1
|
Das R, Pandey P, Maurya B, Pradhan P, Sinha D, Mukherjee A, Mutsuddi M. Spoonbill positively regulates JNK signalling mediated apoptosis in Drosophila melanogaster. Eur J Cell Biol 2023; 102:151300. [PMID: 36858008 DOI: 10.1016/j.ejcb.2023.151300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
A-kinase anchoring protein (AKAP) comprises a family of scaffold proteins, which decides the subcellular localisation of a combination of signalling molecules. Spoonbill (Spoon) is a putative A-kinase anchoring protein in Drosophila. We have earlier reported that Spoon suppresses ribonuclear foci formed by trinucleotide repeat expanded transcripts associated with Spinocerebellar Ataxia 8 neurodegeneration in Drosophila. However, the role of Spoonbill in cellular signalling was unexplored. In this report, we have unravelled a novel function of Spoon protein in the regulation of the apoptotic pathway. The Drosophila TNFα homolog, Eiger, induces apoptosis via activation of the JNK pathway. We have shown here that Spoonbill is a positive regulator of the Eiger-induced JNK signalling. Further genetic interaction studies show that the spoon interacts with components of the JNK pathway, TGF-β activated kinase 1 (Tak1 - JNKKK), hemipterous (hep - JNKK) and basket (bsk - JNK). Interestingly, Spoonbill alone can also induce ectopic activation of the JNK pathway in a context-specific manner. To understand the molecular mechanism underlying Spoonbill-mediated modulation of the JNK pathway, the interaction between Spoon and Drosophila JNK was assessed. basket encodes the only known JNK in Drosophila. This serine/threonine-protein kinase phosphorylates Jra/Kay, which transcriptionally regulate downstream targets like Matrix metalloproteinase 1 (Mmp1), puckered (puc), and proapoptotic genes hid, reaper and grim. Interestingly, we found that Spoonbill colocalises and co-immunoprecipitates with the Basket protein in the developing photoreceptor neurons. Hence, we propose that Spoon plays a vital role in JNK-induced apoptosis. Furthermore, stress-induced JNK activation underlying Parkinson's Disease was also examined. In the Parkinson's Drosophila model of neurodegeneration, depletion of Spoonbill leads to a partial reduction of JNK pathway activation, along with improvement in adult motor activity. These observations suggest that the putative scaffold protein Spoonbill is a functional and physical interacting partner of the Drosophila JNK protein, Basket. Spoon protein is localised on the outer mitochondrial membrane (OMM), which may perhaps provide a suitable subcellular niche for activation of Drosophila Basket protein by its kinases which induce apoptosis.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Pranjali Pandey
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Bhawana Maurya
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | | | - Devanjan Sinha
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
3
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
4
|
Davis J, Da Silva Santos C, Zavala NC, Gans N, Patracuolla D, Fehrenbach M, Babcock DT. Characterizing dopaminergic neuron vulnerability using Genome-wide analysis. Genetics 2021; 218:6284964. [PMID: 34038543 PMCID: PMC8864742 DOI: 10.1093/genetics/iyab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is primarily characterized by the loss of dopaminergic (DA) neurons in the brain. However, little is known about why DA neurons are selectively vulnerable to PD. To identify genes that are associated with DA neuron loss, we screened through 201 wild-caught populations of Drosophila melanogaster as part of the Drosophila Genetic Reference Panel. Here, we identify the top-associated genes containing single-nucleotide polymorphisms that render DA neurons vulnerable. These genes were further analyzed by using mutant analysis and tissue-specific knockdown for functional validation. We found that this loss of DA neurons caused progressive locomotor dysfunction in mutants and gene knockdown analysis. The identification of genes associated with the progressive loss of DA neurons should help to uncover factors that render these neurons vulnerable in PD, and possibly develop strategies to make these neurons more resilient.
Collapse
Affiliation(s)
- Jacinta Davis
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | | - Nicholas Gans
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Daniel Patracuolla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Monica Fehrenbach
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Daniel T Babcock
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
5
|
Lin YH, Maaroufi HO, Kucerova L, Rouhova L, Filip T, Zurovec M. Adenosine Receptor and Its Downstream Targets, Mod(mdg4) and Hsp70, Work as a Signaling Pathway Modulating Cytotoxic Damage in Drosophila. Front Cell Dev Biol 2021; 9:651367. [PMID: 33777958 PMCID: PMC7994771 DOI: 10.3389/fcell.2021.651367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Adenosine (Ado) is an important signaling molecule involved in stress responses. Studies in mammalian models have shown that Ado regulates signaling mechanisms involved in “danger-sensing” and tissue-protection. Yet, little is known about the role of Ado signaling in Drosophila. In the present study, we observed lower extracellular Ado concentration and suppressed expression of Ado transporters in flies expressing mutant huntingtin protein (mHTT). We altered Ado signaling using genetic tools and found that the overexpression of Ado metabolic enzymes, as well as the suppression of Ado receptor (AdoR) and transporters (ENTs), were able to minimize mHTT-induced mortality. We also identified the downstream targets of the AdoR pathway, the modifier of mdg4 (Mod(mdg4)) and heat-shock protein 70 (Hsp70), which modulated the formation of mHTT aggregates. Finally, we showed that a decrease in Ado signaling affects other Drosophila stress reactions, including paraquat and heat-shock treatments. Our study provides important insights into how Ado regulates stress responses in Drosophila.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomas Filip
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
6
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
7
|
Cid-Samper F, Gelabert-Baldrich M, Lang B, Lorenzo-Gotor N, Ponti RD, Severijnen LAWFM, Bolognesi B, Gelpi E, Hukema RK, Botta-Orfila T, Tartaglia GG. An Integrative Study of Protein-RNA Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile X-Associated Tremor/Ataxia Syndrome. Cell Rep 2019; 25:3422-3434.e7. [PMID: 30566867 PMCID: PMC6315285 DOI: 10.1016/j.celrep.2018.11.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that specific RNAs promote the formation of ribonucleoprotein condensates by acting as scaffolds for RNA-binding proteins (RBPs). We systematically investigated RNA-RBP interaction networks to understand ribonucleoprotein assembly. We found that highly contacted RNAs are structured, have long UTRs, and contain nucleotide repeat expansions. Among the RNAs with such properties, we identified the FMR1 3' UTR that harbors CGG expansions implicated in fragile X-associated tremor/ataxia syndrome (FXTAS). We studied FMR1 binding partners in silico and in vitro and prioritized the splicing regulator TRA2A for further characterization. In a FXTAS cellular model, we validated the TRA2A-FMR1 interaction and investigated implications of its sequestration at both transcriptomic and post-transcriptomic levels. We found that TRA2A co-aggregates with FMR1 in a FXTAS mouse model and in post-mortem human samples. Our integrative study identifies key components of ribonucleoprotein aggregates, providing links to neurodegenerative disease and allowing the discovery of therapeutic targets.
Collapse
Affiliation(s)
- Fernando Cid-Samper
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mariona Gelabert-Baldrich
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Benjamin Lang
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Nieves Lorenzo-Gotor
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Benedetta Bolognesi
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Biobank of the Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Spain; Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy; Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluís Companys, 08010 Barcelona, Spain.
| |
Collapse
|
8
|
Ishikawa K, Nagai Y. Molecular Mechanisms and Future Therapeutics for Spinocerebellar Ataxia Type 31 (SCA31). Neurotherapeutics 2019; 16:1106-1114. [PMID: 31755042 PMCID: PMC6985187 DOI: 10.1007/s13311-019-00804-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Spinocerebellar ataxia type 31 (SCA31) is one of the autosomal-dominant neurodegenerative disorders that shows progressive cerebellar ataxia as a cardinal symptom. This disease is caused by a 2.5- to 3.8-kb-long complex pentanucleotide repeat containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n in an intron of the gene called BEAN1 (brain expressed, associated with Nedd4). By comparing various pentanucleotide repeats in this particular locus among control Japanese and Caucasian populations, it was found that (TGGAA)n was the only sequence segregating with SCA31, strongly suggesting the pathogenicity of (TGGAA)n. The complex repeat also lies in an intron of another gene, TK2 (thymidine kinase 2), which is transcribed in the opposite direction, indicating that the complex repeat is bi-directionally transcribed as noncoding repeats. In SCA31 human brains, (UGGAA)n, the BEAN1 transcript of SCA31 mutation was found to form abnormal RNA structures called RNA foci in cerebellar Purkinje cell nuclei. Subsequent RNA pulldown analysis disclosed that (UGGAA)n binds to RNA-binding proteins TDP-43, FUS, and hnRNP A2/B1. In fact, TDP-43 was found to co-localize with RNA foci in human SCA31 Purkinje cells. To dissect the pathogenesis of (UGGAA)n in SCA31, we generated transgenic fly models of SCA31 by overexpressing SCA31 complex pentanucleotide repeats in Drosophila. We found that the toxicity of (UGGAA)n is length- and expression level-dependent, and it was dampened by co-expressing TDP-43, FUS, and hnRNP A2/B1. Further investigation revealed that TDP-43 ameliorates (UGGAA)n toxicity by directly fixing the abnormal structure of (UGGAA)n. This led us to propose that TDP-43 acts as an RNA chaperone against toxic (UGGAA)n. Further research on the role of RNA-binding proteins as RNA chaperones may provide a novel therapeutic strategy for SCA31.
Collapse
Affiliation(s)
- Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
9
|
Ueyama M, Nagai Y. Repeat Expansion Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:63-78. [PMID: 29951815 DOI: 10.1007/978-981-13-0529-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Repeat expansion disorders are a group of inherited neuromuscular diseases, which are caused by expansion mutations of repeat sequences in the disease-causing genes. Repeat expansion disorders include a class of diseases caused by repeat expansions in the coding region of the genes, producing mutant proteins with amino acid repeats, mostly the polyglutamine (polyQ) diseases, and another class of diseases caused by repeat expansions in the noncoding regions, producing aberrant RNA with expanded repeats, which are called noncoding repeat expansion diseases. A variety of Drosophila disease models have been established for both types of diseases, and they have made significant contributions toward elucidating the molecular mechanisms of and developing therapies for these neuromuscular diseases.
Collapse
Affiliation(s)
- Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
10
|
Lo Piccolo L. Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:119-146. [PMID: 29951818 DOI: 10.1007/978-981-13-0529-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
12
|
Gu T, Zhao T, Kohli U, Hewes RS. The large and small SPEN family proteins stimulate axon outgrowth during neurosecretory cell remodeling in Drosophila. Dev Biol 2017; 431:226-238. [PMID: 28916169 DOI: 10.1016/j.ydbio.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/16/2022]
Abstract
Split ends (SPEN) is the founding member of a well conserved family of nuclear proteins with critical functions in transcriptional regulation and the post-transcriptional processing and nuclear export of transcripts. In animals, the SPEN proteins fall into two size classes that perform either complementary or antagonistic functions in different cellular contexts. Here, we show that the two Drosophila representatives of this family, SPEN and Spenito (NITO), regulate metamorphic remodeling of the CCAP/bursicon neurosecretory cells. CCAP/bursicon cell-targeted overexpression of SPEN had no effect on the larval morphology or the pruning back of the CCAP/bursicon cell axons at the onset of metamorphosis. During the subsequent outgrowth phase of metamorphic remodeling, overexpression of either SPEN or NITO strongly inhibited axon extension, axon branching, peripheral neuropeptide accumulation, and soma growth. Cell-targeted loss-of-function alleles for both spen and nito caused similar reductions in axon outgrowth, indicating that the absolute levels of SPEN and NITO activity are critical to support the developmental plasticity of these neurons. Although nito RNAi did not affect SPEN protein levels, the phenotypes produced by SPEN overexpression were suppressed by nito RNAi. We propose that SPEN and NITO function additively or synergistically in the CCAP/bursicon neurons to regulate multiple aspects of neurite outgrowth during metamorphic remodeling.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Tao Zhao
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Uday Kohli
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Randall S Hewes
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
13
|
Tripathi BK, Das R, Mukherjee A, Mutsuddi M. Interaction of Spoonbill with Prospero in Drosophila: Implications in neuroblast development. Genesis 2017; 55. [PMID: 28722203 DOI: 10.1002/dvg.23049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Abstract
Identification of Spoon as a suppressor of SCA8 associated neurodegeneration provides us a hint about its role in neuronal development and maintenance. However, a detailed molecular characterization of spoon has not yet been reported. Here, we describe spatial expression pattern of Spoon during Drosophila development. Quantitative real time-PCR and fluorescent RNA-RNA in situ hybridization indicate that Spoon is expressed at relatively high levels in larval brain and photoreceptors of eye-antennal discs. Immunostaining reveals that Spoon is subcellularly localized in the cytoplasm and is also membrane bound. Strong expression is also seen in adult ovary and testes. Spoon on immunostaining exhibits unique pattern of expression in larval brain. We observed that Spoon in the neuroblasts colocalizes with Prospero, a transcription factor regulating genes involved in neuroblast self-renewal or cell-cycle control. Co-immunoprecipitation suggests that Spoon and Prospero reside in the same protein complex. Using Drosophila model of SCA8 RNA neuropathy we have also shown that loss of Prospero hinders the suppression of SCA8 associated neurodegeneration by Spoonbill, suggesting Prospero and Spoon might genetically interact and function together. Our study presents Spoon as a novel interacting partner of Prospero and this might be critical in determining the polarized localization of cell fate determinants.
Collapse
Affiliation(s)
- Bipin K Tripathi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rituparna Das
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
14
|
Functions of long non-coding RNAs in human disease and their conservation in Drosophila development. Biochem Soc Trans 2017; 45:895-904. [PMID: 28673935 DOI: 10.1042/bst20160428] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs regulates gene expression in diverse ways and has been involved in a large variety of important biological functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human diseases, including cancer. Comparative analyses of their functions among these organisms suggest that some of their modes of action appear to be conserved. This highlights the importance of model organisms such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA function and its possible impact in human health. This review discusses some known functions and mechanisms of action of lncRNAs and their implication in human diseases, together with their functional conservation and relevance in Drosophila development.
Collapse
|
15
|
Khare S, Nick JA, Zhang Y, Galeano K, Butler B, Khoshbouei H, Rayaprolu S, Hathorn T, Ranum LPW, Smithson L, Golde TE, Paucar M, Morse R, Raff M, Simon J, Nordenskjöld M, Wirdefeldt K, Rincon-Limas DE, Lewis J, Kaczmarek LK, Fernandez-Funez P, Nick HS, Waters MF. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS One 2017; 12:e0173565. [PMID: 28467418 PMCID: PMC5414954 DOI: 10.1371/journal.pone.0173565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3). We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT) protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr) results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR). Together, these results indicate that the neurodevelopmental consequences of KCNC3R423H may be mediated through indirect effects on EGFR signaling in the developing cerebellum. Our results therefore confirm the KCNC3R423H allele as causative for SCA13, through a dominant negative effect on KCNC3WT and links with EGFR that account for dominant inheritance, congenital onset, and disease pathology.
Collapse
Affiliation(s)
- Swati Khare
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Jerelyn A. Nick
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Kira Galeano
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Brittany Butler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Sruti Rayaprolu
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Tyisha Hathorn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Laura P. W. Ranum
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Lisa Smithson
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Todd E. Golde
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Richard Morse
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Michael Raff
- Genomics Institute, Multicare Health System, Tacoma, WA, United States of America
| | - Julie Simon
- Genomics Institute, Multicare Health System, Tacoma, WA, United States of America
| | - Magnus Nordenskjöld
- Department of Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Karin Wirdefeldt
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Diego E. Rincon-Limas
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Jada Lewis
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Pedro Fernandez-Funez
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Harry S. Nick
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Michael F. Waters
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
16
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
17
|
Zhang N, Ashizawa T. RNA toxicity and foci formation in microsatellite expansion diseases. Curr Opin Genet Dev 2017; 44:17-29. [PMID: 28208060 DOI: 10.1016/j.gde.2017.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
Abstract
More than 30 incurable neurological and neuromuscular diseases are caused by simple microsatellite expansions consisted of 3-6 nucleotides. These repeats can occur in non-coding regions and often result in a dominantly inherited disease phenotype that is characteristic of a toxic RNA gain-of-function. The expanded RNA adopts unusual secondary structures, sequesters various RNA binding proteins to form insoluble nuclear foci, and causes cellular defects at a multisystem level. Nuclear foci are dynamic in size, shape and colocalization of RNA binding proteins in different expansion diseases and tissue types. This review sets to provide new insights into the disease mechanisms of RNA toxicity and foci modulation, in light of recent advancement on bi-directional transcription, antisense RNA, repeat-associated non-ATG translation and beyond.
Collapse
Affiliation(s)
- Nan Zhang
- Neurosciences Research Program, Houston Methodist Research Institute, Houston, TX 77030, United States; Division of Cell and Molecular Biology, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Tetsuo Ashizawa
- Neurosciences Research Program, Houston Methodist Research Institute, Houston, TX 77030, United States.
| |
Collapse
|
18
|
Domitrovic T, Fausto AK, Silva TDF, Romanel E, Vaslin MFS. Plant arginyltransferases (ATEs). Genet Mol Biol 2017; 40:253-260. [PMID: 28199445 PMCID: PMC5452128 DOI: 10.1590/1678-4685-gmb-2016-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/16/2016] [Indexed: 12/03/2022] Open
Abstract
Regulation of protein stability and/or degradation of misfolded and damaged proteins are essential cellular processes. A part of this regulation is mediated by the so-called N-end rule proteolytic pathway, which, in concert with the ubiquitin proteasome system (UPS), drives protein degradation depending on the N-terminal amino acid sequence. One important enzyme involved in this process is arginyl-t-RNA transferase, known as ATE. This enzyme acts post-translationally by introducing an arginine residue at the N-terminus of specific protein targets to signal degradation via the UPS. However, the function of ATEs has only recently begun to be revealed. Nonetheless, the few studies to date investigating ATE activity in plants points to the great importance of the ATE/N-end rule pathway in regulating plant signaling. Plant development, seed germination, leaf morphology and responses to gas signaling in plants are among the processes affected by the ATE/N-end rule pathway. In this review, we present some of the known biological functions of plant ATE proteins, highlighting the need for more in-depth studies on this intriguing pathway.
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anna K Fausto
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiane da F Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Maite F S Vaslin
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Abstract
The number of long noncoding RNAs (lncRNAs) has grown rapidly; however, our understanding of their function remains limited. Although cultured cells have facilitated investigations of lncRNA function at the molecular level, the use of animal models provides a rich context in which to investigate the phenotypic impact of these molecules. Promising initial studies using animal models demonstrated that lncRNAs influence a diverse number of phenotypes, ranging from subtle dysmorphia to viability. Here, we highlight the diversity of animal models and their unique advantages, discuss the use of animal models to profile lncRNA expression, evaluate experimental strategies to manipulate lncRNA function in vivo, and review the phenotypes attributable to lncRNAs. Despite a limited number of studies leveraging animal models, lncRNAs are already recognized as a notable class of molecules with important implications for health and disease.
Collapse
|
20
|
Tripathi BK, Surabhi S, Bhaskar PK, Mukherjee A, Mutsuddi M. The RNA binding KH domain of Spoonbill depletes pathogenic non-coding spinocerebellar ataxia 8 transcripts and suppresses neurodegeneration in Drosophila. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1732-41. [PMID: 27302466 DOI: 10.1016/j.bbadis.2016.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022]
Abstract
Spinocerebellar ataxia 8 (SCA8) pathogenesis is a resultant of gain-of-function machinery that primarily results at the RNA level. It has been reported that expanded non-coding CTG trinucleotide repeat in the ATXN8OS transcripts leads to SCA8 coupled neurodegeneration. Targeted depletion of pathogenic SCA8 transcripts is a viable therapeutic approach. In this report we have focused on the suppression of toxic RNA gain-of-function associated with SCA8. We report suppression of SCA8 associated neurodegeneration by KH RNA binding domain of Spoonbill. KH domain suppresses pathogenic SCA8 associated phenotype in adult flies. Ectopic expression of KH domain leads to massive reduction in the number and size of SCA8 RNA foci. We show that Spoonbill interacts with toxic SCA8 transcripts via its KH domain and promotes its depletion. Till date, no attempts have been made for therapeutic intervention of SCA8 pathogenesis. Further characterization of Spoonbill KH domain may aid us in designing peptide based therapeutics for SCA8 associated neurodegeneration.
Collapse
Affiliation(s)
- Bipin K Tripathi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Satya Surabhi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pradeep K Bhaskar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
21
|
Hart RP, Goff LA. Long noncoding RNAs: Central to nervous system development. Int J Dev Neurosci 2016; 55:109-116. [PMID: 27296516 DOI: 10.1016/j.ijdevneu.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022] Open
Abstract
The development of the central nervous system (CNS) is a complex orchestration of stem cells, transcription factors, growth/differentiation factors, and epigenetic control. Noncoding RNAs have been identified, classified, and studied for their functional roles in many systems including the CNS. In particular, the class of long noncoding RNAs (lncRNAs) has generated both enthusiasm and skepticism due to the unexpected discovery, the diversity of mechanisms, and the lower level of expression than found in protein-coding RNAs. Here we describe evidence supporting the role of lncRNAs in driving CNS-specific differentiation. It is clear that lncRNAs exhibit a functional diversity that makes their study and compartmentalization more challenging than other classes of noncoding RNAs. We predict, however, that lncRNAs will be essential for the characterization of discrete neuronal cell types in the age of single-cell transcriptomics and that these regulatory RNAs contribute to the multitude of functional mechanisms during CNS differentiation that will rival the diversities of protein-based mechanisms.
Collapse
Affiliation(s)
- Ronald P Hart
- Department of Cell Biology & Neuroscience, and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Loyal A Goff
- McKusick-Nathans Institute for Genetic Medicine & Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21025, USA
| |
Collapse
|
22
|
Chen B, Zhang Y, Zhang X, Jia S, Chen S, Kang L. Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci Rep 2016; 6:23330. [PMID: 26996731 PMCID: PMC4800424 DOI: 10.1038/srep23330] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
An increasing number of long noncoding RNAs (lncRNAs) have been discovered with the recent advances in RNA-sequencing technologies. lncRNAs play key roles across diverse biological processes, and are involved in developmental regulation. However, knowledge about how the genome-wide expression of lncRNAs is developmentally regulated is still limited. We here performed a whole-genome identification of lncRNAs followed by a global expression profiling of these lncRNAs during development in Drosophila melanogaster. We combined bioinformatic prediction of lncRNAs with stringent filtering of protein-coding transcripts and experimental validation to define a high-confidence set of Drosophila lncRNAs. We identified 1,077 lncRNAs in the given transcriptomes that contain 43,967 transcripts; among these, 646 lncRNAs are novel. In vivo expression profiling of these lncRNAs in 27 developmental processes revealed that the expression of lncRNAs is highly temporally restricted relative to that of protein-coding genes. Remarkably, 21% and 42% lncRNAs were significantly upregulated at late embryonic and larval stage, the critical time for developmental transition. The results highlight the developmental specificity of lncRNA expression, and reflect the regulatory significance of a large subclass of lncRNAs for the onset of metamorphosis. The systematic annotation and expression analysis of lncRNAs during Drosophila development form the foundation for future functional exploration.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Mathematics, Hebei University of Science and Technology/Hebei Laboratory of Pharmaceutical Molecular Chemistry, Shijiazhuang 050018, China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Shili Jia
- Department of Mathematics, Hebei University of Science and Technology/Hebei Laboratory of Pharmaceutical Molecular Chemistry, Shijiazhuang 050018, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
23
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
24
|
Regulation of Notch Signaling by an Evolutionary Conserved DEAD Box RNA Helicase, Maheshvara in Drosophila melanogaster. Genetics 2015; 201:1071-85. [PMID: 26400611 DOI: 10.1534/genetics.115.181214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Notch signaling is an evolutionary conserved process that influences cell fate determination, cell proliferation, and cell death in a context-dependent manner. Notch signaling is fine-tuned at multiple levels and misregulation of Notch has been implicated in a variety of human diseases. We have characterized maheshvara (mahe), a novel gene in Drosophila melanogaster that encodes a putative DEAD box protein that is highly conserved across taxa and belongs to the largest group of RNA helicase. A dynamic pattern of mahe expression along with the maternal accumulation of its transcripts is seen during early stages of embryogenesis. In addition, a strong expression is also seen in the developing nervous system. Ectopic expression of mahe in a wide range of tissues during development results in a variety of defects, many of which resemble a typical Notch loss-of-function phenotype. We illustrate that ectopic expression of mahe in the wing imaginal discs leads to loss of Notch targets, Cut and Wingless. Interestingly, Notch protein levels are also lowered, whereas no obvious change is seen in the levels of Notch transcripts. In addition, mahe overexpression can significantly rescue ectopic Notch-mediated proliferation of eye tissue. Further, we illustrate that mahe genetically interacts with Notch and its cytoplasmic regulator deltex in trans-heterozygous combination. Coexpression of Deltex and Mahe at the dorso-ventral boundary results in a wing-nicking phenotype and a more pronounced loss of Notch target Cut. Taken together we report identification of a novel evolutionary conserved RNA helicase mahe, which plays a vital role in regulation of Notch signaling.
Collapse
|
25
|
Duan R, Sharma S, Xia Q, Garber K, Jin P. Towards Understanding RNA-Mediated Neurological Disorders. J Genet Genomics 2014; 41:473-84. [DOI: 10.1016/j.jgg.2014.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
26
|
Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 2013; 154:727-36. [PMID: 23953108 DOI: 10.1016/j.cell.2013.07.038] [Citation(s) in RCA: 475] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 12/12/2022]
Abstract
The molecular processes that contribute to degenerative diseases are not well understood. Recent observations suggest that some degenerative diseases are promoted by the accumulation of nuclear or cytoplasmic RNA-protein (RNP) aggregates, which can be related to endogenous RNP granules. RNP aggregates arise commonly in degenerative diseases because RNA-binding proteins commonly self-assemble, in part through prion-like domains, which can form self-propagating amyloids. RNP aggregates may be toxic due to multiple perturbations of posttranscriptional control, thereby disrupting the normal "ribostasis" of the cell. This suggests that understanding and modulating RNP assembly or clearance may be effective approaches to developing therapies for these diseases.
Collapse
Affiliation(s)
- Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
27
|
Konsolaki M. Fruitful research: drug target discovery for neurodegenerative diseases in Drosophila. Expert Opin Drug Discov 2013; 8:1503-13. [PMID: 24151920 DOI: 10.1517/17460441.2013.849691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Although vertebrate model systems have obvious advantages in the study of human disease, invertebrate organisms have contributed enormously to this field as well. The conservation of genome structure and physiology among organisms poses unexpected peculiarities, and the redundancy in certain gene families or the presence of polymorphisms that can slightly alter gene expression can, in certain instances, bring invertebrate systems, such as Drosophila, closer to humans than mice and vice versa. This necessitates the analysis of disease pathways in multiple model organisms. AREAS COVERED The author highlights findings from Drosophila models of neurodegenerative diseases that have occurred in the past few years. She also highlights and discusses various molecular, genetic and genomic tools used in flies, as well as methods for generating disease models. Finally, the author describes Drosophila models of Alzheimer's, Parkinson's tri-nucleotide repeat diseases, and Fragile X syndrome and summarizes insights in disease mechanisms that have been discovered directly in fly models. EXPERT OPINION Full genome genetic screens in Drosophila can lead to the rapid identification of drug target candidates that can be subsequently validated in a vertebrate system. In addition, the Drosophila models of neurodegeneration may often show disease phenotypes that are absent in equivalent mouse models. The author believes that the extensive contribution of Drosophila to both new disease drug target discovery, in addition to target validation, makes them indispensible to drug discovery and development.
Collapse
Affiliation(s)
- Mary Konsolaki
- Rutgers, The State University of New Jersey, Department of Genetics, Nelson Biological Laboratories , Room AB422, Piscataway, NJ 08854 , USA +1 732 445 2813 ; +1 732 445 6920 ;
| |
Collapse
|
28
|
Internal ribosome entry segment activity of ATXN8 opposite strand RNA. PLoS One 2013; 8:e73885. [PMID: 24040107 PMCID: PMC3770663 DOI: 10.1371/journal.pone.0073885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8) involves the expansion of CTG/CAG repeats from the overlapping ataxin 8 opposite strand (ATXN8OS) and ataxin 8 (ATXN8) genes located on chromosome 13q21. Although being transcribed, spliced and polyadenylated in the CTG orientation, ATXN8OS does not itself appear to be protein coding, as only small open reading frames (ORFs) were noted. In the present study we investigated the translation of a novel 102 amino acids containing-ORF in the ATXN8OS RNA. Expression of chimeric construct with an in-frame ORF-EGFP gene demonstrated that ATXN8OS RNA is translatable. Using antiserum raised against ORF, ATXN8OS ORF expression was detected in various human cells including lymphoblastoid, embryonic kidney 293, neuroblastoma IMR-32, SK-N-SH, SH-SY5Y cells and human muscle tissue. The biological role of the ATXN8OS ORF and its connection to SCA8 remains to be determined.
Collapse
|
29
|
Budworth H, McMurray CT. Bidirectional transcription of trinucleotide repeats: roles for excision repair. DNA Repair (Amst) 2013; 12:672-84. [PMID: 23669397 DOI: 10.1016/j.dnarep.2013.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100-300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
30
|
Samaraweera SE, O'Keefe LV, Price GR, Venter DJ, Richards RI. Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases. Hum Mol Genet 2013; 22:2811-9. [PMID: 23525903 DOI: 10.1093/hmg/ddt130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dominantly inherited expanded repeat neurodegenerative diseases are caused by the expansion of variable copy number tandem repeat sequences in otherwise unrelated genes. Some repeats encode polyglutamine that is thought to be toxic; however, other repeats do not encode polyglutamine indicating either multiple pathogenic pathways or an alternative common toxic agent. As these diseases share numerous clinical features and expanded repeat RNA is a common intermediary, RNA-based pathogenesis has been proposed, based on its toxicity in animal models. In Drosophila, double-stranded (rCAG.rCUG∼100) RNA toxicity is Dicer dependent and generates single-stranded (rCAG)7, an entity also detected in affected Huntington's Disease (HD) brains. We demonstrate that Drosophila rCAG.rCUG∼100 RNA toxicity perturbs several pathways including innate immunity, consistent with the observation in HD that immune activation precedes neuronal toxicity. Our results show that Drosophila rCAG.rCUG∼100 RNA toxicity is dependent upon Toll signaling and sensitive to autophagy, further implicating innate immune activation. In exhibiting molecular and cellular hallmarks of HD, double-stranded RNA-mediated activation of innate immunity is, therefore, a candidate pathway for this group of human genetic diseases.
Collapse
Affiliation(s)
- Saumya E Samaraweera
- Discipline of Genetics, School of Molecular & Biomedical Science and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | | | |
Collapse
|
31
|
Sicot G, Gomes-Pereira M. RNA toxicity in human disease and animal models: from the uncovering of a new mechanism to the development of promising therapies. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1390-409. [PMID: 23500957 DOI: 10.1016/j.bbadis.2013.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/06/2023]
Abstract
Mutant ribonucleic acid (RNA) molecules can be toxic to the cell, causing human disease through trans-acting dominant mechanisms. RNA toxicity was first described in myotonic dystrophy type 1, a multisystemic disorder caused by the abnormal expansion of a non-coding trinucleotide repeat sequence. The development of multiple and complementary animal models of disease has greatly contributed to clarifying the complex disease pathways mediated by toxic RNA molecules. RNA toxicity is not limited to myotonic dystrophy and spreads to an increasing number of human conditions, which share some unifying pathogenic events mediated by toxic RNA accumulation and disruption of RNA-binding proteins. The remarkable progress in the dissection of disease pathobiology resulted in the rational design of molecular therapies, which have been successfully tested in animal models. Toxic RNA diseases, and in particular myotonic dystrophy, clearly illustrate the critical contribution of animal models of disease in translational research: from gene mutation to disease mechanisms, and ultimately to therapy development. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
|
32
|
Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet 2013; 3:326. [PMID: 23346095 PMCID: PMC3551214 DOI: 10.3389/fgene.2012.00326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022] Open
Abstract
RNA editing is an alteration in the primary nucleotide sequences resulting from a chemical change in the base. RNA editing is observed in eukaryotic mRNA, transfer RNA, ribosomal RNA, and non-coding RNAs (ncRNA). The most common RNA editing in the mammalian central nervous system is a base modification, where the adenosine residue is base-modified to inosine (A to I). Studies from ADAR (adenosine deaminase that act on RNA) mutants in Caenorhabditis elegans, Drosophila, and mice clearly show that the RNA editing process is an absolute requirement for nervous system homeostasis and normal physiology of the animal. Understanding the mechanisms of editing and findings of edited substrates has provided a better knowledge of the phenotype due to defective and hyperactive RNA editing. A to I RNA editing is catalyzed by a family of enzymes knows as ADARs. ADARs modify duplex RNAs and editing of duplex RNAs formed by ncRNAs can impact RNA functions, leading to an altered regulatory gene network. Such altered functions by A to I editing is observed in mRNAs, microRNAs (miRNA) but other editing of small and long ncRNAs (lncRNAs) has yet to be identified. Thus, ncRNA and RNA editing may provide key links between neural development, nervous system function, and neurological diseases. This review includes a summary of seminal findings regarding the impact of ncRNAs on biological and pathological processes, which may be further modified by RNA editing. NcRNAs are non-translated RNAs classified by size and function. Known ncRNAs like miRNAs, smallRNAs (smRNAs), PIWI-interacting RNAs (piRNAs), and lncRNAs play important roles in splicing, DNA methylation, imprinting, and RNA interference. Of note, miRNAs are involved in development and function of the nervous system that is heavily dependent on both RNA editing and the intricate spatiotemporal expression of ncRNAs. This review focuses on the impact of dysregulated A to I editing and ncRNAs in neurodegeneration.
Collapse
Affiliation(s)
- Minati Singh
- Department of Internal Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
33
|
Johnson R, Noble W, Tartaglia GG, Buckley NJ. Neurodegeneration as an RNA disorder. Prog Neurobiol 2012; 99:293-315. [PMID: 23063563 PMCID: PMC7116994 DOI: 10.1016/j.pneurobio.2012.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/14/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases constitute one of the single most important public health challenges of the coming decades, and yet we presently have only a limited understanding of the underlying genetic, cellular and molecular causes. As a result, no effective disease-modifying therapies are currently available, and no method exists to allow detection at early disease stages, and as a result diagnoses are only made decades after disease pathogenesis, by which time the majority of physical damage has already occurred. Since the sequencing of the human genome, we have come to appreciate that the transcriptional output of the human genome is extremely rich in non-protein coding RNAs (ncRNAs). This heterogeneous class of transcripts is widely expressed in the nervous system, and is likely to play many crucial roles in the development and functioning of this organ. Most exciting, evidence has recently been presented that ncRNAs play central, but hitherto unappreciated roles in neurodegenerative processes. Here, we review the diverse available evidence demonstrating involvement of ncRNAs in neurodegenerative diseases, and discuss their possible implications in the development of therapies and biomarkers for these conditions.
Collapse
Key Words
- neurodegeneration
- neurodegenerative disease
- non-coding rna
- alzheimer's disease
- parkinson's disease
- huntington's disease
- trinucleotide repeat disorder
- bace1
- rest
- long non-coding rna
- microrna
- har1
- sox2ot
- mir-9
- mir-132
- mir-124
- ndds, neurodegenerative disorders
- ad, alzheimer's disease
- hd, huntington's disease
- pd, parkinson's disease
- als, amyotrophic lateral sclerosis
- app, amyloid precursor protein
- cftr, cystic fibrosis
- csf, cerebrospinal fluid
- sod1, superoxide dismutase 1
- tardbp, tar dna binding protein
- psen-1, presenilin 1
- psen-2, presenilin 1
- mapt, microtubule-associated protein tau
- snca, α-synuclein
- ups, ubiquitin-proteasome system
- aββ, -amyloid
- er, endoplasmic reticulum
- ber, base excision repair
- parp-1, poly-adp ribose polymerase-1
- lncrnas, long non-coding rnas
- mirnas, microrna
- ncrna, non-coding rnas
- ngs, next generation sequencing
- pcr, polymerase chain reaction
- sars, severe acute respiratory disorder
- sca, spinal cerebellar ataxia
- dm, myotonic dystrophy
- hdl2, huntington's disease-like 2
- tnds, trinucleotide repeat disorders
Collapse
Affiliation(s)
- Rory Johnson
- Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | - Wendy Noble
- Kings College London, Institute of Psychiatry, London, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | | |
Collapse
|
34
|
Cockburn DM, Charish J, Tassew NG, Eubanks J, Bremner R, Macchi P, Monnier PP. The double-stranded RNA-binding protein Staufen 2 regulates eye size. Mol Cell Neurosci 2012; 51:101-11. [PMID: 22940085 DOI: 10.1016/j.mcn.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022] Open
Abstract
Regulation of tissue size is a poorly understood process. Mammalian Staufen 2 (Stau2) is a double-stranded mRNA binding protein known to regulate dendrite formation in vitro as well as cell survival and migration in vivo. Three Stau2 isoforms have been identified in the brain of mammals. Here we show that all these Stau2 isoforms are also expressed in the developing eye of chicken embryos. Strikingly, ectopic expression of Stau2 was sufficient to increase eye size, suggesting a novel biological role of Stau2 in eye morphogenesis. Moreover, down regulation of Stau2 in vivo resulted in a small eye. Microphthalmia was not associated with either increased cell death or differentiation but with reduced cell proliferation. Rescue experiments showed that all three Stau2 isoforms present in the developing eye could prevent microphthalmia. Finally, we showed that Stau2 silencing decreased HES-1 and Sox-2 in the developing eye. These data highlight a new biological function for Stau2 and suggest that translation control of specific Stau2-associated transcripts may be a key regulator of tissue size.
Collapse
Affiliation(s)
- Diane M Cockburn
- Toronto Western Research Institute, Genetics and Development Division, MCL-6-415, Toronto M5T 2S8, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Echeverria GV, Cooper TA. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res 2012; 1462:100-11. [PMID: 22405728 PMCID: PMC3372679 DOI: 10.1016/j.brainres.2012.02.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 12/22/2022]
Abstract
Although protein-mediated toxicity in neurological disease has been extensively characterized, RNA-mediated toxicity is an emerging mechanism of pathogenesis. In microsatellite expansion disorders, expansion of repeated sequences in noncoding regions gives rise to RNA that produces a toxic gain of function, while expansions in coding regions can disrupt protein function as well as produce toxic RNA. The toxic RNA typically aggregates into nuclear foci and contributes to disease pathogenesis. In many cases, toxicity of the RNA is caused by the disrupted functions of RNA-binding proteins. We will discuss evidence for RNA-mediated toxicity in microsatellite expansion disorders. Different microsatellite expansion disorders are linked with alterations in the same as well as disease-specific RNA-binding proteins. Recent studies have shown that microsatellite expansions can encode multiple repeat-containing toxic RNAs through bidirectional transcription and protein species through repeat-associated non-ATG translation. We will discuss approaches that have characterized the toxic contributions of these various factors.
Collapse
Affiliation(s)
- Gloria V. Echeverria
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Thomas A. Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
36
|
Lawlor KT, O’Keefe LV, Samaraweera SE, van Eyk CL, Richards RI. Ubiquitous expression of CUG or CAG trinucleotide repeat RNA causes common morphological defects in a Drosophila model of RNA-mediated pathology. PLoS One 2012; 7:e38516. [PMID: 22715390 PMCID: PMC3371033 DOI: 10.1371/journal.pone.0038516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
Expanded DNA repeat sequences are known to cause over 20 diseases, including Huntington's disease, several types of spinocerebellar ataxia and myotonic dystrophy type 1 and 2. A shared genetic basis, and overlapping clinical features for some of these diseases, indicate that common pathways may contribute to pathology. Multiple mechanisms, mediated by both expanded homopolymeric proteins and expanded repeat RNA, have been identified by the use of model systems, that may account for shared pathology. The use of such animal models enables identification of distinct pathways and their 'molecular hallmarks' that can be used to determine the contribution of each pathway in human pathology. Here we characterise a tergite disruption phenotype in adult flies, caused by ubiquitous expression of either untranslated CUG or CAG expanded repeat RNA. Using the tergite phenotype as a quantitative trait we define a new genetic system in which to examine 'hairpin' repeat RNA-mediated cellular perturbation. Further experiments use this system to examine whether pathways involving Muscleblind sequestration or Dicer processing, which have been shown to mediate repeat RNA-mediated pathology in other model systems, contribute to cellular perturbation in this model.
Collapse
Affiliation(s)
- Kynan T. Lawlor
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Louise V. O’Keefe
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saumya E. Samaraweera
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Clare L. van Eyk
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert I. Richards
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
37
|
Niland CN, Merry CR, Khalil AM. Emerging Roles for Long Non-Coding RNAs in Cancer and Neurological Disorders. Front Genet 2012; 3:25. [PMID: 22375145 PMCID: PMC3286759 DOI: 10.3389/fgene.2012.00025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/08/2012] [Indexed: 01/07/2023] Open
Abstract
The recent discovery of thousands of long non-coding (lnc)RNAs in the human genome has prompted investigation of the potential roles of these molecules in human biology and medicine. Indeed, it is now well documented that many lncRNAs are involved in key biological processes, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing of pre-mRNA, nuclear organization; and potentially many other biological processes, which are yet to be elucidated. Recently, a number of studies have also reported that lncRNAs are dysregulated in a number of human diseases, including several cancers and neurological disorders. Although many of these studies have fallen short of implicating lncRNAs as causative, they suggest potential roles that warrant further in depth investigations. In this review, we discuss the current state of knowledge regarding the roles of lncRNAs in cancer and neurological disorders, and suggest potential future directions in this rapidly emerging field.
Collapse
Affiliation(s)
- Courtney N Niland
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine Cleveland, OH, USA
| | | | | |
Collapse
|
38
|
Small molecule inhibitors of arginyltransferase regulate arginylation-dependent protein degradation, cell motility, and angiogenesis. Biochem Pharmacol 2012; 83:866-73. [PMID: 22280815 DOI: 10.1016/j.bcp.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 11/21/2022]
Abstract
Posttranslational arginylation mediated by arginyltransferase (ATE1) is an emerging major regulator of embryogenesis and cell physiology. Impairments of ATE1 are implicated in congenital heart defects, obesity, cancer, and neurodegeneration making this enzyme an important therapeutic target, whose potential has been virtually unexplored. Here we report the development of a biochemical assay for identification of small molecule inhibitors of ATE1 and application of this assay to screen a library of 3280 compounds. Our screen identified two compounds which specifically affect ATE1-regulated processes in vivo, including tannic acid, which has been previously shown to inhibit protein degradation and angiogenesis and to act as a therapeutic agent in heart disease and cancer. Our data suggest that these actions of tannic acid are mediated by its direct effect on ATE1, which regulates protein degradation and angiogenesis in vivo.
Collapse
|
39
|
|
40
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
41
|
Shieh SY, Bonini NM. Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila. Hum Mol Genet 2011; 20:4810-21. [PMID: 21933837 PMCID: PMC3221540 DOI: 10.1093/hmg/ddr420] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 is one of the polyglutamine (polyQ) diseases, which are caused by a CAG-repeat expansion within the coding region of the associated genes. The CAG repeat specifies glutamine, and the expanded polyQ domain mutation confers dominant toxicity on the protein. Traditionally, studies have focused on protein toxicity in polyQ disease mechanisms. Recent findings, however, demonstrate that the CAG-repeat RNA, which encodes the toxic polyQ protein, also contributes to the disease in Drosophila. To provide insights into the nature of the RNA toxicity, we extracted brain-enriched RNA from flies expressing a toxic CAG-repeat mRNA (CAG100) and a non-toxic interrupted CAA/G mRNA repeat (CAA/G105) for microarray analysis. This approach identified 160 genes that are differentially expressed specifically in CAG100 flies. Functional annotation clustering analysis revealed several broad ontologies enriched in the CAG100 gene list, including iron ion binding and nucleotide binding. Intriguingly, transcripts for the Hsp70 genes, a powerful suppressor of polyQ and other human neurodegenerative diseases, were also upregulated. We therefore tested and showed that upregulation of heat shock protein 70 mitigates CAG-repeat RNA toxicity. We then assessed whether other modifiers of the pathogenic, expanded Ataxin-3 polyQ protein could also modify the CAG-repeat RNA toxicity. This approach identified the co-chaperone Tpr2, the transcriptional regulator Dpld, and the RNA-binding protein Orb2 as modifiers of both polyQ protein toxicity and CAG-repeat RNA-based toxicity. These findings suggest an overlap in the mechanisms of RNA and protein-based toxicity, providing insights into the pathogenicity of the RNA in polyQ disease.
Collapse
Affiliation(s)
- Shin-Yi Shieh
- Department of Biology, University of Pennsylvania, PA 19104-6018, USA
| | | |
Collapse
|
42
|
Posttranslational arginylation as a global biological regulator. Dev Biol 2011; 358:1-8. [PMID: 21784066 DOI: 10.1016/j.ydbio.2011.06.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/08/2011] [Accepted: 06/29/2011] [Indexed: 02/03/2023]
Abstract
Posttranslational modifications constitute a major field of emerging biological significance as mounting evidence demonstrates their key role in multiple physiological processes. Following in the footsteps of protein phosphorylation studies, new modifications are being shown to regulate protein properties and functions in vivo. Among such modifications, an important role belongs to protein arginylation - posttranslational tRNA-mediated addition of arginine, to proteins by arginyltransferase, ATE1. Recent studies show that arginylation is essential for embryogenesis in many organisms and that it regulates such important processes as heart development, angiogenesis, and tissue morphogenesis in mammals. This review summarizes the key data in the protein arginylation field since its original discovery to date.
Collapse
|
43
|
Navarro JA, Llorens JV, Soriano S, Botella JA, Schneuwly S, Martínez-Sebastián MJ, Moltó MD. Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels. PLoS One 2011; 6:e21017. [PMID: 21779322 PMCID: PMC3136927 DOI: 10.1371/journal.pone.0021017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/16/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Friedreich's ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.
Collapse
Affiliation(s)
- Juan A. Navarro
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - José V. Llorens
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Instituto de Biomedicina, CSIC, Valencia, Spain
| | - Sirena Soriano
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
| | - José A. Botella
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | | | | - María D. Moltó
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Madrid, Spain
| |
Collapse
|
44
|
Dansithong W, Jog SP, Paul S, Mohammadzadeh R, Tring S, Kwok Y, Fry RC, Marjoram P, Comai L, Reddy S. RNA steady-state defects in myotonic dystrophy are linked to nuclear exclusion of SHARP. EMBO Rep 2011; 12:735-42. [PMID: 21637295 DOI: 10.1038/embor.2011.86] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 12/14/2022] Open
Abstract
We describe a new mechanism by which CTG tract expansion affects myotonic dystrophy (DM1). Changes to the levels of a panel of RNAs involved in muscle development and function that are downregulated in DM1 are due to aberrant localization of the transcription factor SHARP (SMART/HDAC1-associated repressor protein). Mislocalization of SHARP in DM1 is consistent with increased CRM1-mediated export of SHARP to the cytoplasm. A direct link between CTG repeat expression and SHARP mislocalization is demonstrated as expression of expanded CTG repeats in normal cells recapitulates cytoplasmic SHARP localization. These results demonstrate a role for the inactivation of SHARP transcription in DM1 biology.
Collapse
Affiliation(s)
- Warunee Dansithong
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, 2250 Alcazar Street, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lawlor KT, O'Keefe LV, Samaraweera SE, van Eyk CL, McLeod CJ, Maloney CA, Dang THY, Suter CM, Richards RI. Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases. Hum Mol Genet 2011; 20:3757-68. [PMID: 21724553 DOI: 10.1093/hmg/ddr292] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pathogenic agent responsible for the expanded repeat diseases, a group of neurodegenerative diseases that includes Huntington's disease is not yet fully understood. Expanded polyglutamine (polyQ) is thought to be the toxic agent in certain cases, however, not all expanded repeat disease genes can encode a polyQ sequence. Since a repeat-containing RNA intermediary is common to all of these diseases, hairpin-forming single-stranded RNA has been investigated as a potential common pathogenic agent. More recently, it has become apparent that most of the expanded repeat disease loci have transcription occurring from both strands, raising the possibility that the complementary repeat RNAs could form a double-stranded structure. In our investigation using Drosophila models of these diseases, we identified a fortuitous integration event that models bidirectional repeat RNA transcription with the resultant flies exhibiting inducible pathology. We therefore established further lines of Drosophila expressing independent complementary repeat RNAs and found that these are toxic. The Dicer pathway is essential for this toxicity and in neuronal cells accounts for metabolism of the high copy number (CAG.CUG)(100) double-stranded RNAs down to (CAG)(7) single-stranded small RNAs. We also observe significant changes to the microRNA profile in neurons. These data identify a novel pathway through which double-stranded repeat RNA is toxic and capable of eliciting symptoms common to neurodegenerative human diseases resulting from dominantly inherited expanded repeats.
Collapse
Affiliation(s)
- Kynan T Lawlor
- ARC Special Research Centre for the Molecular Genetics of Development and Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett 2011; 585:1600-16. [DOI: 10.1016/j.febslet.2011.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022]
|
47
|
van Eyk CL, O'Keefe LV, Lawlor KT, Samaraweera SE, McLeod CJ, Price GR, Venter DJ, Richards RI. Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. Hum Mol Genet 2011; 20:2783-94. [PMID: 21518731 PMCID: PMC3118759 DOI: 10.1093/hmg/ddr177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent evidence supports a role for RNA as a common pathogenic agent in both the ‘polyglutamine’ and ‘untranslated’ dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences—CAG, CUG and AUUCU—were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-β signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.
Collapse
Affiliation(s)
- Clare L van Eyk
- Discipline of Genetics, School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yu Z, Teng X, Bonini NM. Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy. PLoS Genet 2011; 7:e1001340. [PMID: 21437269 PMCID: PMC3060073 DOI: 10.1371/journal.pgen.1001340] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities due both to a sense expanded-repeat transcript and to an anti-sense expanded-repeat transcript. We established a Drosophila model for DM1 and tested the role of interactions between expanded CTG transcripts and expanded CAG repeat transcripts. These studies revealed dramatically enhanced toxicity in flies co-expressing CTG with CAG expanded repeats. Expression of the two transcripts led to novel pathogenesis with the generation of dcr-2 and ago2-dependent 21-nt triplet repeat-derived siRNAs. These small RNAs targeted the expression of CAG-containing genes, such as Ataxin-2 and TATA binding protein (TBP), which bear long CAG repeats in both fly and man. These findings indicate that the generation of triplet repeat-derived siRNAs may dramatically enhance toxicity in human repeat expansion diseases in which anti-sense transcription occurs.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xiuyin Teng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nancy M. Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Yu Z, Bonini NM. Modeling human trinucleotide repeat diseases in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:191-212. [PMID: 21906541 DOI: 10.1016/b978-0-12-387003-2.00008-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drosophila is a powerful model system to study human trinucleotide repeat diseases. Findings in Drosophila models highlighted importance of host proteins, chaperons, and protein clearance pathways in polyglutamine diseases as well as that of RNA-binding proteins in noncoding repeat RNA toxicity diseases. Recent novel aspects revealed in Drosophila models include pleiotropic Ataxin 2 interactions, antisense transcription in trinucleotide repeat diseases, contribution of CAG RNA in polyglutamine diseases, and the role of RNA foci in CUG expansion diseases. Drosophila models have been also used for repeat stability studies.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Biology, 415 S University Ave., University of Pennsylvania, PA, USA
| | | |
Collapse
|
50
|
Abstract
The spinocerebellar ataxias (SCA) are a large group of inherited disorders affecting the cerebellum and its afferent and efferent pathways. Their hallmark symptom is slowly progressive, symmetrical, midline, and appendicular ataxia. Some may also have associated hyperkinetic movements (chorea, dystonia, myoclonus, postural/action tremor, restless legs, rubral tremor, tics), which may aid in differential diagnosis and provide treatable targets to improve performance and quality of life in these progressive, incurable conditions. The typical dominant ataxias with associated hyperkinetic movements are SCA1-3, 6-8, 12, 14, 15, 17, 19-21, and 27. The common recessive ataxias with associated hyperkinetic movements are ataxia telangiectasia and Friedreich's ataxia. Fragile X tremor-ataxia syndrome (FXTAS) and multiple-system atrophy (a sporadic ataxia which is felt to have a genetic substrate) also have hyperkinetic features. A careful work-up should be done in all apparently sporadic cases, to rule out acquired causes of ataxia, some of which can cause hyperkinetic movements in addition to ataxia. Some testing should be done even in individuals with a confirmed genetic cause, as the presence of a secondary factor (nutritional deficiency, thyroid dysfunction) can contribute to the phenotype.
Collapse
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|