State of Knowledge on the Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer Treatment: Approaches, Efficacy, and Challenges. Clin Med Insights Oncol 2022; 16:11795549221099869. [PMID: 35721387 PMCID: PMC9201309 DOI: 10.1177/11795549221099869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options. Recently, there has been a growing interest in immunotherapy with immune checkpoint inhibitors (ICIs) in TNBC, leading to extensive preclinical and clinical research. This review summarizes the current state of knowledge on ICIs efficacy and their predictive markers in TNBC and highlights the areas where the data are still limited. Currently, the only approved ICI-based regimen for TNBC is pembrolizumab with chemotherapy. Its advantage over chemotherapy alone was confirmed for non-metastatic TNBC regardless of programmed death-ligand 1 (PD-L1) expression (KEYNOTE-522) and for metastatic, PD-L1-positive TNBC (KEYNOTE-355). Pembrolizumab's efficacy was also evaluated in monotherapy, or in combination with niraparib and radiation therapy, showing potential efficacy and acceptable safety profile in phase 2 clinical trials. Atezolizumab + nab-paclitaxel increased the overall survival (OS) over placebo + nab-paclitaxel in early TNBC, regardless of PD-L1 status (IMpassion031). In IMpassion130 (untreated, advanced TNBC), the OS improvement was not statistically significant in the intention-to-treat population but clinically meaningful in the PD-L1 positive cohort. The durvalumab-anthracycline combination showed an increased response durability over placebo anthracycline in early TNBC (GeparNuevo). Several phase 1 clinical trials also showed a potential efficacy of atezolizumab and avelumab monotherapy in metastatic TNBC. ICIs appear to be applicable in both neoadjuvant and adjuvant settings, and are both pretreated and previously untreated patients. Further research is necessary to determine the most beneficial drug combinations and optimize patient selection. It is essential to identify the predictive markers for ICIs and factors affecting their expression.
Collapse
Affiliation(s)
- Katarzyna Uchimiak
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | | | - Aleksandra Sobiborowicz-Sadowska
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention,
Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
St-Denis-Bissonnette F, Khoury R, Mediratta K, El-Sahli S, Wang L, Lavoie JR. Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:451. [PMID: 35053616 PMCID: PMC8773485 DOI: 10.3390/cancers14020451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and refractory subtype of breast cancer, often occurring in younger patients with poor clinical prognosis. Given the current lack of specific targets for effective intervention, the development of better treatment strategies remains an unmet medical need. Over the last decade, the field of extracellular vesicles (EVs) has grown tremendously, offering immense potential for clinical diagnosis/prognosis and therapeutic applications. While TNBC-EVs have been shown to play an important role in tumorigenesis, chemoresistance and metastasis, they could be repurposed as potential biomarkers for TNBC diagnosis and prognosis. Furthermore, EVs from various cell types can be utilized as nanoscale drug delivery systems (NDDS) for TNBC treatment. Remarkably, EVs generated from specific immune cell subsets have been shown to delay solid tumour growth and reduce tumour burden, suggesting a new immunotherapy approach for TNBC. Intrinsically, EVs can cross the blood-brain barrier (BBB), which holds great potential to treat the brain metastases diagnosed in one third of TNBC patients that remains a substantial clinical challenge. In this review, we present the most recent applications of EVs in TNBC as diagnostic/prognostic biomarkers, nanoscale drug delivery systems and immunotherapeutic agents, as well as discuss the associated challenges and future directions of EVs in cancer immunotherapy.
Collapse
Affiliation(s)
- Frederic St-Denis-Bissonnette
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Rachil Khoury
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jessie R. Lavoie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
23
|
Therapeutic potential of the PI3K inhibitor LY294002 and PARP inhibitor Talazoparib combination in BRCA-deficient triple negative breast cancer cells. Cell Signal 2021; 91:110229. [PMID: 34958867 DOI: 10.1016/j.cellsig.2021.110229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors provide a promising therapeutic strategy for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, acquire resistance mechanisms and genetic alterations limit the clinical efficacy of PARP inhibitors. The aberrant activation of phosphatidylinositol 3-kinase (PI3K) is a significant problem for cancer development and thus the inhibition of PI3K by PI3K inhibitors is a novel targeted therapy in advanced breast cancer. Here, we, for the first time, investigated that the combined inhibition of PARP by Talazoparib (TAL) and PI3K by LY294002 synergistically inhibited proliferation of BRCA1 mutant HCC1937 TNBC cells through apoptosis, G0/G1 arrest, oxidative stress and increased DNA damage compared to drug alone. Additionally, TAL and LY294002 combination could be a promising strategy for overcoming TAL resistance. Co-treatment of TAL with LY294002 considerably suppressed the activation of PI3K, Akt1 and mTOR expression and phosphorylated protein levels in TNBC cells and caused changes in the multiple kinase phosphorylation. Our findings revealed that the dual inhibition of PARP and PI3K might represent an effective therapeutic strategy for TNBC and potentially overcome TAL resistance.
Collapse
|
24
|
Guney Eskiler G, Deveci Özkan A. The relationship between the efficacy of talazoparib and the functional toll-like receptors 3 and 9 in triple negative breast cancer. Mol Immunol 2021; 141:280-286. [PMID: 34906906 DOI: 10.1016/j.molimm.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cell death by inhibiting the repair of DNA strand breaks binding to PARP and regulate immune cells functions. Toll-like receptors (TLRs) mediate the tumor microenvironment through the modulation of proinflammatory cytokines and chemokines. In this context, this study addressed the relationship between the efficacy of talazoparib (TAL) as a PARPi and the activation of TLR3 or TLR9 by Polyinosinic:polycytidylic acid (Poly I:C) or CpG oligodeoxynucleotides (CpG-ODN) stimulation, respectively in triple negative breast cancer (TNBC). TAL alone and the combination of TAL with Poly I:C or CpG-ODN induced cell death were analyzed by water-soluble tetrazolium salt 1 (WST-1), Annexin V analysis, acridine orange staining and mRNA levels of caspase-3 and caspase-8 in HCC1937 and HCC1937-R (TAL resistant) TNBC cells. Additionally, the expression of TLR3, TLR9 and interferon regulatory factor 7 (IRF7) was observed with immunofluorescence staining and western blot analysis. Our findings showed that TAL induced TLR3 and TLR9 activation and acted in synergy with TLR3 and TLR9 agonists in TNBC cells. The stimulation of TLR3 or TLR9 and TAL treatment caused significantly more apoptosis in TNBC cells through the over-expression of caspase-3 and caspase-8. Additionally, TAL combined with Poly I:C or CpG-ODN more increased TLR3, TLR9 and IRF7 protein levels in HCC1937 cells and treatment with TAL and Poly I:C had greater potential for overcoming TAL resistance. In conclusion, the combination of PARPi with TLR agonists may be a new therapeutic combined strategy for the effective immunotherapy of TNBC.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Asuman Deveci Özkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
25
|
Yordanova M, Hubert A, Hassan S. Expanding the Use of PARP Inhibitors as Monotherapy and in Combination in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:1270. [PMID: 34959671 PMCID: PMC8709256 DOI: 10.3390/ph14121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is known to be associated with a poor prognosis and limited therapeutic options. Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics that have demonstrated efficacy as monotherapy in metastatic BRCA-mutant (BRCAMUT) TNBC patients. Improved efficacy of PARPi has been demonstrated in BRCAMUT breast cancer patients who have either received fewer lines of chemotherapy or in chemotherapy-naïve patients in the metastatic, adjuvant, and neoadjuvant settings. Moreover, recent trials in smaller cohorts have identified anti-tumor activity of PARPi in TNBC patients, regardless of BRCA-mutation status. While there have been concerns regarding the efficacy and toxicity of the use of PARPi in combination with chemotherapy, these challenges can be mitigated with careful attention to PARPi dosing strategies. To better identify a patient subpopulation that will best respond to PARPi, several genomic biomarkers of homologous recombination deficiency have been tested. However, gene expression signatures associated with PARPi response can integrate different pathways in addition to homologous recombination deficiency and can be implemented in the clinic more readily. Taken together, PARPi have great potential for use in TNBC patients beyond BRCAMUT status, both as a single-agent and in combination.
Collapse
Affiliation(s)
- Mariya Yordanova
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Audrey Hubert
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
26
|
Comprehensive Transcriptome and Pathway Analyses Revealed Central Role for Fascin in Promoting Triple-Negative Breast Cancer Progression. Pharmaceuticals (Basel) 2021; 14:ph14121228. [PMID: 34959629 PMCID: PMC8708558 DOI: 10.3390/ph14121228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Recent years have witnessed major progress in development of novel therapeutic agents such as chemotherapy, targeted therapy and immune checkpoint inhibitors for breast cancer. However, cancer-related death remains high especially in triple-negative breast cancer (TNBC) due limited therapeutic options. Development of targeted therapies for TNBC requires better understanding of biology and signaling networks that promote disease progression. Fascin, an actin bundling protein, was identified as a key regulator of many signaling pathways that contribute to breast cancer progression. Herein, fascin ShRNA was used to generate stable fascin knockdown (FSCN1KD) in the MDA-MB-231 TNBC cell line and then were subjected to comprehensive mRNA and miRNA transcriptome analysis. We identified 129 upregulated and 114 downregulated mRNA transcripts, while 14 miRNAs were differentially expressed in FSCN1KD. Ingenuity pathway analysis (IPA) was used to predict the impact of differentially expressed transcripts on signaling pathways and functional categories and to construct miRNA-mRNA regulatory networks in the context of FSCN1 knockdown. Compared to FSCN1KD, fascin-positive (FSCN1CON) breast cancer cells showed enrichment in genes promoting cellular proliferation, migration, survival, DNA replication and repair. Expression of FSCN1high (identified in BRCA dataset from TCGA) in conjunction with elevated expression of the top 10 upregulated or decreased expression of the top 10 downregulated genes (identified in our FSCN1CON vs. FSCN1KD) correlates with worst survival outcome. Taken together, these data confirmed fascin's role in promoting TNBC progression, and identified a novel opportunity for therapeutic interventions via targeting those FSCN1-related transcripts.
Collapse
|
27
|
Wei D, Wang H, Zeng Q, Wang W, Hao B, Feng X, Wang P, Song N, Kan W, Huang G, Zhou X, Tan M, Zhou Y, Huang R, Li J, Chen XH. Discovery of Potent and Selective CDK9 Degraders for Targeting Transcription Regulation in Triple-Negative Breast Cancer. J Med Chem 2021; 64:14822-14847. [PMID: 34538051 DOI: 10.1021/acs.jmedchem.1c01350] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with very limited treatment options due to the lack of efficient targeted therapies and thus still remains clinically challenging. Targeting transcription-associated cyclin-dependent kinases to remodel transcriptional regulation shows great promise in cancer therapy. Herein, we report the synthesis, optimization, and evaluation of new series of heterobifunctional molecules as highly selective and efficacious CDK9 degraders, enabling potent inhibition of TNBC cell growth and rapidly targeted degradation of CDK9. Moreover, the most potent CDK9 degrader (compound 45) induces cell apoptosis in vitro and inhibits tumor growth in the MDA-MB-231 TNBC model. Furthermore, the RNA-seq, immunohistochemistry assays demonstrate that the CDK9 degrader downregulates the downstream targets, such as MYC, at the transcriptional level, resulting apoptosis in TNBC cells. Our work establishes that 45 is a highly potent and efficacious CDK9 degrader for targeting transcription regulation, which represents an effective strategy and great potential as a new targeted therapy for TNBC.
Collapse
Affiliation(s)
- Dan Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlin Wang
- College of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghe Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xule Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guifang Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan, Guangdong 528400, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Li
- College of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan, Guangdong 528400, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiao-Hua Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
28
|
Zhu H, Rao Z, Yuan S, You J, Hong C, He Q, Yang B, Du C, Cao J. One therapeutic approach for triple-negative breast cancer: Checkpoint kinase 1 inhibitor AZD7762 combination with neoadjuvant carboplatin. Eur J Pharmacol 2021; 908:174366. [PMID: 34314706 DOI: 10.1016/j.ejphar.2021.174366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Carboplatin treatment is associated with potential benefits in practice in the neoadjuvant chemotherapy for Triple-negative breast cancer (TNBC) patients. In order to enhance its anti-tumor effects, new concepts for successful combination therapy are needed. Here, we interestingly found that the combination treatment of carboplatin with the Chk1 inhibitor AZD7762 synergistically inhibits TNBC cell growth in multiple TNBC cell lines in vitro. Mechanistically, we proved that prolonged carboplatin-treated induce cell mitotic arrest, and cells would fail to initiate the G2-M transition following the inhibition of the Chk1 pathway, leading to accumulation of DNA lesions. With this drug-in-combination treatment, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is remarkably enhanced, which subsequently drives tumor cells multinucleation, polyploidization and apoptosis. Thus, our findings not only propose Chk1 as a therapeutic target for combination therapy with DNA-damaging agents such as carboplatin in TNBC, but also highlight that the induction of mitotic catastrophe could be considered as an alternative strategy for TNBC therapy.
Collapse
Affiliation(s)
- Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Rao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sichen Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jieqiong You
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenggang Hong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Song HN, Jin H, Kim JH, Ha IB, Kang KM, Choi HS, Jeong HJ, Kim MY, Kim HJ, Jeong BK. Abscopal Effect of Radiotherapy Enhanced with Immune Checkpoint Inhibitors of Triple Negative Breast Cancer in 4T1 Mammary Carcinoma Model. Int J Mol Sci 2021; 22:ijms221910476. [PMID: 34638817 PMCID: PMC8509046 DOI: 10.3390/ijms221910476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Local radiotherapy (RT) is important to manage metastatic triple-negative breast cancer (TNBC). Although RT primarily reduces cancer cells locally, this control can be enhanced by triggering the immune system via immunotherapy. RT and immunotherapy may lead to an improved systemic effect, known as the abscopal effect. Here, we analyzed the antitumor effect of combination therapy using RT with an anti-programmed cell death-1 (PD-1) antibody in primary tumors, using poorly immunogenic metastatic mouse mammary carcinoma 4T1 model. Mice were injected subcutaneously into both flanks with 4T1 cells, and treatment was initiated 12 days later. Mice were randomly assigned to three treatment groups: (1) control (no treatment with RT or immune checkpoint inhibitor (ICI)), (2) RT alone, and (3) RT+ICI. The same RT dose was prescribed in both RT-alone and RT+ICI groups as 10Gy/fx in two fractions and delivered to only one of the two tumor burdens injected at both sides of flanks. In the RT+ICI group, 200 µg fixed dose of PD-1 antibody was intraperitoneally administered concurrently with RT. The RT and ICI combination markedly reduced tumor cell growth not only in the irradiated site but also in non-irradiated sites, a typical characteristic of the abscopal effect. This was observed only in radiation-sensitive cancer cells. Lung metastasis development was lower in RT-irradiated groups (RT-only and RT+ICI groups) than in the non-irradiated group, regardless of the radiation sensitivity of tumor cells. However, there was no additive effect of ICI on RT to control lung metastasis, as was already known regarding the abscopal effect. The combination of local RT with anti-PD-1 blockade could be a promising treatment strategy against metastatic TNBC. Further research is required to integrate our results into a clinical setting.
Collapse
Affiliation(s)
- Haa-Na Song
- Division of Hemato-Oncology, Department of Internal Medicine, Gyeongsang National University of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; (H.-N.S.); (J.-H.K.)
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Hana Jin
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Department of Pharmacology, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung-Hoon Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Gyeongsang National University of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; (H.-N.S.); (J.-H.K.)
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - In-Bong Ha
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Ki-Mun Kang
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Korea
| | - Hoon-Sik Choi
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Korea
| | - Ho-Jin Jeong
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Min-Young Kim
- Division of Endocrinology, Department of Internal Medicine, Gyeongsang National University of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea;
| | - Hye-Jung Kim
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Department of Pharmacology, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Bae-Kwon Jeong
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (H.-N.J.); (I.-B.H.); (K.-M.K.); (H.-S.C.); (H.-J.J.); (H.-J.K.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
- Correspondence:
| |
Collapse
|
30
|
Wilson T, Pirovano G, Xiao G, Samuels Z, Roberts S, Viray T, Guru N, Zanzonico P, Gollub M, Pillarsetty N, Reiner T, Bargonetti J. PARP-Targeted Auger Therapy in p53 Mutant Colon Cancer Xenograft Mouse Models. Mol Pharm 2021; 18:3418-3428. [PMID: 34318678 PMCID: PMC8686831 DOI: 10.1021/acs.molpharmaceut.1c00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite Auger electrons being highly appealing due to their short-range and high linear energy transfer to surrounding tissues, the progress in the field has been limited due to the challenge in delivering a therapeutic dose within the close proximity of cancer cell's DNA. Here, we demonstrate that the PARP inhibitor 123I-MAPi is a viable agent for the systemic administration and treatment of p53 mutant cancers. Significantly, minimal off-site toxicity was observed in mice administered with up to 74 MBq of 127I-PARPi. Taken together, these results lay the foundation for future clinical evaluation and broader preclinical investigations. By harnessing the scaffold of the PARP inhibitor Olaparib, we were able to deliver therapeutic levels of Auger radiation to the site of human colorectal cancer xenograft tumors after systemic administration. In-depth toxicity studies analyzed blood chemistry levels and markers associated with specific organ toxicity. Finally, p53+/+ and p53-/- human colorectal cancer cell lines were evaluated for the ability of 123I-MAPi to induce tumor growth delay. Toxicity studies demonstrate that both 123I-MAPi and its stable isotopologue, 127I-PARPi, have no significant off-site toxicity when administered systemically. Analysis following 123I-MAPi treatment confirmed its ability to induce DNA damage at the site of xenograft tumors when administered systemically. Finally, we demonstrate that 123I-MAPi generates a therapeutic response in p53-/-, but not p53+/+, subcutaneous xenograft tumors in mouse models. Taken together, these results represent the first example of a PARP Auger theranostic agent capable of delivering a therapeutic dose to xenograft human colorectal cancer tumors upon systemic administration without causing significant toxicity to surrounding mouse organs. Moreover, it suggests that a PARP Auger theranostic can act as a targeted therapeutic for cancers with mutated p53 pathways. This landmark goal paves the way for clinical evaluation of 123I-MAPi for pan cancer therapeutics.
Collapse
Affiliation(s)
- Thomas Wilson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Gu Xiao
- Department of Biological Sciences Hunter College, City University of New York, NY, 10065, USA
| | - Zachary Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tara Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Marc Gollub
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jill Bargonetti
- Department of Biological Sciences Hunter College, City University of New York, NY, 10065, USA
- The Graduate Center Biology and Biochemistry PhD Program of City University of New York, NY, 10016, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
31
|
Niavarani SR, Lawson C, Boudaud M, Simard C, Tai LH. Oncolytic vesicular stomatitis virus-based cellular vaccine improves triple-negative breast cancer outcome by enhancing natural killer and CD8 + T-cell functionality. J Immunother Cancer 2021; 8:jitc-2019-000465. [PMID: 32179632 PMCID: PMC7073779 DOI: 10.1136/jitc-2019-000465] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Seyedeh-Raheleh Niavarani
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Christine Lawson
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Marie Boudaud
- Pediatrics, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Camille Simard
- Pharmacology and Physiology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Lee-Hwa Tai
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada .,Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
32
|
Nwagu GC, Bhattarai S, Swahn M, Ahmed S, Aneja R. Prevalence and Mortality of Triple-Negative Breast Cancer in West Africa: Biologic and Sociocultural Factors. JCO Glob Oncol 2021; 7:1129-1140. [PMID: 34264759 PMCID: PMC8457872 DOI: 10.1200/go.21.00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Gift C. Nwagu
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Monica Swahn
- International Consortium for Advancing Research on Triple Negative Breast Cancer, Georgia State University, Atlanta, GA
- Department of Population Health Sciences, Georgia State University, Atlanta, GA
| | - Saad Ahmed
- International Consortium for Advancing Research on Triple Negative Breast Cancer, Georgia State University, Atlanta, GA
- Department of Pathology, Ahmadu Bello University, Zaria, Nigeria
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA
- International Consortium for Advancing Research on Triple Negative Breast Cancer, Georgia State University, Atlanta, GA
| |
Collapse
|
33
|
Chen C, Gao D, Huo J, Qu R, Guo Y, Hu X, Luo L. Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer. Sci Rep 2021; 11:12172. [PMID: 34108519 PMCID: PMC8190062 DOI: 10.1038/s41598-021-91290-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer (BrC) subtype lacking effective therapeutic targets currently. The development of multi-omics databases facilities the identification of core genes for TNBC. Using TCGA-BRCA and METABRIC datasets, we identified CT83 as the most TNBC-specific gene. By further integrating FUSCC-TNBC, CCLE, TCGA pan-cancer, Expression Atlas, and Human Protein Atlas datasets, we found CT83 is frequently activated in TNBC and many other cancers, while it is always silenced in non-TNBC, 120 types of normal non-testis tissues, and 18 types of blood cells. Notably, according to the TCGA-BRCA methylation data, hypomethylation on chromosome X 116,463,019 to 116,463,039 is significantly correlated with the abnormal activation of CT83 in BrC. Using Kaplan-Meier Plotter, we demonstrated that activated CT83 is significantly associated with unfavorably overall survival in BrC and worse outcomes in some other cancers. Furthermore, GSEA suggested that the abnormal activation of CT83 in BrC is probably oncogenic by triggering the activation of cell cycle signaling. Meanwhile, we also noticed copy number variations and mutations of CT83 are quite rare in any cancer type, and its role in immune infiltration is not significant. In summary, we highlighted the significance of CT83 for TNBC and presented a comprehensive bioinformatics strategy for single-gene analysis in cancer.
Collapse
Affiliation(s)
- Chen Chen
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Dan Gao
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Jinlong Huo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Rui Qu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Youming Guo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Xiaochi Hu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Libo Luo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| |
Collapse
|
34
|
Zheng C, Yan S, Lu L, Yao H, He G, Chen S, Li Y, Peng X, Cheng Z, Wu M, Zhang Q, Li G, Fu S, Deng X. Lovastatin Inhibits EMT and Metastasis of Triple-Negative Breast Cancer Stem Cells Through Dysregulation of Cytoskeleton-Associated Proteins. Front Oncol 2021; 11:656687. [PMID: 34150623 PMCID: PMC8212055 DOI: 10.3389/fonc.2021.656687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-β1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China.,Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Shichao Yan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | | | | | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
35
|
Bansod AA, Ramasamy G, Nathan B, Kandhasamy R, Palaniappan M, Vichangal Pridiuldi S. Exploring the endogenous potential of Hemidesmus indicus against breast cancer using in silico studies and quantification of 2-hydroxy-4-methoxy benzaldehyde through RP-HPLC. 3 Biotech 2021; 11:235. [PMID: 33968579 DOI: 10.1007/s13205-021-02768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Being a woman and getting older are the main risk factors for breast cancer. While admitting the increasing prevalence of breast cancer among females globally, there is an increasing urge for widening the range of chemical compounds that can act as potential inhibitors for certain cancer target receptors. Current investigation involves virtually screening of 19 protein receptors having major role in signal transduction pathway of breast cancer development against 47 compounds present in Hemidesmus indicus. Virtual screening and supplementary analysis were performed using freely available softwares, tools and online servers. To obtain meaningful results, a comparative scenario was created by screening FDA-approved drugs/drug analogues against the same 19 receptors by keeping all the parameters same as to that of ligands. Two ligands namely Taraxasteryl acetate and Rutin were found to be the best ligands with high binding affinity towards six protein receptors establishing strong receptor ligand interactions. Furthermore, the major volatile compound, a high demand flavouring agent and an isomer of vanillin, namely 2-hydroxy-4-methoxy benzaldehyde (MBALD) specifically found in the roots of Hemidesmus, was quantified by RP-HPLC using a reverse phase C-18 column. The methanolic extract of fresh roots was found to contain 0.221 mg of MBALD/gram of tissue. From the current investigation, it could be surmised that Hemidesmus indicus had demonstrated its potential in both pharmaceuticals and the food industry.
Collapse
|
36
|
Chen X, Yang D, Carey JPW, Karakas C, Albarracin C, Sahin AA, Arun BK, Guray Durak M, Li M, Kohansal M, Bui TN, Ha MJ, Hunt KK, Keyomarsi K. Targeting Replicative Stress and DNA Repair by Combining PARP and Wee1 Kinase Inhibitors Is Synergistic in Triple Negative Breast Cancers with Cyclin E or BRCA1 Alteration. Cancers (Basel) 2021; 13:cancers13071656. [PMID: 33916118 PMCID: PMC8036262 DOI: 10.3390/cancers13071656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer with an aggressive phenotype that has decreased survival compared with other types of breast cancers, due in part to the lack of biomarker driven targeted therapies. Here, we show that breast cancer patients whose tumors show high levels of cyclin E expression have a higher prevalence of BRCA1/2 alterations and have the worst clinical outcomes. In vitro and in vivo studies revealed that combination therapies with poly (ADP-ribose) polymerase (PARP) and Wee1 kinase inhibitors in TNBC cells with either BRCA1 mutations or high levels of cyclin E results in synergistic cell death due to induction of replicative stress and downregulation of DNA repair. These studies suggest that by preselecting patients whose tumors have high cyclin E levels or harbor mutations in BRCA1, only those cases with the highest replicative stress properties will be subjected to combination treatment and likely result in synergistic activity of the two agents. Abstract The identification of biomarker-driven targeted therapies for patients with triple negative breast cancer (TNBC) remains a major clinical challenge, due to a lack of specific targets. Here, we show that cyclin E, a major regulator of G1 to S transition, is deregulated in TNBC and is associated with mutations in DNA repair genes (e.g., BRCA1/2). Breast cancers with high levels of cyclin E not only have a higher prevalence of BRCA1/2 mutations, but also are associated with the worst outcomes. Using several in vitro and in vivo model systems, we show that TNBCs that harbor either mutations in BRCA1/2 or overexpression of cyclin E are very sensitive to the growth inhibitory effects of AZD-1775 (Wee 1 kinase inhibitor) when used in combination with MK-4837 (PARP inhibitor). Combination treatment of TNBC cell lines with these two agents results in synergistic cell killing due to induction of replicative stress, downregulation of DNA repair and cytokinesis failure that results in increased apoptosis. These findings highlight the potential clinical application of using cyclin E and BRCA mutations as biomarkers to select only those patients with the highest replicative stress properties that may benefit from combination treatment with Wee 1 kinase and PARP inhibitors.
Collapse
Affiliation(s)
- Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Dong Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Jason P. W. Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Constance Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.); (A.A.S.)
| | - Banu K. Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Min-Jin Ha
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
- Correspondence: ; Tel.: +1-713-792-4845
| |
Collapse
|
37
|
Agostinetto E, Eiger D, Punie K, de Azambuja E. Emerging Therapeutics for Patients with Triple-Negative Breast Cancer. Curr Oncol Rep 2021; 23:57. [PMID: 33763756 DOI: 10.1007/s11912-021-01038-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Triple negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancers and it is associated with a poor prognosis. However, recent new effective treatment strategies have improved its outcomes. The aim of this review is to provide an overview on the emerging therapeutics for TNBC, describing both previously approved therapies that are currently being repurposed, as well as new target therapies that may improve patient outcomes. RECENT FINDINGS Emerging therapies are forthcoming in TNBC's treatment landscape, including new post-neoadjuvant chemotherapy strategies, PARP inhibitors, immune checkpoint inhibitors, and antibody-drug conjugates. Combination of different therapies such as AKT/PI3K/mTOR-inhibitors, other immunotherapeutic agents, CDK-inhibitors, antiandrogens, antiangiogenics, and histone deacetylase inhibitors is under clinical investigation. The treatment landscape for TNBC is gradually evolving towards a more personalized approach with promising expectations.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium.,Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Daniel Eiger
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Evandro de Azambuja
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium.
| |
Collapse
|
38
|
Distinct Somatic Alteration Features Identified by Gene Panel Sequencing in Korean Triple-Negative Breast Cancer with High Ki67 Expression. Diagnostics (Basel) 2021; 11:diagnostics11030416. [PMID: 33804295 PMCID: PMC8000916 DOI: 10.3390/diagnostics11030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/09/2022] Open
Abstract
This study aimed to clarify the genetic difference between Korean triple-negative breast cancer (TNBC) and other breast cancer (BC) subtypes. TNBC was defined as the absence of hormonal receptors and human epidermal growth factor receptor 2 (HER2) amplification. DNA panel of the Ion Torrent Oncomine Comprehensive Assay (OCA) v3 was performed to identify somatic alteration in 48 specimens. In a total of 102 alterations (37 nonsense, 35 missense, 8 frameshift and 22 amplifications), 30 nucleotide alterations (24 nonsense, 1 missense, and 5 frameshift) were newly identified. The eight most commonly altered genes were PIK3CA, TP53, ERBB2, BRCA2, FANCD2, AKT1, BRCA1, and FANCA. TNBC had significantly lower mutation frequency in PIK3CA (TNBC vs. hormone receptor-positive and HER2-negative BC [HRPBC], p = 0.009), but higher mutation frequency in TP53 (TNBC vs. HRPBC, p = 0.036; TNBC vs. hormone receptor-positive and HER2- positive BC [HHPBC], p = 0.004). TNBC showed frequently higher Ki-67 expression than any positive BC (p = 0.004) due to HRPBC (p < 0.001). TNBC with high Ki-67/unmutated PIK3CA/mutated TP53 appears at a younger age (52.2 ± 7.6 years), compared to other subtypes (63.7 ± 11.0 years). TNBC with high Ki-67/unmutated PIK3CA/mutated TP53 may be related to relatively early onset BCThese findings demonstrate the genomic heterogeneity between TNBC and other BC subtypes and could present a new approach for molecular targeted therapy in TNBC patients.
Collapse
|
39
|
Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression. Cancers (Basel) 2021; 13:645. [PMID: 33562737 PMCID: PMC7915897 DOI: 10.3390/cancers13040645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer represents the most common diagnosed malignancy and the main leading cause of tumor-related death among women worldwide. Therefore, several efforts have been made in order to identify valuable molecular biomarkers for the prognosis and prediction of therapeutic responses in breast tumor patients. In this context, emerging discoveries have indicated that focal adhesion kinase (FAK), a non-receptor tyrosine kinase, might represent a promising target involved in breast tumorigenesis. Of note, high FAK expression and activity have been tightly correlated with a poor clinical outcome and metastatic features in several tumors, including breast cancer. Recently, a role for the integrin-FAK signaling in mechanotransduction has been suggested and the function of FAK within the breast tumor microenvironment has been ascertained toward tumor angiogenesis and vascular permeability. FAK has been also involved in cancer stem cells (CSCs)-mediated initiation, maintenance and therapeutic responses of breast tumors. In addition, the potential of FAK to elicit breast tumor-promoting effects has been even associated with the capability to modulate immune responses. On the basis of these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. Here, we recapitulate the multifaceted action exerted by FAK and its prognostic significance in breast cancer. Moreover, we highlight the recent clinical evidence regarding the usefulness of FAK inhibitors in the treatment of breast tumors.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Jorge Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| |
Collapse
|
40
|
Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1703. [PMID: 33490215 PMCID: PMC7812194 DOI: 10.21037/atm-20-1422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer (EOC) is probably the tumor type with the highest percentage of hereditary cases observed, irrespectively of selection criteria. A fourth to a fifth of unselected epithelial EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA repair pathways. BRCA1 and BRCA2 predisposing PVs were the first to be associated to ovarian cancer, with the advent in DNA sequencing technologies leading to the discovery and association of additional genes which compromise the homologous recombination (HR) pathway. In addition, PVs genes involved in mismatch repair (MMR) pathway, account for 10–15% of hereditary EOC. The identification of women with HR deficient ovarian cancers has significant clinical implications concerning chemotherapy regimen planning and development and use of targeted therapies as well. More specifically, in patients with BRCA1/2 PVs or HR deficiency maintenance treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, either in the first line setting or in recurrent disease, improves the progression-free survival. But also patients with HR proficient tumors show a benefit. Therefore, genetic testing in ovarian cancer has a prognostic and predictive value. In this review, we discuss which ovarian cancer patients should be referred for genetic counseling and how to perform genetic testing. We also discuss the timing of genetic testing and its clinical relevance to BRCA status.
Collapse
Affiliation(s)
- Florentia Fostira
- InRaSTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
41
|
Lv Y, Ma X, Du Y, Feng J. Understanding Patterns of Brain Metastasis in Triple-Negative Breast Cancer and Exploring Potential Therapeutic Targets. Onco Targets Ther 2021; 14:589-607. [PMID: 33519208 PMCID: PMC7837592 DOI: 10.2147/ott.s293685] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer. High invasiveness and heterogeneity, as well as a lack of drug targets, are the main factors leading to poor prognosis. Brain metastasis (BM) is a serious event threatening the life of breast cancer patients, especially those with TNBC. Compared with that for hormone receptor-positive and HER2-positive breast cancers, TNBC-derived BM (TNBCBM) occurs earlier and more frequently, and has a worse prognosis. There is no standard treatment for BM to date, and one is urgently required. In this review, we discuss the current knowledge regarding the developmental patterns of TNBCBM, focusing on the key events in BM formation. Specifically, we consider (i) the nature and function of TNBC cells; (ii) how TNBC cells cross the blood–brain barrier and form a fenestrated, more permeable blood–tumor barrier; (iii) the biological characteristics of TNBCBM; and (iv) the infiltration and colonization of the central nervous system (CNS) by TNBC cells, including the establishment of premetastatic niches, immunosurveillance escape, and metabolic adaptations. We also discuss putative therapeutic targets and precision therapy with the greatest potential to treat TNBCBM, and summarize the relevant completed and ongoing clinical trials. These findings may provide new insights into the prevention and treatment of BM in TNBC patients.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, People's Republic of China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| |
Collapse
|
42
|
Weng ZJ, Wu SX, Luo HS, Du ZS, Li XY, Lin JZ. Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer: A Pairwise and Network Meta-Analysis of Pathological Complete Response. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211056213. [PMID: 34806458 PMCID: PMC8606982 DOI: 10.1177/00469580211056213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We performed a pairwise and network meta-analysis to compare pathological complete response (pCR) among neoadjuvant chemotherapy in patients with triple-negative breast cancer. We searched PubMed for randomized clinical trials between January 1, 2000 and December 1, 2020. Abstracts from meetings were also searched. A frequentist random-effect model was applied to compare pCR and toxicities. The P-score was used to rank treatment effects. Nineteen trials with 16 treatments and 7794 patients were included. On the basis of SoC, the addition of carboplatin (OR = 1.82, 95% CI, 1.24 to 2.68, P < .01) and the addition of checkpoint inhibitors (OR = 1.69, 95% CI, 1.23 to 2.32, P < .01) increased pCR in pairwise meta-analysis; compared with paclitaxel, nab-paclitaxel did not improve pCR rates (OR = 1.81, 95% CI, .80 to 4.12, P = .16). The anthracycline-sparing regimen led to similar pCR compared with the anthracycline-containing regimen (OR = 1.50, 95% CI, .82 to 2.76, P = .19). In network meta-analysis, the addition of carboplatin plus a PD-1 inhibitor (pembrolizumab), carboplatin plus bevacizumab, and carboplatin plus veliparib ranked as the top three treatments for achieving pCR, with corresponding P-scores of .91, .84, and .72, respectively. Among patients with homologous recombination deficiency, the addition of carboplatin (OR = 1.31, 95% CI, .69 to 2.50, P = .41) or carboplatin plus PARP inhibitors (OR = 1.19, 95% CI, .58 to 2.47, P = .63) did not increase pCR. For triple-negative breast cancer, combining carboplatin with taxane-anthracycline-containing neoadjuvant chemotherapy could be the standard of care, and the combination containing checkpoint inhibitor is promising. However, their role in long-term oncologic outcome remains to be determined.
Collapse
Affiliation(s)
- Zeng-Jie Weng
- Department of General Practice, Shantou Central Hospital, Shantou, China
| | - Sheng-Xi Wu
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, China
| | - He-San Luo
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, China
| | - Ze-Sen Du
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, China
| | - Xu-Yuan Li
- Department of Medical Oncology, Shantou Central Hospital, Shantou, China
| | - Jia-Zhou Lin
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
43
|
Kumari N, Singh RK, Mishra SK, L R, Mohindra S, Krishnani N. Prevalence and spectrum of pathogenic germline variants in intestinal and pancreatobiliary type of ampullary cancer. Pathol Res Pract 2020; 217:153309. [PMID: 33341547 DOI: 10.1016/j.prp.2020.153309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ampullary cancer may occur as a component of hereditary cancer syndromes. Mutations in inherited cancer susceptibility genes play a therapeutic role and its knowledge in ampullary cancer is lacking. METHODS Thirty-seven cases of ampullary carcinoma were subjected to tumor-normal whole exome sequencing with mean coverage of 100X (blood) and 200X (tumor). Data were analyzed and correlated with intestinal and pancreatobiliary differentiation. RESULTS There were 22 intestinal, 13 pancreatobiliary and 2 cases of mixed differentiation. One hundred and forty-three germline variations with at least >1 pathogenic germline variants (PGVs) across 83 genes were found in 36 of 37 patients. Twelve genes (14.5 %) showed >3, 20 genes (24.1 %) showed two and 51 genes (61.4 %) showed one PGVs. Intestinal differentiation showed higher PGVs (117 variants, 73 genes) than pancreatobiliary differentiation (85 variants, 62 genes). PGVs in ERCC5, MEN1, MSH3, CHEK1, TP53, APC, FANCA, ERBB2, BRCA1, BRCA2, RTEL1, HNF1A and PTCH1 were seen in >50 % of cases. Nine genes harbored somatic second hits in 14 cases. PGVs in DNA damage-repair, homologous recombination repair, TP53 transcriptional regulation, DNA double stranded breaks, cell cycle and nucleotide excision repair genes were seen in all cases of intestinal and pancreatobiliary differentiation, while DNA mismatch repair genes were found in 81.8 % of intestinal and 84.6 % of pancreatobiliary cancers. Functional pathway analysis showed that DNA damage-repair, double stranded break repair, mismatch repair, homologous recombination repair and TP53 transcriptional regulation genes were altered in both while nucleotide-excision repair was significantly mutated in intestinal type and cell-cycle genes in pancreatobiliary type (p < 0.05). CONCLUSION This study reports spectrum of PGVs in intestinal and pancreatobiliary differentiation of ampullary carcinoma at higher frequency through whole exome sequencing. PGVs were most frequently found in DNA repair genes. Detecting PGVs through tumor-normal sequencing may identify therapeutically actionable and double-hit mutations that can guide towards appropriate management.
Collapse
Affiliation(s)
- Niraj Kumari
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Rajneesh K Singh
- Department of Surgical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Shravan K Mishra
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Raghvendra L
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Samir Mohindra
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
44
|
Zhou Z, Huang F, Shrivastava I, Zhu R, Luo A, Hottiger M, Bahar I, Liu Z, Cristofanilli M, Wan Y. New insight into the significance of KLF4 PARylation in genome stability, carcinogenesis, and therapy. EMBO Mol Med 2020; 12:e12391. [PMID: 33231937 PMCID: PMC7721363 DOI: 10.15252/emmm.202012391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
KLF4 plays a critical role in determining cell fate responding to various stresses or oncogenic signaling. Here, we demonstrated that KLF4 is tightly regulated by poly(ADP‐ribosyl)ation (PARylation). We revealed the subcellular compartmentation for KLF4 is orchestrated by PARP1‐mediated PARylation. We identified that PARylation of KLF4 is critical to govern KLF4 transcriptional activity through recruiting KLF4 from soluble nucleus to the chromatin. We mapped molecular motifs on KLF4 and PARP1 that facilitate their interaction and unveiled the pivotal role of the PBZ domain YYR motif (Y430, Y451 and R452) on KLF4 in enabling PARP1‐mediated PARylation of KLF4. Disruption of KLF4 PARylation results in failure in DNA damage response. Depletion of KLF4 by RNA interference or interference with PARP1 function by KLF4YYR/AAA (a PARylation‐deficient mutant) significantly sensitizes breast cancer cells to PARP inhibitors. We further demonstrated the role of KLF4 in modulating homologous recombination through regulating BRCA1 transcription. Our work points to the synergism between KLF4 and PARP1 in tumorigenesis and cancer therapy, which provides a potential new therapeutic strategy for killing BRCA1‐proficient triple‐negative breast cancer cells.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Indira Shrivastava
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Michael Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Massimo Cristofanilli
- Lynn Sage Breast Cancer Program, Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yong Wan
- Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
45
|
Ren H, Bakas NA, Vamos M, Chaikuad A, Limpert AS, Wimer CD, Brun SN, Lambert LJ, Tautz L, Celeridad M, Sheffler DJ, Knapp S, Shaw RJ, Cosford NDP. Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2020; 63:14609-14625. [PMID: 33200929 DOI: 10.1021/acs.jmedchem.0c00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2). One inhibitor, SBP-7455 (compound 26), displayed improved binding affinity for ULK1/2 compared with SBI-0206965, potently inhibited ULK1/2 enzymatic activity in vitro and in cells, reduced the viability of TNBC cells and had oral bioavailability in mice. SBP-7455 inhibited starvation-induced autophagic flux in TNBC cells that were dependent on autophagy for survival and displayed synergistic cytotoxicity with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib against TNBC cells. These data suggest that combining ULK1/2 and PARP inhibition may have clinical utility for the treatment of TNBC.
Collapse
Affiliation(s)
- Huiyu Ren
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Nicole A Bakas
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Mitchell Vamos
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Frankfurt 60438, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt 60438, Germany
| | - Allison S Limpert
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Carina D Wimer
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Lester J Lambert
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Maria Celeridad
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Douglas J Sheffler
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Frankfurt 60438, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt 60438, Germany
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Nicholas D P Cosford
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
46
|
Dwyer AR, Kerkvliet CP, Krutilina RI, Playa HC, Parke DN, Thomas WA, Smeester BA, Moriarity BS, Seagroves TN, Lange CA. Breast Tumor Kinase (Brk/PTK6) Mediates Advanced Cancer Phenotypes via SH2-Domain Dependent Activation of RhoA and Aryl Hydrocarbon Receptor (AhR) Signaling. Mol Cancer Res 2020; 19:329-345. [PMID: 33172975 DOI: 10.1158/1541-7786.mcr-20-0295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Protein tyrosine kinase 6 (PTK6; also called Brk) is overexpressed in 86% of patients with breast cancer; high PTK6 expression predicts poor outcome. We reported PTK6 induction by HIF/GR complexes in response to either cellular or host stress. However, PTK6-driven signaling events in the context of triple-negative breast cancer (TNBC) remain undefined. In a mouse model of TNBC, manipulation of PTK6 levels (i.e., via knock-out or add-back) had little effect on primary tumor volume, but altered lung metastasis. To delineate the mechanisms of PTK6 downstream signaling, we created kinase-dead (KM) and kinase-intact domain structure mutants of PTK6 via in-frame deletions of the N-terminal SH3 or SH2 domains. While the PTK6 kinase domain contributed to soft-agar colony formation, PTK6 kinase activity was entirely dispensable for cell migration. Specifically, TNBC models expressing a PTK6 variant lacking the SH2 domain (SH2-del PTK6) were unresponsive to growth factor-stimulated cell motility relative to SH3-del, KM, or wild-type PTK6 controls. Reverse-phase protein array revealed that while intact PTK6 mediates spheroid formation via p38 MAPK signaling, the SH2 domain of PTK6 limits this biology, and instead mediates TNBC cell motility via activation of the RhoA and/or AhR signaling pathways. Inhibition of RhoA and/or AhR blocked TNBC cell migration as well as the branching/invasive morphology of PTK6+/AhR+ primary breast tumor tissue organoids. Inhibition of RhoA also enhanced paclitaxel cytotoxicity in TNBC cells, including in a taxane-refractory TNBC model. IMPLICATIONS: The SH2-domain of PTK6 is a potent effector of advanced cancer phenotypes in TNBC via RhoA and AhR, identified herein as novel therapeutic targets in PTK6+ breast tumors.
Collapse
Affiliation(s)
- Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hilaire C Playa
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Deanna N Parke
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Warner A Thomas
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | | | - Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
47
|
Jiang X, Zou X, Sun J, Zheng A, Su C. A Nomogram Based on Radiomics with Mammography Texture Analysis for the Prognostic Prediction in Patients with Triple-Negative Breast Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:5418364. [PMID: 32922222 PMCID: PMC7468630 DOI: 10.1155/2020/5418364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023]
Abstract
Objectives To develop and validate a radiomics-based nomogram with texture features from mammography for the prognostic prediction in patients with early-stage triple-negative breast cancer (TNBC). Methods The study included 200 consecutive patients with TNBC (training cohort: n = 133, validation cohort: n = 67). A total of 136 mammography-derived textural features were extracted, and LASSO (least absolute shrinkage and selection operator) was applied to select features for building the radiomics score (Rad-score). After univariate and multivariate logistic regression, a radiomics-based nomogram was constructed with independent prognostic factors. The discrimination and calibration power were assessed, and further the clinical applicability of the nomograms was evaluated. Results Among the 136 mammography-derived textural features, fourteen were used to build the Rad-score after LASSO regression. A radiomics nomogram that incorporates Rad-score and pN stage was constructed. This nomogram achieved a C-index of 0.873 (95% CI: 0.758-0.989) for predicting iDFS (invasive disease-free survival), which outperformed the clinical model. Moreover, it is feasible to stratify patients into high-risk and low-risk groups based on the optimal cut-off point of Rad-score. The validations of the nomogram confirmed favorable discrimination and considerable predictive efficiency. Conclusions The radiomics nomogram that incorporates Rad-score and pN stage exhibited favorable performance in the prediction of iDFS in patients with early-stage TNBCs.
Collapse
Affiliation(s)
- Xian Jiang
- Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiuhe Zou
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Sun
- Department of Integrated Chinese and Western Medicine, Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, China
| | - Aiping Zheng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chao Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Fila M, Chojnacki C. Vitamin D in Triple-Negative and BRCA1-Deficient Breast Cancer-Implications for Pathogenesis and Therapy. Int J Mol Sci 2020; 21:E3670. [PMID: 32456160 PMCID: PMC7279503 DOI: 10.3390/ijms21103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Several studies show that triple-negative breast cancer (TNBC) patients have the lowest vitamin D concentration among all breast cancer types, suggesting that this vitamin may induce a protective effect against TNBC. This effect of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D), can be attributed to its potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis and is supported by many in vitro and animal studies, but its exact mechanism is poorly known. In a fraction of TNBCs that harbor mutations that cause the loss of function of the DNA repair-associated breast cancer type 1 susceptibility (BRCA1) gene, 1,25(OH)2D may induce protective effects by activating its receptor and inactivating cathepsin L-mediated degradation of tumor protein P53 binding protein 1 (TP53BP1), preventing deficiency in DNA double-strand break repair and contributing to genome stability. Similar effects can be induced by the interaction of 1,25(OH)2D with proteins of the growth arrest and DNA damage-inducible 45 (GADD45) family. Further studies on TNBC cell lines with exact molecular characteristics and clinical trials with well-defined cases are needed to determine the mechanism of action of vitamin D in TNBC to assess its preventive and therapeutic potential.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| |
Collapse
|
49
|
García IA, Garro C, Fernandez E, Soria G. Therapeutic opportunities for PLK1 inhibitors: Spotlight on BRCA1-deficiency and triple negative breast cancers. Mutat Res 2020; 821:111693. [PMID: 32172132 DOI: 10.1016/j.mrfmmm.2020.111693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Polo-Like Kinases (PLKs) are central players of mitotic progression in Eukaryotes. Given the intimate relationship between cell cycle progression and cancer development, PLKs in general and PLK1 in particular have been thoroughly studied as biomarkers and potential therapeutic targets in oncology. The oncogenic properties of PLK1 overexpression across different types of human cancers are attributed to its roles in promoting mitotic entry, centrosome maturation, spindle assembly and cytokinesis. While several academic labs and pharmaceutical companies were able to develop potent and selective inhibitors of PLK1 (PLK1i) for preclinical research, such compounds have reached only limited success in clinical trials despite their great pharmacokinetics. Even though this could be attributed to multiple causes, the housekeeping roles of PLK1 in both normal and cancer cells are most likely the main reason for clinical trials failure and withdraw due to toxicities issues. Therefore, great efforts are being invested to position PLK1i in the treatment of specific types of cancers with revised dosages schemes. In this mini review we focus on two potential niches for PLK1i that are supported by recent evidence: triple negative breast cancers (TNBCs) and BRCA1-deficient cancers. On the one hand, we recollect several lines of strong evidence indicating that TNBCs are among the cancers with highest PLK1 expression and sensitivity to PLK1i. These findings are encouraging because of the limited therapeutics options available for TNBC patients, which rely mainly on classic chemotherapy. On the other hand, we discuss recent evidence that unveils synthetic lethality induction by PLK1 inhibition in BRCA1-deficient cancers cells. This previously unforeseen therapeutic link between PLK1 and BRCA1 is promising because it defines novel therapeutic opportunities for PLK1i not only for breast cancer (i.e. TNBCs with BRCA1 deficiencies), but also for other types of cancers with BRCA1-deficiencies, such as pancreatic and prostate cancers.
Collapse
Affiliation(s)
- Iris Alejandra García
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET. Universidad Católica de Córdoba, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cintia Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elmer Fernandez
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET. Universidad Católica de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
50
|
Tečić Vuger A, Šeparović R, Vazdar L, Pavlović M, Lepetić P, Šitić S, Bajić Ž, Šarčević B, Vrbanec D. CHARACTERISTICS AND PROGNOSIS OF TRIPLE-NEGATIVE BREAST CANCER PATIENTS: A CROATIAN SINGLE INstitution RETROSPECTIVE COHORT STUDY. Acta Clin Croat 2020; 59:97-108. [PMID: 32724280 PMCID: PMC7382886 DOI: 10.20471/acc.2020.59.01.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) occurs in around one-sixth of all breast cancer (BC) patients, with the most aggressive behavior and worst prognosis of all BC subtypes. It is a heterogeneous disease, with specific molecular characteristics and natural dynamics of early recurrence and fast progression. Due to the lack of biomarkers or any valid treatment targets, it can only be treated with classic cytotoxic chemotherapy. We analyzed a cohort of 152 patients, median age 58 years, diagnosed with and treated for early stage TNBC at the University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia, during the 2009-2012 period. Patients were treated with primary surgical approach, adjuvant chemotherapy and adjuvant irradiation. We observed a relatively large proportion of locally advanced TNBC at diagnosis, with large tumor size and nodal involvement, with high grade and high proliferation index Ki67. Patient age, tumor size and lymph node involvement, as expected, were significant and clinically most important prognostic factors for 5-year disease-free survival (67%; 95% CI 60%-75%) and overall absolute survival rate (74%; 95% CI 66%-81%).
Collapse
Affiliation(s)
| | - Robert Šeparović
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Ljubica Vazdar
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Mirjana Pavlović
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Petra Lepetić
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Sanda Šitić
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Žarko Bajić
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Božena Šarčević
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Damir Vrbanec
- 1Department of Medical Oncology, Division of Radiotherapy and Medical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Oncologic Cytology and Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Dr. Mirko Grmek Scientific Unit, Sveti Ivan Psychiatric Hospital, Zagreb, Croatia; 4School of Medicine, University of Zagreb, Zagreb, Croatia; 5School of Medicine, Juraj Dobrila University, Pula, Croatia
| |
Collapse
|