1
|
Vlková-Žlebková M, Yuen FW, McCann HC. Evolving Archetypes: Learning from Pathogen Emergence on a Nonmodel Host. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:49-68. [PMID: 38885452 DOI: 10.1146/annurev-phyto-021622-095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Research initiatives undertaken in response to disease outbreaks accelerate our understanding of microbial evolution, mechanisms of virulence and resistance, and plant-pathogen coevolutionary interactions. The emergence and global spread of Pseudomonas syringae pv. actinidiae (Psa) on kiwifruit (Actinidia chinensis) showed that there are parallel paths to host adaptation and antimicrobial resistance evolution, accelerated by the movement of mobile elements. Significant progress has been made in identifying type 3 effectors required for virulence and recognition in A. chinensis and Actinidia arguta, broadening our understanding of how host-mediated selection shapes virulence. The rapid development of Actinidia genomics after the Psa3 pandemic began has also generated new insight into molecular mechanisms of immunity and resistance gene evolution in this recently domesticated, nonmodel host. These findings include the presence of close homologs of known resistance genes RPM1 and RPS2 as well as the novel expansion of CCG10-NLRs (nucleotide-binding leucine-rich repeats) in Actinidia spp. The advances and approaches developed during the pandemic response can be applied to new pathosystems and new outbreak events.
Collapse
Affiliation(s)
| | - Fang Wei Yuen
- Max Planck Institute for Biology, Tübingen, Germany;
| | | |
Collapse
|
2
|
Verma RK, Roman-Reyna V, Raanan H, Coaker G, Jacobs JM, Teper D. Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range. PLoS Pathog 2024; 20:e1012380. [PMID: 39028765 PMCID: PMC11290698 DOI: 10.1371/journal.ppat.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/31/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| | - Veronica Roman-Reyna
- Dept. Of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hagai Raanan
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Gilat Research Center, Negev, Israel
| | - Gitta Coaker
- Dept. of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jonathan M. Jacobs
- Dept. of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Doron Teper
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Colombi E, Bertels F, Doulcier G, McConnell E, Pichugina T, Sohn KH, Straub C, McCann HC, Rainey PB. Rapid dissemination of host metabolism-manipulating genes via integrative and conjugative elements. Proc Natl Acad Sci U S A 2024; 121:e2309263121. [PMID: 38457521 PMCID: PMC10945833 DOI: 10.1073/pnas.2309263121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024] Open
Abstract
Integrative and conjugative elements (ICEs) are self-transmissible mobile elements that transfer functional genetic units across broad phylogenetic distances. Accessory genes shuttled by ICEs can make significant contributions to bacterial fitness. Most ICEs characterized to date encode readily observable phenotypes contributing to symbiosis, pathogenicity, and antimicrobial resistance, yet the majority of ICEs carry genes of unknown function. Recent observations of rapid acquisition of ICEs in a pandemic lineage of Pseudomonas syringae pv. actinidae led to investigation of the structural and functional diversity of these elements. Fifty-three unique ICE types were identified across the P. syringae species complex. Together they form a distinct family of ICEs (PsICEs) that share a distant relationship to ICEs found in Pseudomonas aeruginosa. PsICEs are defined by conserved backbone genes punctuated by an array of accessory cargo genes, are highly recombinogenic, and display distinct evolutionary histories compared to their bacterial hosts. The most common cargo is a recently disseminated 16-kb mobile genetic element designated Tn6212. Deletion of Tn6212 did not alter pathogen growth in planta, but mutants displayed fitness defects when grown on tricarboxylic acid (TCA) cycle intermediates. RNA-seq analysis of a set of nested deletion mutants showed that a Tn6212-encoded LysR regulator has global effects on chromosomal gene expression. We show that Tn6212 responds to preferred carbon sources and manipulates bacterial metabolism to maximize growth.
Collapse
Affiliation(s)
- Elena Colombi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Guilhem Doulcier
- Laboratoire Biophysique et Évolution, Institut Chemie Biologie Innovation, École Supérieure de Physique et de Chemie Industrielles de la Ville de Paris, Université Paris Science et Lettres, Centre National de al Reserche Scientifique, Paris 75005, France
| | - Ellen McConnell
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Tatyana Pichugina
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Christina Straub
- Health and Environment, Institute of Environmental Science and Research, Auckland 1025, New Zealand
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Honour C McCann
- Plant Pathogen Evolution Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Laboratoire Biophysique et Évolution, Institut Chemie Biologie Innovation, École Supérieure de Physique et de Chemie Industrielles de la Ville de Paris, Université Paris Science et Lettres, Centre National de al Reserche Scientifique, Paris 75005, France
| |
Collapse
|
4
|
Kvitko BH, Collmer A. Discovery of the Hrp Type III Secretion System in Phytopathogenic Bacteria: How Investigation of Hypersensitive Cell Death in Plants Led to a Novel Protein Injector System and a World of Inter-Organismal Molecular Interactions Within Plant Cells. PHYTOPATHOLOGY 2023; 113:626-636. [PMID: 37099273 DOI: 10.1094/phyto-08-22-0292-kd] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the early 1960s, Pseudomonas syringae and other host-specific phytopathogenic proteobacteria were discovered to elicit a rapid, resistance-associated death when infiltrated at high inoculum levels into nonhost tobacco leaves. This hypersensitive reaction (or response; HR) was a useful indicator of basic pathogenic ability. Research over the next 20 years failed to identify an elicitor of the HR but revealed that its elicitation required contact between metabolically active bacterial and plant cells. Beginning in the early 1980s, molecular genetic tools were applied to the HR puzzle, revealing the presence in P. syringae of clusters of hrp genes, so named because they are required for the HR and pathogenicity, and of avr genes, so named because their presence confers HR-associated avirulence in resistant cultivars of a host plant species. A series of breakthroughs over the next two decades revealed that (i) hrp gene clusters encode a type III secretion system (T3SS), which injects Avr (now "effector") proteins into plant cells, where their recognition triggers the HR; (ii) T3SSs, which are typically present in pathogenicity islands acquired by horizontal gene transfers, are found in many bacterial pathogens of plants and animals and inject many effector proteins, which are collectively essential for pathogenicity; and (iii) a primary function of phytopathogen effectors is to subvert non-HR defenses resulting from recognition of conserved microbial features presented outside of plant cells. In the 2000s, Hrp system research shifted to extracellular components enabling effector delivery across plant cell walls and plasma membranes, regulation, and tools for studying effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602
| | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853
| |
Collapse
|
5
|
Hulin MT, Rabiey M, Zeng Z, Vadillo Dieguez A, Bellamy S, Swift P, Mansfield JW, Jackson RW, Harrison RJ. Genomic and functional analysis of phage-mediated horizontal gene transfer in Pseudomonas syringae on the plant surface. THE NEW PHYTOLOGIST 2023; 237:959-973. [PMID: 36285389 PMCID: PMC10107160 DOI: 10.1111/nph.18573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- The Sainsbury LaboratoryNorwichNR4 7UHUK
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Ziyue Zeng
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
| | | | | | - Phoebe Swift
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Richard J. Harrison
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Plant Science GroupWageningen University and ResearchWageningen6708WBthe Netherlands
| |
Collapse
|
6
|
Koseoglou E, van der Wolf JM, Visser RGF, Bai Y. Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. TRENDS IN PLANT SCIENCE 2022; 27:69-79. [PMID: 34400073 DOI: 10.1016/j.tplants.2021.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 05/26/2023]
Abstract
Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes.
Collapse
Affiliation(s)
- Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan M van der Wolf
- Biointeractions & Plant Health, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Stotz HU, Brotherton D, Inal J. Communication is key: Extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants. FEMS Microbiol Rev 2021; 46:6358524. [PMID: 34448857 PMCID: PMC8767456 DOI: 10.1093/femsre/fuab044] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Dominik Brotherton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jameel Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.,School of Human Sciences, London Metropolitan University, London, N7 8DB, UK
| |
Collapse
|
8
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
9
|
Newberry EA, Ebrahim M, Timilsina S, Zlatković N, Obradović A, Bull CT, Goss EM, Huguet-Tapia JC, Paret ML, Jones JB, Potnis N. Inference of Convergent Gene Acquisition Among Pseudomonas syringae Strains Isolated From Watermelon, Cantaloupe, and Squash. Front Microbiol 2019; 10:270. [PMID: 30837979 PMCID: PMC6390507 DOI: 10.3389/fmicb.2019.00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas syringae sensu stricto (phylogroup 2; referred to as P. syringae) consists of an environmentally ubiquitous bacterial population associated with diseases of numerous plant species. Recent studies using multilocus sequence analysis have indicated the clonal expansion of several P. syringae lineages, located in phylogroups 2a and 2b, in association with outbreaks of bacterial spot disease of watermelon, cantaloupe, and squash in the United States. To investigate the evolutionary processes that led to the emergence of these epidemic lineages, we sequenced the genomes of six P. syringae strains that were isolated from cucurbits grown in the United States, Europe, and China over a period of more than a decade, as well as eight strains that were isolated from watermelon and squash grown in six different Florida counties during the 2013 and 2014 seasons. These data were subjected to comparative analyses along with 42 previously sequenced genomes of P. syringae stains collected from diverse plant species and environments available from GenBank. Maximum likelihood reconstruction of the P. syringae core genome revealed the presence of a hybrid phylogenetic group, comprised of cucurbit strains collected in Florida, Italy, Serbia, and France, which emerged through genome-wide homologous recombination between phylogroups 2a and 2b. Functional analysis of the recombinant core genome showed that pathways involved in the ATP-dependent transport and metabolism of amino acids, bacterial motility, and secretion systems were enriched for recombination. A survey of described virulence factors indicated the convergent acquisition of several accessory type 3 secreted effectors (T3SEs) among phylogenetically distinct lineages through integrative and conjugative element and plasmid loci. Finally, pathogenicity assays on watermelon and squash showed qualitative differences in virulence between strains of the same clonal lineage, which correlated with T3SEs acquired through various mechanisms of horizontal gene transfer (HGT). This study provides novel insights into the interplay of homologous recombination and HGT toward pathogen emergence and highlights the dynamic nature of P. syringae sensu lato genomes.
Collapse
Affiliation(s)
- Eric A Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Mohamed Ebrahim
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Nevena Zlatković
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Aleksa Obradović
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, United States
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Mathews L Paret
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
10
|
Neale HC, Jackson RW, Preston GM, Arnold DL. Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Mol Microbiol 2018; 110:444-454. [PMID: 30152900 PMCID: PMC6220960 DOI: 10.1111/mmi.14111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
The plant pathogen Pseudomonas syringae pv. phaseolicola, which causes halo blight disease of beans, contains a 106 kb genomic island PPHGI‐1. PPHGI‐1 carries a gene, avrPphB, which encodes an effector protein that triggers a resistance response in certain bean cultivars. Previous studies have shown that when PPHGI‐1 is excised from the bacterial chromosome, avrPphB is downregulated and therefore the pathogen avoids triggering the host’s defence mechanism. Here, we investigate whether the downregulation of avrPphB is caused by the supercoiling of PPHGI‐1. We also investigate the effect of a PPHGI‐1‐encoded type 1A topoisomerase, TopB3, on island stability and bacterial pathogenicity in the plant. Supercoiling inhibitors significantly increased the expression of avrPphB but did not affect the excision of PPHGI‐1. An insertional mutant of topB3 displayed an increase in avrPphB expression and an increase in PPHGI‐1 excision as well as reduced population growth in resistant and susceptible cultivars of bean. These results suggest an important role for topoisomerases in the maintenance and stability of a bacterial‐encoded genomic island and demonstrate that supercoiling is involved in the downregulation of an effector gene once the island has been excised, allowing the pathogen to prevent further activation of the host defence response.
Collapse
Affiliation(s)
- Helen C Neale
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
11
|
Stritzler M, Soto G, Ayub N. Plant Growth-Promoting Genes can Switch to be Virulence Factors via Horizontal Gene Transfer. MICROBIAL ECOLOGY 2018; 76:579-583. [PMID: 29476343 DOI: 10.1007/s00248-018-1163-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
There are increasing evidences that horizontal gene transfer (HGT) is a critical mechanism of bacterial evolution, while its complete impact remains unclear. A main constraint of HGT effects on microbial evolution seems to be the conservation of the function of the horizontally transferred genes. From this perspective, inflexible nomenclature and functionality criteria have been established for some mobile genetic elements such as pathogenic and symbiotic islands. Adhesion is a universal prerequisite for both beneficial and pathogenic plant-microbe interactions, and thus, adhesion systems (e.g., the Lap cluster) are candidates to have a dual function depending on the genomic background. In this study, we showed that the virulent factor Lap of the phytopathogen Erwinia carotovora SCRI1043, which is located within a genomic island, was acquired by HGT and probably derived from Pseudomonas. The transformation of the phytopathogen Erwinia pyrifoliae Ep1/96 with the beneficial factor Lap from the plant growth-promoting bacterium Pseudomonas fluorescens Pf-5 significantly increased its natural virulence, experimentally recapitulating the beneficial-to-virulence functional switch of the Lap cluster via HGT. To our knowledge, this is the first report of a functional switch of an individual gene or a cluster of genes mediated by HGT.
Collapse
Affiliation(s)
- Margarita Stritzler
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
| | - Gabriela Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
| | - Nicolás Ayub
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina.
- Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Abstract
Some bacteria can transfer to new host species, and this poses a risk to human health. Indeed, an estimated 60% of all human pathogens have originated from other animal species. Similarly, human-to-animal transitions are recognized as a major threat to sustainable livestock production, and emerging pathogens impose an increasing burden on crop yield and global food security. Recent advances in high-throughput sequencing technologies have enabled comparative genomic analyses of bacterial populations from multiple hosts. Such studies are providing new insights into the evolutionary processes that underpin the establishment of bacteria in new host niches. A better understanding of the genetic and mechanistic basis for bacterial host adaptation may reveal novel targets for controlling infection or inform the design of approaches to limit the emergence of new pathogens.
Collapse
Affiliation(s)
- Samuel K Sheppard
- Milner Centre for Evolution, Department of Biology & Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
13
|
Effector Gene xopAE of Xanthomonas euvesicatoria 85-10 Is Part of an Operon and Encodes an E3 Ubiquitin Ligase. J Bacteriol 2018; 200:JB.00104-18. [PMID: 29784884 DOI: 10.1128/jb.00104-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023] Open
Abstract
The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles (AEal) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) comprise a single open reading frame (ORF) (xopAE), while in 5 alleles, including AEal 37 of the X. euvesicatoria 85-10 strain, a frameshift splits the locus into two ORFs (hpaF and a truncated xopAE). To test whether the second ORF of AEal 37 (xopAE85-10 ) is translated, we examined expression of yellow fluorescent protein (YFP) fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity to an internal ribosome binding site upstream of a rare ATT start codon in the xopAE85-10 ORF but was severely reduced when these elements were abolished. In agreement with the notion that xopAE85-10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system, and translocation was dependent on its upstream ORF, hpaF Homology modeling predicted that XopAE85-10 contains an E3 ligase XL box domain at the C terminus, and in vitro assays demonstrated that this domain displays monoubiquitination activity. Remarkably, the XL box was essential for XopAE85-10 to inhibit pathogen-associated molecular pattern (PAMP)-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT and encodes a novel XL box E3 ligase.IMPORTANCEXanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into the evolution, translocation, and biochemical function of the XopAE type III secreted effector, contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as a core effector of seven Xanthomonas species and elucidate the evolution of the Xanthomonas euvesicatoriaxopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multidomain gene into two ORFs that conserved the original domain function. Analysis of xopAE85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE85-10 is an XL box E3 ubiquitin ligase and provide insights into the structure and function of this effector family.
Collapse
|
14
|
Piña-Iturbe A, Ulloa-Allendes D, Pardo-Roa C, Coronado-Arrázola I, Salazar-Echegarai FJ, Sclavi B, González PA, Bueno SM. Comparative and phylogenetic analysis of a novel family of Enterobacteriaceae-associated genomic islands that share a conserved excision/integration module. Sci Rep 2018; 8:10292. [PMID: 29980701 PMCID: PMC6035254 DOI: 10.1038/s41598-018-28537-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Genomic Islands (GIs) are DNA regions acquired through horizontal gene transfer that encode advantageous traits for bacteria. Many GIs harbor genes that encode the molecular machinery required for their excision from the bacterial chromosome. Notably, the excision/integration dynamics of GIs may modulate the virulence of some pathogens. Here, we report a novel family of GIs found in plant and animal Enterobacteriaceae pathogens that share genes with those found in ROD21, a pathogenicity island whose excision is involved in the virulence of Salmonella enterica serovar Enteritidis. In these GIs we identified a conserved set of genes that includes an excision/integration module, suggesting that they are excisable. Indeed, we found that GIs within carbapenem-resistant Klebsiella pneumoniae ST258 KP35 and enteropathogenic Escherichia coli O127:H6 E2348/69 are excised from the bacterial genome. In addition to putative virulence factors, these GIs encode conjugative transfer-related proteins and short and full-length homologues of the global transcriptional regulator H-NS. Phylogenetic analyses suggest that the identified GIs likely originated in phytopathogenic bacteria. Taken together, our findings indicate that these GIs are excisable and may play a role in bacterial interactions with their hosts.
Collapse
Affiliation(s)
- Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Ulloa-Allendes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bianca Sclavi
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR 8113, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Hulin MT, Armitage AD, Vicente JG, Holub EB, Baxter L, Bates HJ, Mansfield JW, Jackson RW, Harrison RJ. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). THE NEW PHYTOLOGIST 2018; 219:672-696. [PMID: 29726587 DOI: 10.1111/nph.15182] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 05/12/2023]
Abstract
Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III effectors but has more toxin biosynthesis clusters than Psm and P. syringae pv avii. Evolution of cherry pathogenicity was correlated with gain of genes such as hopAR1 and hopBB1 through putative phage transfer and horizontal transfer respectively. By contrast, loss of the avrPto/hopAB redundant effector group was observed in cherry-pathogenic clades. Ectopic expression of hopAB and hopC1 triggered the hypersensitive reaction in cherry leaves, confirming computational predictions. Cherry canker provides a fascinating example of convergent evolution of pathogenicity that is explained by the mix of effector and toxin repertoires acting on a common host.
Collapse
Affiliation(s)
- Michelle T Hulin
- NIAB EMR, New Road, East Malling, ME19 6BJ, UK
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | | | - Joana G Vicente
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Laura Baxter
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | | | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | - Richard J Harrison
- NIAB EMR, New Road, East Malling, ME19 6BJ, UK
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
16
|
Firrao G, Torelli E, Polano C, Ferrante P, Ferrini F, Martini M, Marcelletti S, Scortichini M, Ermacora P. Genomic Structural Variations Affecting Virulence During Clonal Expansion of Pseudomonas syringae pv. actinidiae Biovar 3 in Europe. Front Microbiol 2018; 9:656. [PMID: 29675009 PMCID: PMC5895724 DOI: 10.3389/fmicb.2018.00656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Emanuela Torelli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Cesare Polano
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Patrizia Ferrante
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Rome, Italy
| | - Francesca Ferrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Rome, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Rufián JS, Macho AP, Corry DS, Mansfield JW, Ruiz‐Albert J, Arnold DL, Beuzón CR. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. MOLECULAR PLANT PATHOLOGY 2018; 19:537-551. [PMID: 28120374 PMCID: PMC6638015 DOI: 10.1111/mpp.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 05/04/2023]
Abstract
Recent advances in genomics and single-cell analysis have demonstrated the extraordinary complexity reached by microbial populations within their hosts. Communities range from complex multispecies groups to homogeneous populations differentiating into lineages through genetic or non-genetic mechanisms. Diversity within bacterial populations is recognized as a key driver of the evolution of animal pathogens. In plants, however, little is known about how interactions between different pathogenic and non-pathogenic variants within the host impact on defence responses, or how the presence within a mixture may affect the development or the fate of each variant. Using confocal fluorescence microscopy, we analysed the colonization of the plant apoplast by individual virulence variants of Pseudomonas syringae within mixed populations. We found that non-pathogenic variants can proliferate and even spread beyond the inoculated area to neighbouring tissues when in close proximity to pathogenic bacteria. The high bacterial concentrations reached at natural entry points promote such interactions during the infection process. We also found that a diversity of interactions take place at a cellular level between virulent and avirulent variants, ranging from dominant negative effects on proliferation of virulent bacteria to in trans suppression of defences triggered by avirulent bacteria. Our results illustrate the spatial dynamics and complexity of the interactions found within mixed infections, and their potential impact on pathogen evolution.
Collapse
Affiliation(s)
- José S. Rufián
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| | - Alberto P. Macho
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
- Present address:
Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai201602China
| | - David S. Corry
- Centre for Research in Bioscience, Faculty of Health and Applied SciencesUniversity of the West of England, Frenchay CampusBristolBS16 1QYUK
| | | | - Javier Ruiz‐Albert
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| | - Dawn L. Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied SciencesUniversity of the West of England, Frenchay CampusBristolBS16 1QYUK
| | - Carmen R. Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| |
Collapse
|
18
|
Nissan G, Gershovits M, Morozov M, Chalupowicz L, Sessa G, Manulis‐Sasson S, Barash I, Pupko T. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach. MOLECULAR PLANT PATHOLOGY 2018; 19:381-392. [PMID: 28019708 PMCID: PMC6638007 DOI: 10.1111/mpp.12528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 05/03/2023]
Abstract
Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development.
Collapse
Affiliation(s)
- Gal Nissan
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Michael Gershovits
- Department of Cell Research and Immunology, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Michael Morozov
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Laura Chalupowicz
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Shulamit Manulis‐Sasson
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| |
Collapse
|
19
|
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:61-83. [PMID: 28489497 DOI: 10.1146/annurev-phyto-080516-035641] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.
Collapse
Affiliation(s)
- Günter Brader
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Kathryn Vescio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Friederike Trognitz
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Angela Sessitsch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
20
|
Stress-induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Comput Biol 2017; 13:e1005609. [PMID: 28719607 PMCID: PMC5538753 DOI: 10.1371/journal.pcbi.1005609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 08/01/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Mutator strains are expected to evolve when the availability and effect of beneficial mutations are high enough to counteract the disadvantage from deleterious mutations that will inevitably accumulate. As the population becomes more adapted to its environment, both availability and effect of beneficial mutations necessarily decrease and mutation rates are predicted to decrease. It has been shown that certain molecular mechanisms can lead to increased mutation rates when the organism finds itself in a stressful environment. While this may be a correlated response to other functions, it could also be an adaptive mechanism, raising mutation rates only when it is most advantageous. Here, we use a mathematical model to investigate the plausibility of the adaptive hypothesis. We show that such a mechanism can be mantained if the population is subjected to diverse stresses. By simulating various antibiotic treatment schemes, we find that combination treatments can reduce the effectiveness of second-order selection on stress-induced mutagenesis. We discuss the implications of our results to strategies of antibiotic therapy. Many organisms display increased mutation or recombination rates when exposed to a stressful environment, which can increase the probability that the population acquires adaptations that allow it to avoid extinction. Because of this, it has been suggested that the increase in production rate of genetic variation is itself an adaptation. Here, we use a mathematical model to test this hypothesis. We find that this hypothesis is plausible when the environment is variable enough such that populations do not experience particular stresses too often. We provide an explicit expression for the critical time interval between exposures and discuss its implication for the evolution of resistance. Our results highlight how and when this form of evolvability can evolve by natural selection.
Collapse
|
21
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 2017; 18:365. [PMID: 28486968 PMCID: PMC5424326 DOI: 10.1186/s12864-017-3763-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
22
|
Meaden S, Koskella B. Adaptation of the pathogen, Pseudomonas syringae, during experimental evolution on a native vs. alternative host plant. Mol Ecol 2017; 26:1790-1801. [PMID: 28207977 PMCID: PMC6849854 DOI: 10.1111/mec.14060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
The specialization and distribution of pathogens among species has substantial impact on disease spread, especially when reservoir hosts can maintain high pathogen densities or select for increased pathogen virulence. Theory predicts that optimal within‐host growth rate will vary among host genotypes/species and therefore that pathogens infecting multiple hosts should experience different selection pressures depending on the host environment in which they are found. This should be true for pathogens with broad host ranges, but also those experiencing opportunistic infections on novel hosts or that spill over among host populations. There is very little empirical data, however, regarding how adaptation to one host might directly influence infectivity and growth on another. We took an experimental evolution approach to examine short‐term adaptation of the plant pathogen, Pseudomonas syringae pathovar tomato, to its native tomato host compared with an alternative host, Arabidopsis, in either the presence or absence of bacteriophages. After four serial passages (20 days of selection in planta), we measured bacterial growth of selected lines in leaves of either the focal or alternative host. We found that passage through Arabidopsis led to greater within‐host bacterial densities in both hosts than did passage through tomato. Whole genome resequencing of evolved isolates identified numerous single nucleotide polymorphisms based on our novel draft assembly for strain PT23. However, there was no clear pattern of clustering among plant selection lines at the genetic level despite the phenotypic differences observed. Together, the results emphasize that previous host associations can influence the within‐host growth rate of pathogens.
Collapse
Affiliation(s)
- Sean Meaden
- University of Exeter, Penryn Campus, Penryn, Cornwall, TR11 4EH, UK.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Colombi E, Straub C, Künzel S, Templeton MD, McCann HC, Rainey PB. Evolution of copper resistance in the kiwifruit pathogenPseudomonas syringaepv.actinidiaethrough acquisition of integrative conjugative elements and plasmids. Environ Microbiol 2017; 19:819-832. [DOI: 10.1111/1462-2920.13662] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Colombi
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
| | - Christina Straub
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology; Plön Germany
| | - Matthew D. Templeton
- Plant and Food Research; Auckland New Zealand
- School of Biological Sciences; University of Auckland; Auckland New Zealand
| | - Honour C. McCann
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
- South China Botanical Institute; Chinese Academy of Sciences; Guangzhou China
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
- Max Planck Institute for Evolutionary Biology; Plön Germany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris-Tech), PSL Research University; Paris France
| |
Collapse
|
24
|
Nowell RW, Laue BE, Sharp PM, Green S. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2016; 17:1409-1424. [PMID: 27145446 PMCID: PMC5132102 DOI: 10.1111/mpp.12423] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae.
Collapse
Affiliation(s)
- Reuben W Nowell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Bridget E Laue
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah Green
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| |
Collapse
|
25
|
O'Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. PLANT, CELL & ENVIRONMENT 2016; 39:2172-84. [PMID: 27239727 PMCID: PMC5026161 DOI: 10.1111/pce.12770] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of P. syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K(+) , that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca(2+) , Fe(2/3+) Mg(2+) , sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, 6009, Australia
| | - Helen C Neale
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Christoph-Martin Geilfus
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, 24118, Germany
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, UK
| | - Dawn L Arnold
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
26
|
Neale HC, Laister R, Payne J, Preston G, Jackson RW, Arnold DL. A low frequency persistent reservoir of a genomic island in a pathogen population ensures island survival and improves pathogen fitness in a susceptible host. Environ Microbiol 2016; 18:4144-4152. [PMID: 27491006 PMCID: PMC5573919 DOI: 10.1111/1462-2920.13482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
Abstract
The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Host resistance imposes stress on invading pathogens that can lead to changes in the bacterial genome enabling the pathogen to escape host resistance. We have observed this phenomenon with the plant pathogen Pseudomonas syringae pv. phaseolicola where isolates that have lost the genomic island PPHGI-1 carrying the effector gene avrPphB from its chromosome are infective against previously resistant plant hosts. However, we have never observed island extinction from the pathogen population within a host suggesting the island is maintained. Here, we present a mathematical model which predicts different possible fates for the island in the population; one outcome indicated that PPHGI-1 would be maintained at low frequency in the population long term, if it confers a fitness benefit. We empirically tested this prediction and determined that PPHGI-1 frequency in the bacterial population drops to a low but consistently detectable level during host resistance. Once PPHGI-1-carrying cells encounter a susceptible host, they rapidly increase in the population in a negative frequency-dependent manner. Importantly, our data show that mobile genetic elements can persist within the bacterial population and increase in frequency under favourable conditions.
Collapse
Affiliation(s)
- Helen C Neale
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Robert Laister
- Department of Engineering Design and Mathematics, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Joseph Payne
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Gail Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
27
|
Panda P, Vanga BR, Lu A, Fiers M, Fineran PC, Butler R, Armstrong K, Ronson CW, Pitman AR. Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol 2016; 7:397. [PMID: 27065965 PMCID: PMC4814525 DOI: 10.3389/fmicb.2016.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Integrative and conjugative elements (ICEs) play a central role in the evolution of bacterial virulence, their transmission between bacteria often leading to the acquisition of virulence factors that alter host range or aggressiveness. Much is known about the functions of the virulence determinants that ICEs harbor, but little is understood about the cryptic effects of ICEs on their host cell. In this study, the importance of horizontally acquired island 2 (HAI2), an ICE in the genome of Pectobacterium atrosepticum SCRI1043, was studied using a strain in which the entire ICE had been removed by CRISPR-Cas-mediated genome editing. HAI2 encodes coronafacic acid, a virulence factor that enhances blackleg disease of potato stems caused by P. atrosepticum SCRI1043. As expected, deletion of HAI2 resulted in reduced blackleg symptoms in potato stems. A subsequent screen for HAI2-related ICEs in other strains of the Pectobacterium genus revealed their ubiquitous nature in P. atrosepticum. Yet, HAI2-related ICEs were only detected in the genomes of a few P. carotovorum strains. These strains were notable as blackleg causing strains belonging to two different subspecies of P. carotovorum. Sequence analysis of the ICEs in different strains of both P. atrosepticum and P. carotovorum confirmed that they were diverse and were present in different locations on the genomes of their bacterial host, suggesting that the cfa cluster was probably acquired independently on a number of occasions via chromosomal insertion of related ICEs. Excision assays also demonstrated that the ICEs in both P. atrosepticum and P. carotovorum are mobilized from the host chromosome. Thus, the future spread of these ICEs via lateral gene transfer might contribute to an increase in the prevalence of blackleg-causing strains of P. carotovorum.
Collapse
Affiliation(s)
- Preetinanda Panda
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Bhanupratap R. Vanga
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ashley Lu
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Mark Fiers
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Peter C. Fineran
- The Bio-Protection Research CentreLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ruth Butler
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Andrew R. Pitman
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| |
Collapse
|
28
|
Iribarren MJ, Pascuan C, Soto G, Ayub ND. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island. FEMS Microbiol Lett 2015; 362:fnv189. [PMID: 26443834 DOI: 10.1093/femsle/fnv189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 11/12/2022] Open
Abstract
Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora.
Collapse
Affiliation(s)
- María Josefina Iribarren
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Universidad Nacional de Luján, Buenos Aires, CP1428, Argentina
| | - Cecilia Pascuan
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| | - Gabriela Soto
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| | - Nicolás Daniel Ayub
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| |
Collapse
|
29
|
Vanga BR, Ramakrishnan P, Butler RC, Toth IK, Ronson CW, Jacobs JME, Pitman AR. Mobilization of horizontally acquired island 2 is induced in planta in the phytopathogen Pectobacterium atrosepticum SCRI1043 and involves the putative relaxase ECA0613 and quorum sensing. Environ Microbiol 2015; 17:4730-44. [PMID: 26271942 DOI: 10.1111/1462-2920.13024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
Abstract
Integrative and conjugative elements (ICEs) contribute to the rapid evolution of bacterial pathogens via horizontal gene transfer of virulence determinants. ICEs have common mechanisms for transmission, yet the cues triggering this process under natural environmental or physiological conditions are largely unknown. In this study, mobilization of the putative ICE horizontally acquired island 2 (HAI2), present in the chromosome of the phytopathogen Pectobacterium atrosepticum SCRI1043, was examined during infection of the host plant potato. Under these conditions, mobilization of HAI2 increased markedly compared with in vitro cultures. In planta-induced mobilization of HAI2 was regulated by quorum sensing and involved the putative ICE-encoded relaxase ECA0613. Disruption of ECA0613 also reduced transcription of genes involved in production of coronafacic acid (Cfa), the major virulence factor harboured on HAI2, whereas their expression was unaffected in the quorum-sensing (expI) mutant. Thus, suppression of cfa gene expression was not regulated by the mobilization of the ICE per se, but was due directly to inactivation of the relaxase. The identification of genetic factors associated solely with in planta mobilization of an ICE demonstrates that this process is highly adapted to the natural environment of the bacterial host and can influence the expression of virulence determinants.
Collapse
Affiliation(s)
- Bhanupratap R Vanga
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Pavithra Ramakrishnan
- Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Ian K Toth
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| | - Andrew R Pitman
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| |
Collapse
|
30
|
The Identification of Genes Important in Pseudomonas syringae pv. phaseolicola Plant Colonisation Using In Vitro Screening of Transposon Libraries. PLoS One 2015; 10:e0137355. [PMID: 26325299 PMCID: PMC4556710 DOI: 10.1371/journal.pone.0137355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/15/2015] [Indexed: 01/18/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph) colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms) around plant cells. If the pathogen can suppress the plant’s natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn) mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP) genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction.
Collapse
|
31
|
Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J. The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elements 2014; 1:55-65. [PMID: 22016845 DOI: 10.4161/mge.1.1.16432] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/15/2023] Open
Abstract
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens' frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorize the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution.
Collapse
Affiliation(s)
- Robert W Jackson
- School of Biological Sciences; University of Reading; Whiteknights; Reading, UK
| | | | | | | | | |
Collapse
|
32
|
Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. MICROBIAL ECOLOGY 2014; 68:13-23. [PMID: 24194099 PMCID: PMC4012018 DOI: 10.1007/s00248-013-0316-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 05/23/2023]
Abstract
The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large-scale and "indiscriminate" usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density-dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics.
Collapse
Affiliation(s)
- Vipin C Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India,
| | | | | |
Collapse
|
33
|
Bao Z, Stodghill PV, Myers CR, Lam H, Wei HL, Chakravarthy S, Kvitko BH, Collmer A, Cartinhour SW, Schweitzer P, Swingle B. Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000. PLoS One 2014; 9:e86628. [PMID: 24516535 PMCID: PMC3916326 DOI: 10.1371/journal.pone.0086628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Whole genome sequencing revealed the presence of a genomic anomaly in the region of 4.7 to 4.9 Mb of the Pseudomonas syringae pv. tomato (Pst) DC3000 genome. The average read depth coverage of Pst DC3000 whole genome sequencing results suggested that a 165 kb segment of the chromosome had doubled in copy number. Further analysis confirmed the 165 kb duplication and that the two copies were arranged as a direct tandem repeat. Examination of the corresponding locus in Pst NCPPB1106, the parent strain of Pst DC3000, suggested that the 165 kb duplication most likely formed after the two strains diverged via transposition of an ISPsy5 insertion sequence (IS) followed by unequal crossing over between ISPsy5 elements at each end of the duplicated region. Deletion of one copy of the 165 kb region demonstrated that the duplication facilitated enhanced growth in some culture conditions, but did not affect pathogenic growth in host tomato plants. These types of chromosomal structures are predicted to be unstable and we have observed resolution of the 165 kb duplication to single copy and its subsequent re-duplication. These data demonstrate the role of IS elements in recombination events that facilitate genomic reorganization in P. syringae.
Collapse
Affiliation(s)
- Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul V. Stodghill
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Christopher R. Myers
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, United States of America
| | - Hanh Lam
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Hai-Lei Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Brian H. Kvitko
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Samuel W. Cartinhour
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Peter Schweitzer
- Biotechnology Resource Center, Cornell University, Ithaca, New York, United States of America
| | - Bryan Swingle
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Dudnik A, Dudler R. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses. Pathogens 2014; 3:121-48. [PMID: 25437611 PMCID: PMC4235733 DOI: 10.3390/pathogens3010121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae). Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed.
Collapse
Affiliation(s)
- Alexey Dudnik
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | - Robert Dudler
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
35
|
Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:19-43. [PMID: 24820995 DOI: 10.1146/annurev-phyto-102313-045907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Crop diseases emerge without warning. In many cases, diseases cross borders, or even oceans, before plant pathologists have time to identify and characterize the causative agents. Genome sequencing, in combination with intensive sampling of pathogen populations and application of population genetic tools, is now providing the means to unravel how bacterial crop pathogens emerge from environmental reservoirs, how they evolve and adapt to crops, and what international and intercontinental routes they follow during dissemination. Here, we introduce the field of population genomics and review the population genomics research of bacterial plant pathogens over the past 10 years. We highlight the potential of population genomics for investigating plant pathogens, using examples of population genomics studies of human pathogens. We also describe the complementary nature of the fields of population genomics and molecular plant-microbe interactions and propose how to translate new insights into improved disease prevention and control.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia 24061; ,
| | | | | |
Collapse
|
36
|
Host immune responses accelerate pathogen evolution. ISME JOURNAL 2013; 8:727-731. [PMID: 24304673 DOI: 10.1038/ismej.2013.215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/27/2013] [Accepted: 10/28/2013] [Indexed: 12/14/2022]
Abstract
Pathogens face a hostile and often novel environment when infecting a new host, and adaptation is likely to be an important determinant of the success in colonization and establishment. We hypothesized that resistant hosts will impose stronger selection on pathogens than susceptible hosts, which should accelerate pathogen evolution through selection biased toward effector genes. To test this hypothesis, we conducted an experimental evolution study on Xanthomonas citri subsp. citri (Xcc) in a susceptible plant species and a resistant plant species. We performed 55 rounds of repeated reinoculation of Xcc through susceptible host grapefruit (isolates G1, G2, G3) and resistant host kumquat (isolates K1, K2, K3). Consequently, only K1 and K3 isolates lost their ability to elicit a hypersensitive response (HR) in kumquat. Illumina sequencing of the parental and descendant strains P, G1, G2, G3, K1, K2 and K3 revealed that fixed mutations were biased toward type three secretion system effectors in isolates K1 and K3. Parallel evolution was observed in the K1 and K3 strains, suggesting that the mutations result from selection rather than by random drift. Our results support our hypothesis and suggest that repeated infection of resistant hosts by pathogens should be prevented to avoid selecting for adaptive pathogens.
Collapse
|
37
|
Neale HC, Slater RT, Mayne LM, Manoharan B, Arnold DL. In planta induced changes in the native plasmid profile of Pseudomonas syringae pathover phaseolicola strain 1302A. Plasmid 2013; 70:420-4. [DOI: 10.1016/j.plasmid.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
38
|
Moriconi V, Sellaro R, Ayub N, Soto G, Rugnone M, Shah R, Pathak GP, Gärtner W, Casal JJ. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:322-331. [PMID: 23865633 DOI: 10.1111/tpj.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain-regulated two-component system (Pst-Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst-Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst-Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst-Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light-dependent manner. We propose that the function of Pst-Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens.
Collapse
Affiliation(s)
- Victoria Moriconi
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires, 1417, Argentina; Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1405BWE, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, Guttman DS, Wang PW, Straub C, Vanneste J, Rainey PB, Templeton MD. Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 2013; 9:e1003503. [PMID: 23935484 PMCID: PMC3723570 DOI: 10.1371/journal.ppat.1003503] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.
Collapse
Affiliation(s)
- Honour C. McCann
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Frederic Bertels
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mark Fiers
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Ashley Lu
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Jonathan Rees-George
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark T. Andersen
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Gleave
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | - Mark W. Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Christina Straub
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton, New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Balestra GM, Taratufolo MC, Vinatzer BA, Mazzaglia A. A Multiplex PCR Assay for Detection of Pseudomonas syringae pv. actinidiae and Differentiation of Populations with Different Geographic Origin. PLANT DISEASE 2013; 97:472-478. [PMID: 30722225 DOI: 10.1094/pdis-06-12-0590-re] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. actinidiae is responsible for severe outbreaks of bacterial canker of kiwifruit currently occurring around the world. Although molecular detection methods have been reported, none provide complete selectivity for this pathovar or discriminate among pathogen haplotypes. Therefore, a new multiplex polymerase chain reaction (PCR) assay was developed and validated. The assay was tested on 32 P. syringae pv. actinidiae isolates and 15 non-P. syringae pv. actinidiae strains and correctly assigned P. syringae pv. actinidiae strains to three different haplotypes: a Japanese/Korean group, a European group, and a Chinese group. Two P. syringae pv. actinidiae isolates from New Zealand were found to belong to the Chinese group whereas two other isolates from New Zealand, which were isolated from kiwifruit plants but which do not cause bacterial canker, tested negative. The described PCR assays has a limit of detection of approximately 5 to 50 pg of purified DNA or of 5 × 102 bacteria/PCR and were shown to work with both artificially and naturally infected plant tissues. Thus, the described method represents a suitable tool for detection of P. syringae pv. actinidiae and haplotype attribution, in particular, when testing a high number of samples during surveillance and prevention activities.
Collapse
Affiliation(s)
- G M Balestra
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy
| | - M C Taratufolo
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - B A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg
| | - A Mazzaglia
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| |
Collapse
|
41
|
Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 2013; 9:e1003454. [PMID: 23637624 PMCID: PMC3630108 DOI: 10.1371/journal.pgen.1003454] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/02/2013] [Indexed: 12/26/2022] Open
Abstract
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Collapse
Affiliation(s)
- Reuben B. Vercoe
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James T. Chang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tamzin Gristwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James S. Clulow
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rita Przybilski
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew R. Pitman
- New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Butler MI, Stockwell PA, Black MA, Day RC, Lamont IL, Poulter RTM. Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One 2013; 8:e57464. [PMID: 23555547 PMCID: PMC3583860 DOI: 10.1371/journal.pone.0057464] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/21/2013] [Indexed: 12/23/2022] Open
Abstract
A recently emerged plant disease, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis), is caused by Pseudomonas syringae pv. actinidiae (PSA). The disease was first reported in China and Japan in the 1980s. A severe outbreak of PSA began in Italy in 2008 and has spread to other European countries. PSA was found in both New Zealand and Chile in 2010. To study the evolution of the pathogen and analyse the transmission of PSA between countries, genomes of strains from China and Japan (where the genus Actinidia is endemic), Italy, New Zealand and Chile were sequenced. The genomes of PSA strains are very similar. However, all strains from New Zealand share several single nucleotide polymorphisms (SNPs) that distinguish them from all other PSA strains. Similarly, all the PSA strains from the 2008 Italian outbreak form a distinct clonal group and those from Chile form a third group. In addition to the rare SNPs present in the core genomes, there is abundant genetic diversity in a genomic island that is part of the accessory genome. The island from several Chinese strains is almost identical to the island present in the New Zealand strains. The island from a different Chinese strain is identical to the island present in the strains from the recent Italian outbreak. The Chilean strains of PSA carry a third variant of this island. These genomic islands are integrative conjugative elements (ICEs). Sequencing of these ICEs provides evidence of three recent horizontal transmissions of ICE from other strains of Pseudomonas syringae to PSA. The analyses of the core genome SNPs and the ICEs, combined with disease history, all support the hypothesis of an independent Chinese origin for both the Italian and the New Zealand outbreaks and suggest the Chilean strains also originate from China.
Collapse
Affiliation(s)
- Margi I Butler
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
43
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2012; 66:265-83. [PMID: 22726216 PMCID: PMC3525954 DOI: 10.1146/annurev-micro-092611-150107] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D. Bever
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Thomas G. Platt
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Elise R. Morton
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
44
|
Mazzaglia A, Studholme DJ, Taratufolo MC, Cai R, Almeida NF, Goodman T, Guttman DS, Vinatzer BA, Balestra GM. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 2012; 7:e36518. [PMID: 22590555 PMCID: PMC3348921 DOI: 10.1371/journal.pone.0036518] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/03/2012] [Indexed: 01/22/2023] Open
Abstract
Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks.
Collapse
Affiliation(s)
- Angelo Mazzaglia
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - David J. Studholme
- Department of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Maria C. Taratufolo
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rongman Cai
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virgina, United States of America
| | - Nalvo F. Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Tokia Goodman
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virgina, United States of America
| | - David S. Guttman
- Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Boris A. Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virgina, United States of America
| | - Giorgio M. Balestra
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
45
|
Lindeberg M. Genome-enabled perspectives on the composition, evolution, and expression of virulence determinants in bacterial plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:111-132. [PMID: 22559066 DOI: 10.1146/annurev-phyto-081211-173022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genome sequence analyses of bacterial plant pathogens are revealing important insights into the molecular determinants of pathogenicity and, through transcript characterization, responses to environmental conditions, evidence for small RNAs, and validation of uncharacterized genes. Genome comparison sheds further light on the processes impacting pathogen evolution and differences in gene repertoire among isolates contributing to niche specialization. Information derived from pathogen genome analysis is providing tools for use in diagnosis and interference with host-pathogen interactions for the purpose of disease control. However, the existing information infrastructure fails to adequately integrate the increasing numbers of sequence data sets, bioinformatic analyses, and experimental characterization, as required for effective systems-level analysis. Enhanced standardization of data formats at the point of publication is proposed as a possible solution.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
46
|
Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 2012; 20:199-208. [PMID: 22341410 DOI: 10.1016/j.tim.2012.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 01/10/2023]
Abstract
Many plant pathogens subvert host immunity by injecting compositionally diverse but functionally similar repertoires of cytoplasmic effector proteins. The bacterial pathogen Pseudomonas syringae is a model for exploring the functional structure of such repertoires. The pangenome of P. syringae encodes 57 families of effectors injected by the type III secretion system. Distribution of effector genes among phylogenetically diverse strains reveals a small set of core effectors targeting antimicrobial vesicle trafficking and a much larger set of variable effectors targeting kinase-based recognition processes. Complete disassembly of the 28-effector repertoire of a model strain and reassembly of a minimal functional repertoire reveals the importance of simultaneously attacking both processes. These observations, coupled with growing knowledge of effector targets in plants, support a model for coevolving molecular dialogs between effector repertoires and plant immune systems that emphasizes mutually-driven expansion of the components governing recognition.
Collapse
|
47
|
Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl Environ Microbiol 2011; 78:371-84. [PMID: 22101042 DOI: 10.1128/aem.06119-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species.
Collapse
|
48
|
Studholme DJ. Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2011; 12:829-38. [PMID: 21726380 PMCID: PMC6640474 DOI: 10.1111/j.1364-3703.2011.00713.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One reason for the success of Pseudomonas syringae as a model pathogen has been the availability of three complete genome sequences since 2005. Now, at the beginning of 2011, more than 25 strains of P. syringae have been sequenced and many more will soon be released. To date, published analyses of P. syringae have been largely descriptive, focusing on catalogues of genetic differences among strains and between species. Numerous powerful statistical tools are now available that have yet to be applied to P. syringae genomic data for robust and quantitative reconstruction of evolutionary events. The aim of this review is to provide a snapshot of the current status of P. syringae genome sequence data resources, including very recent and unpublished studies, and thereby demonstrate the richness of resources available for this species. Furthermore, certain specific opportunities and challenges in making the best use of these data resources are highlighted.
Collapse
Affiliation(s)
- David J Studholme
- Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
49
|
Arnold DL, Lovell HC, Jackson RW, Mansfield JW. Pseudomonas syringae pv. phaseolicola: from 'has bean' to supermodel. MOLECULAR PLANT PATHOLOGY 2011; 12:617-27. [PMID: 21726364 PMCID: PMC6640400 DOI: 10.1111/j.1364-3703.2010.00697.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. TAXONOMY Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. MICROBIOLOGICAL PROPERTIES Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30°C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. HOST RANGE Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. DISEASE SYMPTOMS Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23°C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. EPIDEMIOLOGY Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. DISEASE CONTROL Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. USEFUL WEBSITES Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.
Collapse
Affiliation(s)
- Dawn L Arnold
- Centre for Research in Plant Science, University of the West of England, Bristol BS16 1QY, UK.
| | | | | | | |
Collapse
|
50
|
Arnold DL, Jackson RW. Bacterial genomes: evolution of pathogenicity. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:385-91. [PMID: 21444240 DOI: 10.1016/j.pbi.2011.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 05/06/2023]
Abstract
Bacterial pathogens continue to pose a major threat to economically important plant resources. Disease outbreaks can occur through rapid evolution of a pathogen to overcome host defences. The advent of genome sequencing, especially next-generation technologies, has seen a revolution in the study of plant pathogen evolution over the past five years. This review highlights recent developments in understanding bacterial plant pathogen evolution, enabled by genomics and specifically focusing on type III protein effectors. The genotypic changes and mechanisms involved in pathogen evolution are now much better understood. However, there is still much to be learned about the drivers of pathogen evolution, both in terms of plant resistance and bacterial lifestyle.
Collapse
Affiliation(s)
- Dawn L Arnold
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom.
| | | |
Collapse
|