1
|
Fenton M, Borcherds W, Chen L, Anbanandam A, Levy R, Chen J, Daughdrill G. The MDMX Acidic Domain Uses Allovalency to Bind Both p53 and MDMX. J Mol Biol 2022; 434:167844. [PMID: 36181774 PMCID: PMC9644833 DOI: 10.1016/j.jmb.2022.167844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023]
Abstract
Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.
Collapse
Affiliation(s)
- Malissa Fenton
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Wade Borcherds
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Lihong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Asokan Anbanandam
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Robin Levy
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
2
|
Hughes MD, Cussons S, Mahmoudi N, Brockwell DJ, Dougan L. Tuning Protein Hydrogel Mechanics through Modulation of Nanoscale Unfolding and Entanglement in Postgelation Relaxation. ACS NANO 2022; 16:10667-10678. [PMID: 35731007 PMCID: PMC9331141 DOI: 10.1021/acsnano.2c02369] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Globular folded proteins are versatile nanoscale building blocks to create biomaterials with mechanical robustness and inherent biological functionality due to their specific and well-defined folded structures. Modulating the nanoscale unfolding of protein building blocks during network formation (in situ protein unfolding) provides potent opportunities to control the protein network structure and mechanics. Here, we control protein unfolding during the formation of hydrogels constructed from chemically cross-linked maltose binding protein using ligand binding and the addition of cosolutes to modulate protein kinetic and thermodynamic stability. Bulk shear rheology characterizes the storage moduli of the bound and unbound protein hydrogels and reveals a correlation between network rigidity, characterized as an increase in the storage modulus, and protein thermodynamic stability. Furthermore, analysis of the network relaxation behavior identifies a crossover from an unfolding dominated regime to an entanglement dominated regime. Control of in situ protein unfolding and entanglement provides an important route to finely tune the architecture, mechanics, and dynamic relaxation of protein hydrogels. Such predictive control will be advantageous for future smart biomaterials for applications which require responsive and dynamic modulation of mechanical properties and biological function.
Collapse
Affiliation(s)
- Matt D.
G. Hughes
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sophie Cussons
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Najet Mahmoudi
- ISIS
Neutron
and Muon Spallation Source, STFC Rutherford
Appleton Laboratory, Oxfordshire OX11 0QX, U.K.
| | - David J. Brockwell
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Lorna Dougan
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
3
|
Hidden Multivalency in Phosphatase Recruitment by a Disordered AKAP Scaffold. J Mol Biol 2022; 434:167682. [PMID: 35697294 DOI: 10.1016/j.jmb.2022.167682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Disordered scaffold proteins provide multivalent landing pads that, via a series of embedded Short Linear Motifs (SLiMs), bring together the components of a complex to orchestrate precise spatial and temporal regulation of cellular processes. One such protein is AKAP5 (previously AKAP79), which contains SLiMs that anchor PKA and Calcineurin, and recruit substrate (the TRPV1 receptor). Calcineurin is anchored to AKAP5 by a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that the Calcineurin PxIxIT-binding groove also recognises several hitherto unknown lower-affinity SLiMs in addition to the PxIxIT motif. We demonstrate that the assembly is in reality a complex system with conserved SLiMs spanning a wide affinity range. The capture is analogous to that seen for many DNA-binding proteins that have a weak non-specific affinity for DNA outside the canonical binding site, but different in that it involves (i) two proteins, and (ii) hydrophobic rather than electrostatic interactions. It is also compatible with the requirement for both stable anchoring of the enzyme and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that, together with the canonical SLiM, maintain a structurally disordered but tightly regulated signalosome.
Collapse
|
4
|
Petrovic S, Samanta D, Perriches T, Bley CJ, Thierbach K, Brown B, Nie S, Mobbs GW, Stevens TA, Liu X, Tomaleri GP, Schaus L, Hoelz A. Architecture of the linker-scaffold in the nuclear pore. Science 2022; 376:eabm9798. [PMID: 35679425 PMCID: PMC9867570 DOI: 10.1126/science.abm9798] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION In eukaryotic cells, the selective bidirectional transport of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC). Embedded in nuclear envelope pores, the ~110-MDa human NPC is an ~1200-Å-wide and ~750-Å-tall assembly of ~1000 proteins, collectively termed nucleoporins. Because of the NPC's eightfold rotational symmetry along the nucleocytoplasmic axis, each of the ~34 different nucleoporins occurs in multiples of eight. Architecturally, the NPC's symmetric core is composed of an inner ring encircling the central transport channel and two outer rings anchored on both sides of the nuclear envelope. Because of its central role in the flow of genetic information from DNA to RNA to protein, the NPC is commonly targeted in viral infections and its nucleoporin constituents are associated with a plethora of diseases. RATIONALE Although the arrangement of most scaffold nucleoporins in the NPC's symmetric core was determined by quantitative docking of crystal structures into cryo-electron tomographic (cryo-ET) maps of intact NPCs, the topology and molecular details of their cohesion by multivalent linker nucleoporins have remained elusive. Recently, in situ cryo-ET reconstructions of NPCs from various species have indicated that the NPC's inner ring is capable of reversible constriction and dilation in response to variations in nuclear envelope membrane tension, thereby modulating the diameter of the central transport channel by ~200 Å. We combined biochemical reconstitution, high-resolution crystal and single-particle cryo-electron microscopy (cryo-EM) structure determination, docking into cryo-ET maps, and physiological validation to elucidate the molecular architecture of the linker-scaffold interaction network that not only is essential for the NPC's integrity but also confers the plasticity and robustness necessary to allow and withstand such large-scale conformational changes. RESULTS By biochemically mapping scaffold-binding regions of all fungal and human linker nucleoporins and determining crystal and single-particle cryo-EM structures of linker-scaffold complexes, we completed the characterization of the biochemically tractable linker-scaffold network and established its evolutionary conservation, despite considerable sequence divergence. We determined a series of crystal and single-particle cryo-EM structures of the intact Nup188 and Nup192 scaffold hubs bound to their Nic96, Nup145N, and Nup53 linker nucleoporin binding regions, revealing that both proteins form distinct question mark-shaped keystones of two evolutionarily conserved hetero‑octameric inner ring complexes. Linkers bind to scaffold surface pockets through short defined motifs, with flanking regions commonly forming additional disperse interactions that reinforce the binding. Using a structure‑guided functional analysis in Saccharomyces cerevisiae, we confirmed the robustness of linker‑scaffold interactions and established the physiological relevance of our biochemical and structural findings. The near-atomic composite structures resulting from quantitative docking of experimental structures into human and S. cerevisiae cryo-ET maps of constricted and dilated NPCs structurally disambiguated the positioning of the Nup188 and Nup192 hubs in the intact fungal and human NPC and revealed the topology of the linker-scaffold network. The linker-scaffold gives rise to eight relatively rigid inner ring spokes that are flexibly interconnected to allow for the formation of lateral channels. Unexpectedly, we uncovered that linker‑scaffold interactions play an opposing role in the outer rings by forming tight cross-link staples between the eight nuclear and cytoplasmic outer ring spokes, thereby limiting the dilatory movements to the inner ring. CONCLUSION We have substantially advanced the structural and biochemical characterization of the symmetric core of the S. cerevisiae and human NPCs and determined near-atomic composite structures. The composite structures uncover the molecular mechanism by which the evolutionarily conserved linker‑scaffold establishes the NPC's integrity while simultaneously allowing for the observed plasticity of the central transport channel. The composite structures are roadmaps for the mechanistic dissection of NPC assembly and disassembly, the etiology of NPC‑associated diseases, the role of NPC dilation in nucleocytoplasmic transport of soluble and integral membrane protein cargos, and the anchoring of asymmetric nucleoporins. [Figure: see text].
Collapse
Affiliation(s)
- Stefan Petrovic
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Dipanjan Samanta
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Thibaud Perriches
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Christopher J. Bley
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Karsten Thierbach
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W. Mobbs
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Taylor A. Stevens
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lucas Schaus
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - André Hoelz
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Hwang T, Parker SS, Hill SM, Grant RA, Ilunga MW, Sivaraman V, Mouneimne G, Keating AE. Native proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP protein ENAH. eLife 2022; 11:70680. [PMID: 35076015 PMCID: PMC8789275 DOI: 10.7554/elife.70680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can’t be fully understood outside of their native context.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of Technology
| | - Sara S Parker
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Samantha M Hill
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of Technology
| | | | | | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
6
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
7
|
Olsen JG, Teilum K, Kragelund BB. Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness. Cell Mol Life Sci 2017; 74:3175-3183. [PMID: 28597296 PMCID: PMC5533869 DOI: 10.1007/s00018-017-2560-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) do not, by themselves, fold into a compact globular structure. They are extremely dynamic and flexible, and are typically involved in signalling and transduction of information through binding to other macromolecules. The reason for their existence may lie in their malleability, which enables them to bind several different partners with high specificity. In addition, their interactions with other macromolecules can be regulated by a variable amount of chemically diverse post-translational modifications. Four kinetically and energetically different types of complexes between an IDP and another macromolecule are reviewed: (1) simple two-state binding involving a single binding site, (2) avidity, (3) allovalency and (4) fuzzy binding; the last three involving more than one site. Finally, a qualitative definition of fuzzy binding is suggested, examples are provided, and its distinction to allovalency and avidity is highlighted and discussed.
Collapse
Affiliation(s)
- Johan G Olsen
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Enciso G, Kellogg DR, Vargas A. Compact modeling of allosteric multisite proteins: application to a cell size checkpoint. PLoS Comput Biol 2014; 10:e1003443. [PMID: 24516371 PMCID: PMC3916233 DOI: 10.1371/journal.pcbi.1003443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously. As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a threshold indicating that sufficient growth has occurred.
Collapse
Affiliation(s)
- Germán Enciso
- Department of Mathematics, Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Arturo Vargas
- Computational and Applied Mathematics Department, Rice University, Houston, Texas, United States of America
| |
Collapse
|
9
|
Ultrasensitivity in independent multisite systems. J Math Biol 2013; 69:977-99. [PMID: 24046085 DOI: 10.1007/s00285-013-0727-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Multisite modifications are widely recognized as an essential feature of many switch-like responses in signal transduction. It is usually assumed that the modification of one site directly or indirectly increases the rate of modification of neighboring sites. In this paper we provide a new set of assumptions for a multisite system to become highly ultrasensitive even in the absence of cooperativity or allostery. We assume that the individual sites are modified independently of each other, and that protein activity is an ultrasensitive function of the fraction of modified sites. These assumptions are particularly useful in the context of multisite systems with a large (8+) number of sites. We estimate the apparent Hill coefficient of the dose responses in the sequential and nonsequential cases, highlight their different qualitative properties, and discuss a formula to approximate dose responses in the nonsequential case. As an example we describe a model of bacterial chemotaxis that features robust ultrasensitivity and perfect adaptation over a wide range of ligand concentrations, based on non-allosteric multisite behavior at the level of receptors and flagella. We also include a model of the inactivation of the yeast pheromone protein Ste5 by cell cycle proteins.
Collapse
|
10
|
Locasale JW. Allovalency revisited: an analysis of multisite phosphorylation and substrate rebinding. J Chem Phys 2008; 128:115106. [PMID: 18361621 DOI: 10.1063/1.2841124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The utilization of multiple phosphorylation sites in regulating a biological response is ubiquitous in cell signaling. If each site contributes an additional, equivalent binding site, then one consequence of an increase in the number of phosphorylations may be to increase the probability that, upon dissociation, a ligand immediately rebinds to its receptor. How such effects may influence cell signaling systems is not well understood. Here, a self-consistent integral equation formalism for ligand rebinding, in conjunction with Monte Carlo simulations, is employed to further investigate the effects of multiple, equivalent binding sites on shaping biological responses. Multiple regimes that characterize qualitatively different physics due to the differential prevalence of rebinding effects are predicted. Calculations suggest that when ligand rebinding contributes significantly to the dose response, a purely allovalent model can influence the binding curves nonlinearly. The model also predicts that ligand rebinding in itself appears insufficient to generate a highly cooperative biological response.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|