1
|
Asinof SK, Card GM. Neural Control of Naturalistic Behavior Choices. Annu Rev Neurosci 2024; 47:369-388. [PMID: 38724026 DOI: 10.1146/annurev-neuro-111020-094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Samuel K Asinof
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, USA
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Department of Neuroscience, and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
- Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
2
|
Mitchell DJ, Beckmann C, Biro PA. Maintenance of Behavioral Variation under Predation Risk: Effects on Personality, Plasticity, and Predictability. Am Nat 2024; 203:347-361. [PMID: 38358809 DOI: 10.1086/728421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractClassic evolutionary theory predicts that predation will shift trait means and erode variance within prey species; however, several studies indicate higher behavioral trait variance and trait integration in high-predation populations. These results come predominately from field-sampled animals comparing low- and high-predation sites and thus cannot isolate the role of predation from other ecological factors, including density effects arising from higher predation. Here, we study the role of predation on behavioral trait (co)variation in experimental populations of guppies (Poecilia reticulata) living with and without a benthic ambush predator (Jaguar cichlid) to better evaluate the role of predation and where density was equalized among replicates twice per year. At 2.5 years after introduction of the predators (∼10 overlapping generations), 40 males were sampled from each of the six replicate populations and extensively assayed for activity rates, water column use, and latency to feed following disturbance. Individual variation was pronounced in both treatments, with substantial individual variation in means, temporal plasticity, and predictability (inverse residual variance). Predators had little effect on mean behavior, although there was some evidence for greater use of the upper water column in predator-exposed fish. There was greater variance among individuals in water column use in predator-exposed fish, and they habituated more quickly over time; individuals higher in the water column fed slower and had a reduced positive correlation with activity, although again this effect was time specific. Predators also affected the integration of personality and plasticity-among-individual variances in water column use increased, and those in activity decreased, through time-which was absent in controls. Our results contrast with the extensive guppy literature showing rapid evolution in trait means, demonstrating either increases or maintenance of behavioral variance under predation.
Collapse
|
3
|
Jahn S, Althaus V, Heckmann J, Janning M, Seip AK, Takahashi N, Grigoriev C, Kolano J, Homberg U. Neuroarchitecture of the central complex in the Madeira cockroach Rhyparobia maderae: Pontine and columnar neuronal cell types. J Comp Neurol 2023; 531:1689-1714. [PMID: 37608556 DOI: 10.1002/cne.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Insects have evolved remarkable abilities to navigate over short distances and during long-range seasonal migrations. The central complex (CX) is a navigation center in the insect brain that controls spatial orientation and directed locomotion. It is composed of the protocerebral bridge (PB), the upper (CBU) and lower (CBL) division of the central body, and a pair of noduli. While most of its functional organization and involvement in head-direction coding has been obtained from work on flies, bees, and locusts that largely rely on vision for navigation, little contribution has been provided by work on nocturnal species. To close this gap, we have investigated the columnar organization of the CX in the cockroach Rhyparobia maderae. Rhyparobia maderae is a highly agile nocturnal insect that relies largely but not exclusively on antennal information for navigation. A particular feature of the cockroach CX is an organization of the CBU and CBL into interleaved series of eight and nine columns. Single-cell tracer injections combined with imaging and 3D analysis revealed five systems of pontine neurons connecting columns along the vertical and horizontal axis and 18 systems of columnar neurons with topographically organized projection patterns. Among these are six types of neurons with no correspondence in other species. Many neurons send processes into the anterior lip, a brain area highly reduced in bees and unknown in flies. While sharing many features with the CX in other species, the cockroach CX shows some unique attributes that may be related to the ecological niche of this insect.
Collapse
Affiliation(s)
- Stefanie Jahn
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Vanessa Althaus
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Jannik Heckmann
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Mona Janning
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Ann-Katrin Seip
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Naomi Takahashi
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Clara Grigoriev
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Juliana Kolano
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
4
|
Kiuchi K, Shidara H, Iwatani Y, Ogawa H. Motor state changes escape behavior of crickets. iScience 2023; 26:107345. [PMID: 37554465 PMCID: PMC10405261 DOI: 10.1016/j.isci.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Animals change their behavior depending on external circumstances, internal factors, and their interactions. Locomotion state is a crucial internal factor that profoundly affects sensory perception and behavior. However, studying the behavioral impacts of locomotion state in free-moving animals has been challenging due to difficulty in reproducing quantitatively identical stimuli in freely moving animals. We utilized a closed-loop controlled servosphere treadmill system, enabling unrestricted confinement and orientation of small animals, and investigated wind-induced escape behavior in freely moving crickets. When stimulated during locomotion, the crickets quickly stopped before initiating escape behavior. Moving crickets exhibited a higher probability of escape response compared to stationary crickets. The threshold for pausing response in moving crickets was also much lower than the escape response threshold. Moving crickets had delayed reaction times for escape and greater variance in movement direction compared to stationary crickets. The locomotion-related response delay may be compensated by an elevated sensitivity to airflow.
Collapse
Affiliation(s)
- Kazuhide Kiuchi
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biochemistry, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Yasushi Iwatani
- Department of Science and Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Jiao Y, Colvert B, Man Y, McHenry MJ, Kanso E. Evaluating evasion strategies in zebrafish larvae. Proc Natl Acad Sci U S A 2023; 120:e2218909120. [PMID: 36757892 PMCID: PMC9962924 DOI: 10.1073/pnas.2218909120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
An effective evasion strategy allows prey to survive encounters with predators. Prey are generally thought to escape in a direction that is either random or serves to maximize the minimum distance from the predator. Here, we introduce a comprehensive approach to determine the most likely evasion strategy among multiple hypotheses and the role of biomechanical constraints on the escape response of prey fish. Through a consideration of six strategies with sensorimotor noise and previous kinematic measurements, our analysis shows that zebrafish larvae generally escape in a direction orthogonal to the predator's heading. By sensing only the predator's heading, this orthogonal strategy maximizes the distance from fast-moving predators, and, when operating within the biomechanical constraints of the escape response, it provides the best predictions of prey behavior among all alternatives. This work demonstrates a framework for resolving the strategic basis of evasion in predator-prey interactions, which could be applied to a broad diversity of animals.
Collapse
Affiliation(s)
- Yusheng Jiao
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA90089
| | - Brendan Colvert
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA90089
| | - Yi Man
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA90089
- Department of Mechanics and Engineering Science and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing100871, P. R. China
| | - Matthew J. McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Eva Kanso
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
6
|
Jiao Y, Colvert B, Man Y, McHenry MJ, Kanso E. Evaluating Evasion Strategies in Zebrafish Larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522537. [PMID: 36711867 PMCID: PMC9881892 DOI: 10.1101/2023.01.05.522537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An effective evasion strategy allows prey to survive encounters with predators. Prey are generally thought to escape in a direction that is either random or serves to maximize the minimum distance from the predator. Here we introduce a comprehensive approach to determine the most likely evasion strategy among multiple hypotheses and the role of biomechanical constraints on the escape response of prey fish. Through a consideration of six strategies with sensorimotor noise and previous kinematic measurements, our analysis shows that zebrafish larvae generally escape in a direction orthogonal to the predator's heading. By sensing only the predator's heading, this orthogonal strategy maximizes the distance from fast-moving predators, and, when operating within the biomechanical constraints of the escape response, it provides the best predictions of prey behavior among all alternatives. This work demonstrates a framework for resolving the strategic basis of evastion in predator-prey interactions, which could be applied to a broad diversity of animals.
Collapse
|
7
|
Cornwell T, Mitchell D, Beckmann C, Joynson A, Biro P. Multilevel repeatability shows selection may act on both personality and predictability, but neither is state dependent. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Wynne NE, Chandrasegaran K, Fryzlewicz L, Vinauger C. Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes. Sci Rep 2022; 12:21354. [PMID: 36494463 PMCID: PMC9734121 DOI: 10.1038/s41598-022-25461-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The diurnal mosquitoes Aedes aegypti are vectors of several arboviruses, including dengue, yellow fever, and Zika viruses. To find a host to feed on, they rely on the sophisticated integration of olfactory, visual, thermal, and gustatory cues emitted by the hosts. If detected by their target, this latter may display defensive behaviors that mosquitoes need to be able to detect and escape in order to survive. In humans, a typical response is a swat of the hand, which generates both mechanical and visual perturbations aimed at a mosquito. Here, we used programmable visual displays to generate expanding objects sharing characteristics with the visual component of an approaching hand and quantified the behavioral response of female mosquitoes. Results show that Ae. aegypti is capable of using visual information to decide whether to feed on an artificial host mimic. Stimulations delivered in a LED flight arena further reveal that landed Ae. aegypti females display a stereotypical escape strategy by taking off at an angle that is a function of the direction of stimulus introduction. Altogether, this study demonstrates that mosquitoes landed on a host mimic can use isolated visual cues to detect and avoid a potential threat.
Collapse
Affiliation(s)
- Nicole E. Wynne
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Karthikeyan Chandrasegaran
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Lauren Fryzlewicz
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Clément Vinauger
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
9
|
Lancer BH, Evans BJE, Fabian JM, O'Carroll DC, Wiederman SD. Preattentive facilitation of target trajectories in a dragonfly visual neuron. Commun Biol 2022; 5:829. [PMID: 35982305 PMCID: PMC9388622 DOI: 10.1038/s42003-022-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The ability to pursue targets in visually cluttered and distraction-rich environments is critical for predators such as dragonflies. Previously, we identified Centrifugal Small-Target Motion Detector 1 (CSTMD1), a dragonfly visual neuron likely involved in such target-tracking behaviour. CSTMD1 exhibits facilitated responses to targets moving along a continuous trajectory. Moreover, CSTMD1 competitively selects a single target out of a pair. Here, we conducted in vivo, intracellular recordings from CSTMD1 to examine the interplay between facilitation and selection, in response to the presentation of paired targets. We find that neuronal responses to both individual trajectories of simultaneous, paired targets are facilitated, rather than being constrained to the single, selected target. Additionally, switches in selection elicit suppression which is likely an important attribute underlying target pursuit. However, binocular experiments reveal these results are constrained to paired targets within the same visual hemifield, while selection of a target in one visual hemifield establishes ocular dominance that prevents facilitation or response to contralaterally presented targets. These results reveal that the dragonfly brain preattentively represents more than one target trajectory, to balance between attentional flexibility and resistance against distraction. A dragonfly visual neuron independently facilitates responses to rival targets within the same visual field, mediating selective attention.
Collapse
Affiliation(s)
- Benjamin H Lancer
- School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Bernard J E Evans
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Joseph M Fabian
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
10
|
Schultz J, Frith CD. Animacy and the prediction of behaviour. Neurosci Biobehav Rev 2022; 140:104766. [DOI: 10.1016/j.neubiorev.2022.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
11
|
Responsive robotic prey reveal how predators adapt to predictability in escape tactics. Proc Natl Acad Sci U S A 2022; 119:e2117858119. [PMID: 35658072 PMCID: PMC9191677 DOI: 10.1073/pnas.2117858119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A widespread strategy used by prey animals, seen in insects, mammals, amphibians, crustaceans, fish, and reptiles, is to vary the direction in which they escape when attacked by a predator. This unpredictability is thought to benefit prey by inhibiting predators from predicting the prey’s escape trajectory, but experimental evidence is lacking. Using fish predators repeatedly tested with interactive, robot-controlled prey escaping in the same (predictable) or in random (unpredictable) directions, we find no clear benefit to prey of escaping unpredictably, driven by behavioral counteradaptation by the predators. The benefit of unpredictable escape behavior may depend on whether predators are able to counteract prey escape tactics by flexibly modifying their behavior, or unpredictability may instead be explained biomechanical or sensory constraints. To increase their chances of survival, prey often behave unpredictably when escaping from predators. However, the response of predators to, and hence the effectiveness of, such tactics is unknown. We programmed interactive prey to flee from an approaching fish predator (the blue acara, Andinoacara pulcher) using real-time computer vision and two-wheeled robots that controlled the prey’s movements via magnets. This allowed us to manipulate the prey’s initial escape direction and how predictable it was between successive trials with the same individual predator. When repeatedly exposed to predictable prey, the predators adjusted their behavior before the prey even began to escape: prey programmed to escape directly away were approached more rapidly than prey escaping at an acute angle. These faster approach speeds compensated for a longer time needed to capture such prey during the subsequent pursuit phase. By contrast, when attacking unpredictable prey, the predators adopted intermediate approach speeds and were not sensitive to the prey’s escape angle but instead showed greater acceleration during the pursuit. Collectively, these behavioral responses resulted in the prey’s predictability having no net effect on the time taken to capture prey, suggesting that unpredictable escape behavior may be advantageous to prey in fewer circumstances than originally thought. Rather than minimizing capture times, the predators in our study appear to instead adjust their behavior to maintain an adequate level of performance during prey capture.
Collapse
|
12
|
Claudi F, Campagner D, Branco T. Innate heuristics and fast learning support escape route selection in mice. Curr Biol 2022; 32:2980-2987.e5. [PMID: 35617953 PMCID: PMC9616796 DOI: 10.1016/j.cub.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
When faced with imminent danger, animals must rapidly take defensive actions to reach safety. Mice can react to threatening stimuli in ∼250 milliseconds1 and, in simple environments, use spatial memory to quickly escape to shelter.2,3 Natural habitats, however, often offer multiple routes to safety that animals must identify and choose from.4 This is challenging because although rodents can learn to navigate complex mazes,5,6 learning the value of different routes through trial and error during escape could be deadly. Here, we investigated how mice learn to choose between different escape routes. Using environments with paths to shelter of varying length and geometry, we find that mice prefer options that minimize path distance and angle relative to the shelter. This strategy is already present during the first threat encounter and after only ∼10 minutes of exploration in a novel environment, indicating that route selection does not require experience of escaping. Instead, an innate heuristic assigns survival value to each path after rapidly learning the spatial environment. This route selection process is flexible and allows quick adaptation to arenas with dynamic geometries. Computational modeling shows that model-based reinforcement learning agents replicate the observed behavior in environments where the shelter location is rewarding during exploration. These results show that mice combine fast spatial learning with innate heuristics to choose escape routes with the highest survival value. The results further suggest that integrating prior knowledge acquired through evolution with knowledge learned from experience supports adaptation to changing environments and minimizes the need for trial and error when the errors are costly. Mice learn to escape via the fastest route after ∼10 minutes in a new environment Escape routes are learned during exploration and do not require threat exposure Mice prefer escape routes that minimize path distance and angle to shelter Fast route learning can be replicated by model-based reinforcement learning agents
Collapse
Affiliation(s)
- Federico Claudi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, UK
| | - Dario Campagner
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, UK; Gatsby Unit, UCL, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, UK.
| |
Collapse
|
13
|
Hutfluss A, Bermúdez-Cuamatzin E, Mouchet A, Briffa M, Slabbekoorn H, Dingemanse NJ. Male song stability shows cross-year repeatability but does not affect reproductive success in a wild passerine bird. J Anim Ecol 2022; 91:1507-1520. [PMID: 35509187 DOI: 10.1111/1365-2656.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022]
Abstract
Predictable behaviour (or "behavioural stability") might be favoured in certain ecological contexts, e.g. when representing a quality signal. Costs associated with producing stable phenotypes imply selection should favour plasticity in stability when beneficial. Repeatable among-individual differences in degree of stability are simultaneously expected if individuals differ in ability to pay these costs, or in how they resolve cost-benefit trade-offs. Bird song represents a prime example, where stability may be costly yet beneficial when stable singing is a quality signal favoured by sexual selection. Assuming energetic costs, ecological variation (e.g. in food availability) should result in both within- and among-individual variation in stability. If song stability represents a quality signal, we expect directional selection favouring stable singers. For a three-year period, we monitored 12 nest box plots of great tits Parus major during breeding. We recorded male songs during simulated territory intrusions, twice during their mate's laying stage, and twice during incubation. Each preceding winter, we manipulated food availability. Assuming that stability is costly, we expected food-supplemented males to sing more stable songs. We also expected males to sing more stable songs early in the breeding season (when paternity is not decided), and stable singers to have increased reproductive success. We found strong support for plasticity in stability for two key song characteristics: minimum frequency and phrase length. Males were plastic because they became more stable over the season, contrary to expectations. Food-supplementation did not affect body condition but increased stability in minimum frequency. This treatment effect occurred only in one year, implying that food supplementation affected stability only in interaction with (unknown) year-specific ecological factors. We found no support for directional, correlational, or fluctuating selection on the stability in minimum frequency (i.e., the song trait whose stability exhibited cross-year repeatability): stable singers did not have higher reproductive success. Our findings imply that stability in minimum frequency is not a fitness quality indicator unless males enjoy fitness benefits via pathways not studied here. Future studies should thus address the mechanisms shaping and maintaining individual repeatability of song stability in the wild.
Collapse
Affiliation(s)
- Alexander Hutfluss
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany
| | | | - Alexia Mouchet
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany.,Laboratoire Evolution Génomes Comportement et Ecologie (EGCE), UMR Université Paris-Saclay-CNRS-IRD, Gif-sur-Yvette, France
| | - Mark Briffa
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| | - Hans Slabbekoorn
- Behavioural Biology, Institute of Biology, BE, Leiden, The Netherlands
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany
| |
Collapse
|
14
|
Sato N, Shidara H, Kamo S, Ogawa H. Roles of neural communication between the brain and thoracic ganglia in the selection and regulation of the cricket escape behavior. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104381. [PMID: 35305989 DOI: 10.1016/j.jinsphys.2022.104381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
To survive a predator's attack, prey animals must exhibit escape responses that are appropriately regulated in terms of their moving speed, distance, and direction. Insect locomotion is considered to be controlled by an interaction between the brain, which is involved in behavioral decision-making, and the thoracic ganglia (TG), which are primary motor centers. However, it remains unknown which descending and ascending signals between these neural centers are involved in the regulation of the escape behavior. We addressed the distinct roles of the brain and TG in the wind-elicited escape behavior of crickets by assessing the effects of partial ablation of the intersegmental communications on escape responses. We unilaterally cut the ventral nerve cord (VNC) at different locations, between the brain and TG, or between the TG and terminal abdominal ganglion (TAG), a primary sensory center of the cercal system. The partial ablation of ascending signals to the brain greatly reduced the jumping response rather than running, indicating that sensory information processing in the brain is essential for the choice of escape responses. The ablation of descending signals from the brain to the TG impaired locomotor performance and directional control of the escape responses, suggesting that locomotion in the escape behavior largely depends on the descending signals from the brain. Finally, the extracellular recording from the cervical VNC indicated a difference in the descending activities preceding the escape responses between running and jumping. Our results demonstrated that the brain sends the descending signals encoding the behavioral choice and locomotor regulation to the TG, while the TG seem to have other specific roles, such as in the preparation of escape movement.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Kamo
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
15
|
Kimura H, Pfalzgraff T, Levet M, Kawabata Y, Steffensen JF, Johansen JL, Domenici P. Escaping from multiple visual threats: Modulation of escape responses in Pacific staghorn sculpin ( Leptocottus armatus). J Exp Biol 2022; 225:275328. [DOI: 10.1242/jeb.243328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
Abstract
Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (Stage 1) and a contralateral bend (Stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment); a 33 ms; or a 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur shortly before and after a predicted 60 ms visual escape latency (i.e. during Stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the Stage 1 turning angle, compared to a single stimulation, whereas the 83 ms treatment had no effect on the escape trajectory. We conclude that Pacific staghorn sculpin can modulate their escape trajectory only between stimulation and the onset of the response, but that escape trajectory cannot be modulated after the body motion has started.
Collapse
Affiliation(s)
- Hibiki Kimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Tilo Pfalzgraff
- Technical University of Denmark, DTU AQUA, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, Campus MIL, 1375 Avenue Thérèse-Lavoie-Roux, Montréal QC H2V 0B3, Canada
| | - Yuuki Kawabata
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L. Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, HI 96744, USA
| | | |
Collapse
|
16
|
Eifler DA, Eifler MA, Garrison GE, Grotbeck VL. Escape angles for solitary animals and groups of the lizard Pholidoscelis fuscatus. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2044386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Maria A. Eifler
- Erell Institute, 2808 Meadow Dr., Lawrence, KS 66047, USA
- Biodiversity Institute, Mammalogy Division, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66045, USA
| | | | - Victoria L. Grotbeck
- Biodiversity Institute, Mammalogy Division, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66045, USA
| |
Collapse
|
17
|
Ifere NO, Shidara H, Sato N, Ogawa H. Spatial perception mediated by insect antennal mechanosensory system. J Exp Biol 2022; 225:274502. [PMID: 35072207 PMCID: PMC8920036 DOI: 10.1242/jeb.243276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Animals perceive their surroundings by using various modalities of sensory inputs to guide their locomotion. Nocturnal insects such as crickets use mechanosensory inputs mediated by their antennae to orient in darkness. Spatial information is acquired via voluntary antennal contacts with surrounding objects, but it remains unclear whether the insects modulate behaviors mediated by other sensory organs based on that information. Crickets exhibit escape behavior in response to a short air-puff, which is detected by the abdominal mechanosensory organs called cerci and is perceived as a “predator approach” signal. We placed objects of different shapes at different locations with which the cricket actively made contact using its antenna. We then examined the effects on wind-elicited escape behavior. The crickets changed their movement trajectory in response to nearby objects like walls so that they could avoid collision with these obstacles even during the cercal-mediated behavior. For instance, when a wall was placed in front of the crickets so that it was detected by one antenna, the escape trajectory in response to a stimulus from behind was significantly biased toward the side opposite the wall. Even when the antenna on the free side without the wall was ablated, this collision avoidance was also observed, suggesting that the mechanosensory inputs from one antenna detecting an object edge would be sufficient to perceive the location of obstacle in front. This study demonstrated that crickets were able to use the spatial information acquired with their antennal system to modify their behavior mediated by other sensory organs.
Collapse
Affiliation(s)
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
18
|
Arroyave-Muñoz A, Meijden AVD, Estrada-Gómez S, García LF. Linking toxicity and predation in a venomous arthropod: the case of Tityus fuhrmanni (Scorpiones: Buthidae), a generalist predator scorpion. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210036. [PMID: 35082841 PMCID: PMC8747031 DOI: 10.1590/1678-9199-jvatitd-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Scorpions are arachnids that have a generalist diet, which use venom to
subdue their prey. The study of their trophic ecology and capture behavior
is still limited compared to other organisms, and aspects such as trophic
specialization in this group have been little explored. Methods: In order to determine the relationship between feeding behavior and venom
toxicity in the scorpion species Tityus fuhrmanni, 33
specimens were offered prey with different morphologies and defense
mechanisms: spiders, cockroaches and crickets. In each of the experiments we
recorded the following aspects: acceptance rate, immobilization time and the
number of capture attempts. The median lethal dose of T.
fuhrmanni venom against the three different types of prey was
also evaluated. Results: We found that this species does not have a marked difference in acceptance
for any of the evaluated prey, but the number of capture attempts of spiders
is higher when compared to the other types of prey. The immobilization time
is shorter in spiders compared to other prey and the LD50 was
higher for cockroaches. Conclusions: These results indicate that T. fuhrmanni is a scorpion with
a generalist diet, has a venom with a different potency among prey and is
capable of discriminating between prey types and employing distinct
strategies to subdue them.
Collapse
|
19
|
Sato N, Shidara H, Ogawa H. Action selection based on multiple-stimulus aspects in wind-elicited escape behavior of crickets. Heliyon 2022; 8:e08800. [PMID: 35111985 PMCID: PMC8790502 DOI: 10.1016/j.heliyon.2022.e08800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Escape behavior is essential for animals to avoid attacks by predators. In some species, multiple escape responses could be employed. However, it remains unknown what aspects of threat stimuli affect the choice of an escape response. We focused on two distinct escape responses (running and jumping) to short airflow in crickets and examined the effects of multiple stimulus aspects including the angle, velocity, and duration on the choice between these responses. The faster and longer the airflow, the more frequently the crickets jumped. This meant that the choice of an escape response depends on both the velocity and duration of the stimulus and suggests that the neural basis for choosing an escape response includes the integration process of multiple stimulus parameters. In addition, the moving speed and distance changed depending on the stimulus velocity and duration for running but not for jumping. Running away would be more adaptive escape behavior.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
20
|
Mathematical modeling shows that ball-rolling dung beetles can use dances to avoid competition. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Steymans I, Pujol-Lereis LM, Brembs B, Gorostiza EA. Collective action or individual choice: Spontaneity and individuality contribute to decision-making in Drosophila. PLoS One 2021; 16:e0256560. [PMID: 34437617 PMCID: PMC8389364 DOI: 10.1371/journal.pone.0256560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
Our own unique character traits make our behavior consistent and define our individuality. Yet, this consistency does not entail that we behave repetitively like machines. Like humans, animals also combine personality traits with spontaneity to produce adaptive behavior: consistent, but not fully predictable. Here, we study an iconically rigid behavioral trait, insect phototaxis, that nevertheless also contains both components of individuality and spontaneity. In a light/dark T-maze, approximately 70% of a group of Drosophila fruit flies choose the bright arm of the T-Maze, while the remaining 30% walk into the dark. Taking the photopositive and the photonegative subgroups and re-testing them reveals the spontaneous component: a similar 70–30 distribution emerges in each of the two subgroups. Increasing the number of choices to ten choices, reveals the individuality component: flies with an extremely negative series of first choices were more likely to show photonegative behavior in subsequent choices and vice versa. General behavioral traits, independent of light/dark preference, contributed to the development of this individuality. The interaction of individuality and spontaneity together explains why group averages, even for such seemingly stereotypical behaviors, are poor predictors of individual choices.
Collapse
Affiliation(s)
- Isabelle Steymans
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Luciana M. Pujol-Lereis
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, IIBBA, CONICET, Buenos Aires, Argentina
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
- * E-mail: (EAG); (BB)
| | - E. Axel Gorostiza
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (EAG); (BB)
| |
Collapse
|
22
|
Mitchell DJ, Beckmann C, Biro PA. Understanding the unexplained: The magnitude and correlates of individual differences in residual variance. Ecol Evol 2021; 11:7201-7210. [PMID: 34188806 PMCID: PMC8216950 DOI: 10.1002/ece3.7603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Behavioral and physiological ecologists have long been interested in explaining the causes and consequences of trait variation, with a focus on individual differences in mean values. However, the majority of phenotypic variation typically occurs within individuals, rather than among individuals (as indicated by average repeatability being less than 0.5). Recent studies have further shown that individuals can also differ in the magnitude of variation that is unexplained by individual variation or environmental factors (i.e., residual variation). The significance of residual variation, or why individuals differ, is largely unexplained, but is important from evolutionary, methodological, and statistical perspectives. Here, we broadly reviewed literature on individual variation in behavior and physiology, and located 39 datasets with sufficient repeated measures to evaluate individual differences in residual variance. We then analyzed these datasets using methods that permit direct comparisons of parameters across studies. This revealed substantial and widespread individual differences in residual variance. The magnitude of individual variation appeared larger in behavioral traits than in physiological traits, and heterogeneity was greater in more controlled situations. We discuss potential ecological and evolutionary implications of individual differences in residual variance and suggest productive future research directions.
Collapse
Affiliation(s)
- David J. Mitchell
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin UniversityGeelongVICAustralia
- Department of Zoology/EthologyStockholm UniversityStockholmSweden
| | - Christa Beckmann
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin UniversityGeelongVICAustralia
- School of Science and HealthWestern Sydney UniversityParramattaNSWAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Peter A. Biro
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin UniversityGeelongVICAustralia
| |
Collapse
|
23
|
Abstract
Abstract
It has long been understood that species that are profitable for predators to attack can gain protection if they resemble unprofitable species (Batesian mimicry), and that unprofitable species may face selection to evolve a common warning signal (Müllerian mimicry). Here we suggest that there may be widespread selection for another form of protective mimicry, so far unrecognized, that can arise even among profitable prey. Specifically, when predators adopt species-specific attack strategies, then co-occurring prey species that are caught in different ways may be selected to resemble one another. This is because the mimicry may increase the chance that the predator deploys an inappropriate attack strategy, thereby increasing the probability the prey will escape. We refer to this phenomenon as “mutualistic deceptive mimicry”, since the mimicry misleads the predator yet potentially benefits all co-mimics. We show that this hypothesis is quantitatively plausible. We then provide an empirical ‘proof of concept’ demonstrating that predators can learn to attack distinct prey types in specific ways and that this behaviour readily generates selection for mimicry. Finally, we discuss how this unrecognized form of mimicry fits into an earlier classification of protective mimicry and suggest a number of potential examples in the natural world.
Collapse
|
24
|
Brembs B. The brain as a dynamically active organ. Biochem Biophys Res Commun 2020; 564:55-69. [PMID: 33317833 DOI: 10.1016/j.bbrc.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Nervous systems are typically described as static networks passively responding to external stimuli (i.e., the 'sensorimotor hypothesis'). However, for more than a century now, evidence has been accumulating that this passive-static perspective is wrong. Instead, evidence suggests that nervous systems dynamically change their connectivity and actively generate behavior so their owners can achieve goals in the world, some of which involve controlling their sensory feedback. This review provides a brief overview of the different historical perspectives on general brain function and details some select modern examples falsifying the sensorimotor hypothesis.
Collapse
Affiliation(s)
- Björn Brembs
- Universität Regensburg, Institut für Zoologie - Neurogenetik, Regensburg, Germany.
| |
Collapse
|
25
|
Sato N, Shidara H, Ogawa H. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Sci Rep 2019; 9:18112. [PMID: 31792301 PMCID: PMC6889515 DOI: 10.1038/s41598-019-54555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
To survive a predator’s attack successfully, animals choose appropriate actions from multiple escape responses. The motor performance of escape response governs successful survival, which implies that the action selection in escape behaviour is based on the trade-off between competing behavioural benefits. Thus, quantitative assessment of motor performance will shed light on the biological basis of decision-making. To explore the trade-off underlying the action selection, we focused on two distinct wind-elicited escape responses of crickets, running and jumping. We first hypothesized a trade-off between speed and directional accuracy. This hypothesis was rejected because crickets could control the escape direction in jumping as precisely as in running; further, jumping had advantages with regard to escape speed. Next, we assumed behavioural flexibility, including responsiveness to additional predator’s attacks, as a benefit of running. The double stimulus experiment revealed that crickets running in the first response could respond more frequently to a second stimulus and control the movement direction more precisely compared to when they chose jumping for the first response. These data suggest that not only the motor performance but also the future adaptability of subsequent behaviours are considered as behavioural benefits, which may be used for choosing appropriate escape reactions.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
26
|
Abstract
Free will is an apparent paradox because it requires a historical identity to escape its history in a self-guided fashion. Philosophers have itemized design features necessary for this escape, scaling from action to agency and vice versa. These can be organized into a coherent framework that neurocognitive capacities provide and that form a basis for neurocognitive free will. These capacities include (1) adaptive access to unpredictability, (2) tuning of this unpredictability in the service of hierarchical goal structures, (3) goal-directed deliberation via search over internal cognitive representations, and (4) a role for conscious construction of the self in the generation and choice of alternatives. This frames free will as a process of generative self-construction, by which an iterative search process samples from experience in an adaptively exploratory fashion, allowing the agent to explore itself in the construction of alternative futures. This provides an explanation of how effortful conscious control modulates adaptive access to unpredictability and resolves one of free will's key conceptual problems: how randomness is used in the service of the will. The implications provide a contemporary neurocognitive grounding to compatibilist and libertarian positions on free will, and demonstrate how neurocognitive understanding can contribute to this debate by presenting free will as an interaction between our freedom and our will.
Collapse
Affiliation(s)
- Thomas T Hills
- University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
27
|
Not so fast: giant interneurons control precise movements of antennal scales during escape behavior of crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:687-698. [PMID: 31267220 DOI: 10.1007/s00359-019-01356-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
High-speed video recordings of escape responses in freely behaving crayfish revealed precisely coordinated movements of conspicuous head appendages, the antennal scales, during tail-flips that are produced by giant interneurons. For tail-flips that are generated by the medial giants (MG) in response to frontal attacks, the scales started to extend immediately after stimulation and extension was completed before the animal began to propel backwards. For tail-flips that are elicited by caudal stimuli and controlled by the lateral giants (LG), scale extensions began with significant delay after the tail-flip movement was initiated, and full extension of the scales coincided with full flexion of the tail. When we used implanted electrodes and stimulated the giant neurons directly, we observed the same patterns of scale extensions and corresponding timing. In addition, single action potentials of MG and LG neurons evoked with intracellular current injections in minimally restrained preparations were sufficient to activate scale extensions with similar delays as seen in freely behaving animals. Our results suggest that the giant interneurons, which have been assumed to be part of hardwired reflex circuits that lead to caudal motor outputs and stereotyped behavior, are also responsible for activating a pair of antennal scales with high temporal precision.
Collapse
|
28
|
Liu Y, Day LB, Summers K, Burmeister SS. A cognitive map in a poison frog. ACTA ACUST UNITED AC 2019; 222:222/11/jeb197467. [PMID: 31182504 DOI: 10.1242/jeb.197467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023]
Abstract
A fundamental question in cognitive science is whether an animal can use a cognitive map. A cognitive map is a mental representation of the external world, and knowledge of one's place in this world, that can be used to determine efficient routes to any destination. Many birds and mammals are known to employ a cognitive map, but whether other vertebrates can create a cognitive map is less clear. Amphibians are capable of using beacons, gradients and landmarks when navigating, and many are proficient at homing. Yet only one prior study directly tested for a cognitive map in amphibians, with negative results. Poison frogs exhibit unusually complex social and spatial behaviors and are capable of long-distance homing after displacement, suggesting that they may be using complex spatial navigation strategies in nature. Here, we trained the poison frog Dendrobates auratus in a modified Morris water maze that was designed to suppress thigmotaxis to the maze wall, promoting exploration of the arena. In our moat maze, the poison frogs were able to use a configuration of visual cues to find the hidden platform. Moreover, we demonstrate that they chose direct paths to the goal from multiple random initial positions, a hallmark of a cognitive map. The performance of the frogs in the maze was qualitatively similar to that of rodents, suggesting that the potential to evolve a cognitive map is an evolutionarily conserved trait of vertebrates.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
29
|
Evans DA, Stempel AV, Vale R, Branco T. Cognitive Control of Escape Behaviour. Trends Cogn Sci 2019; 23:334-348. [PMID: 30852123 PMCID: PMC6438863 DOI: 10.1016/j.tics.2019.01.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
When faced with potential predators, animals instinctively decide whether there is a threat they should escape from, and also when, how, and where to take evasive action. While escape is often viewed in classical ethology as an action that is released upon presentation of specific stimuli, successful and adaptive escape behaviour relies on integrating information from sensory systems, stored knowledge, and internal states. From a neuroscience perspective, escape is an incredibly rich model that provides opportunities for investigating processes such as perceptual and value-based decision-making, or action selection, in an ethological setting. We review recent research from laboratory and field studies that explore, at the behavioural and mechanistic levels, how elements from multiple information streams are integrated to generate flexible escape behaviour.
Collapse
Affiliation(s)
- Dominic A Evans
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Ruben Vale
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK.
| |
Collapse
|
30
|
Siliprandi CC, Tuset VM, Lombarte A, Farré M, Rossi-Wongtschowski CLDB. Optimal fishing samplers to reveal the morphological structure of a fish assemblage in a subtropical tidal flat. NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20170168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Morphological characters of species are essential for assessing the functional structure of a fish assemblage, since differences between them, for example in body shape, are related to many functional and ecological traits (e.g., swimming, search for food, striking and capturing prey, evading predators, spawning). Globally, tidal flats are relevant to fish assemblages by offering feeding, refuge, and reproduction grounds. To analyze the morphofunctional structure of the fish assemblage from a tidal flat on the Brazilian coast, we conducted standardized sampling using nine different fishing gears. The geometric morphometric method was applied to describe the fish shapes and verify the morphological structure of the assemblage. Here, we present the influence/susceptibility of each gear type on the morphological diversity of the fish assemblage. The results indicated that beach seine, otter trawl, marginal encircling gillnet, and fish traps, together, were the most effective gears to represent the maximum morphological variability of fish inhabiting that tidal flat. Moreover, the assemblage showed high morphological redundancy considered as a resistance of the ecosystem for avoiding functional diversity loss, emphasizing the importance of complementary gear use when determining fish assemblages in a conservation context.
Collapse
Affiliation(s)
| | | | | | - Marc Farré
- Consejo Superior de Investigación Científica, Spain
| | | |
Collapse
|
31
|
Müller T, Briegel HJ. A Stochastic Process Model for Free Agency under Indeterminism. DIALECTICA (BERN, SWITZERLAND) 2018; 72:219-252. [PMID: 30820066 PMCID: PMC6380085 DOI: 10.1111/1746-8361.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this paper is to establish that free agency, which is a capacity of many animals including human beings, is compatible with indeterminism: an indeterministic world allows for the existence of free agency. The question of the compatibility of free agency and indeterminism is less discussed than its mirror image, the question of the compatibility of free agency and determinism. It is, however, of great importance for our self-conception as free agents in our (arguably) indeterministic world. We begin by explicating the notions of indeterminism and free agency and by clarifying the interrelation of free agency and the human-specific notion of free will. We then situate our claim of the compatibility of free agency and indeterminism precisely in the landscape of the current debate on freedom and determinism, exposing an unhappy asymmetry in that debate. Then we proceed to make our case by describing the mathematically precise, physically motivated model of projective simulation, which employs indeterminism as a central resource for agency modeling. We argue that an indeterministic process of deliberation modeled by the dynamics of projective simulation can exemplify free agency under indeterminism, thereby establishing our compatibility claim: Free agency can develop and thrive in an indeterministic world.
Collapse
Affiliation(s)
- Thomas Müller
- Fachbereich PhilosophieUniversität KonstanzFach 1778457KonstanzGermany
| | - Hans J. Briegel
- Institut für Theoretische PhysikUniversität InnsbruckTechnikerstraße 21a, 6020 Innsbruck, Austria; Fachbereich Philosophie, Universität Konstanz, Fach 1778457KonstanzGermany
| |
Collapse
|
32
|
Curiac DI, Banias O, Volosencu C, Curiac CD. Novel Bioinspired Approach Based on Chaotic Dynamics for Robot Patrolling Missions with Adversaries. ENTROPY 2018; 20:e20050378. [PMID: 33265468 PMCID: PMC7512897 DOI: 10.3390/e20050378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
Living organisms have developed and optimized ingenious defense strategies based on positional entropy. One of the most significant examples in this respect is known as protean behavior, where a prey animal under threat performs unpredictable zig-zag movements in order to confuse, delay or escape the predator. This kind of defensive behavior can inspire efficient strategies for patrolling robots evolving in the presence of adversaries. The main goal of our proposed bioinspired method is to implement the protean behavior by altering the reference path of the robot with sudden and erratic direction changes without endangering the robot's overall mission. By this, a foe intending to target and destroy the mobile robot from a distance has less time for acquiring and retaining the proper sight alignment. The method uses the chaotic dynamics of the 2D Arnold's cat map as a primary source of positional entropy and transfers this feature to every reference path segment using the kinematic relative motion concept. The effectiveness of this novel biologically inspired method is validated through extensive and realistic simulation case studies.
Collapse
Affiliation(s)
- Daniel-Ioan Curiac
- Automation and Applied Informatics Department, Politehnica University of Timisoara, 300223 Timisoara, Romania
- Correspondence: ; Tel.: +40-256-403-227
| | - Ovidiu Banias
- Automation and Applied Informatics Department, Politehnica University of Timisoara, 300223 Timisoara, Romania
| | - Constantin Volosencu
- Automation and Applied Informatics Department, Politehnica University of Timisoara, 300223 Timisoara, Romania
| | - Christian-Daniel Curiac
- Electrical Engineering and Information Technology Department, Technische Universität München, 80333 Munich, Germany
| |
Collapse
|
33
|
Laurent Salazar MO, Planas-Sitjà I, Sempo G, Deneubourg JL. Individual Thigmotactic Preference Affects the Fleeing Behavior of the American Cockroach (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE 2018; 18:9. [PMCID: PMC5793716 DOI: 10.1093/jisesa/iex108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 05/19/2023]
Abstract
Positive thigmotactic behavior is associated with the ability to hide from predators and is important to explain aggregation and collective patterns in various animals. For example, this behavior has been observed in woodlice, domiciliary cockroaches, ants, and fish. Lately, research on different species is focused on the importance of animal personality for ecological and evolutionary processes, individual fitness and group cohesion. In fact, it is generally expected to find some degree of interindividual consistent differences for a behavior, unless specific circumstances, like predator attacks, hide the presence of personalities. In this research, we analyzed the individual thigmotactic preference of domiciliary cockroaches (Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae)) and how it affected the fleeing behavior of isolated individuals inside a shelter after receiving a light stimulus. We notably highlight how isolated individuals show different consistent preferences regarding their position in the shelter, which is due to the individual thigmotaxis level, before the fleeing behavior. During the fleeing itself, cockroaches nearer to the wall, and therefore with more positive thigmotaxis, showed slower reaction lantencies to the stimulus. We propose that thigmotaxis homogenizes the interindividual differences among individuals and is important to explain the individual and collective fleeing behavior.
Collapse
Affiliation(s)
- Michel-Olivier Laurent Salazar
- Unit of Social Ecology, CP 231, Université libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Brussels, Belgium
- Corresponding author, e-mail:
| | - Isaac Planas-Sitjà
- Unit of Social Ecology, CP 231, Université libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Brussels, Belgium
| | - Grégory Sempo
- Unit of Social Ecology, CP 231, Université libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Brussels, Belgium
| | - Jean-Louis Deneubourg
- Unit of Social Ecology, CP 231, Université libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Brussels, Belgium
| |
Collapse
|
34
|
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala. Nature 2018; 554:183-188. [PMID: 29364874 DOI: 10.1038/nature25479] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/02/2018] [Indexed: 11/08/2022]
Abstract
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Collapse
|
35
|
Crickets alter wind-elicited escape strategies depending on acoustic context. Sci Rep 2017; 7:15158. [PMID: 29123249 PMCID: PMC5680309 DOI: 10.1038/s41598-017-15276-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Acoustic signals trigger various behaviours in insects such as courtship or escape from predators. However, it remains unknown whether insects utilize acoustic signals to recognize environmental contexts. The cricket is a prominent model insect for neuroethological studies on acoustic behaviour because female crickets exhibit positive phonotaxis in response to male calling songs, and flying crickets display avoidance behaviour for high-frequency sounds such as echolocation call of bats. The carrier frequency of these sounds is a major factor in determining whether they initiate these acoustic behaviours. Here, we examined the impacts of different frequencies of tone sounds on cercal-mediated escape behaviour, using a 5-kHz tone corresponding to the calling song and a 15-kHz tone serving as a trigger of avoidance behaviours. Neither frequency elicited a response in the standing cricket by itself, but they had different impacts on walking responses to airflow stimuli. While the 15-kHz tone reduced response probability, extended moving distance, and enhanced turn-angle variability, the 5-kHz tone had no effect. Although both frequencies of tones facilitated walking backward, the 15-kHz tone had a larger effect than the 5-kHz tone. These frequency dependencies of behavioural modulation suggest that crickets can recognize acoustic contexts and alter their escape strategy accordingly.
Collapse
|
36
|
Sato N, Shidara H, Ogawa H. Post-molting development of wind-elicited escape behavior in the cricket. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:36-46. [PMID: 29030316 DOI: 10.1016/j.jinsphys.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
37
|
PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. Int J Mol Sci 2017; 18:ijms18112279. [PMID: 29084141 PMCID: PMC5713249 DOI: 10.3390/ijms18112279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.
Collapse
|
38
|
Affiliation(s)
- P. A. Lagos
- Department of Biological Sciences Macquarie University North Ryde Sydney NSW Australia
| |
Collapse
|
39
|
Schaerf TM, Dillingham PW, Ward AJW. The effects of external cues on individual and collective behavior of shoaling fish. SCIENCE ADVANCES 2017; 3:e1603201. [PMID: 28691088 PMCID: PMC5482554 DOI: 10.1126/sciadv.1603201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/05/2017] [Indexed: 05/27/2023]
Abstract
Collective animal behavior is an emergent phenomenon arising from the local interactions of the members of animal groups. Considerable progress has been made in characterizing these interactions, particularly inferring rules that shape and guide the responses of animals to their near neighbors. To date, experimental work has focused on collective behavior within a single, stable context. We examine the individual and collective behavior of a schooling fish species, the x-ray tetra (Pristella maxillaris), identifying their response to changes in context produced by food cues or conspecific alarm cues. Fish exposed to alarm cues show pronounced, broad-ranging changes of behavior, including reducing speed and predictability in their movements. Alarmed fish also alter their responses to other group members, including enacting a smaller zone of repulsion and increasing their frequency of observation of, and responsiveness to, near neighbors. Fish subject to food cues increased speed as a function of neighbor positions and reduced encounter frequency with near neighbors. Overall, changes in individual behavior and the interactions among individuals in response to external cues coincide with changes in group-level patterns, providing insight into the adaptability of behavior to changes in context and interrelationship between local interactions and global patterns in collective behavior.
Collapse
Affiliation(s)
- Timothy M. Schaerf
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
- Animal Behaviour Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter W. Dillingham
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
- Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand
| | - Ashley J. W. Ward
- Animal Behaviour Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
40
|
Herbert-Read JE, Ward AJW, Sumpter DJT, Mann RP. Escape path complexity and its context dependency in Pacific blue-eyes ( Pseudomugil signifer). J Exp Biol 2017; 220:2076-2081. [PMID: 28348040 DOI: 10.1242/jeb.154534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 11/20/2022]
Abstract
The escape paths prey animals take following a predatory attack appear to be highly unpredictable - a property that has been described as 'protean behaviour'. Here, we present a method of quantifying the escape paths of individual animals using a path complexity approach. When individual fish (Pseudomugil signifer) were attacked, we found that a fish's movement path rapidly increased in complexity following the attack. This path complexity remained elevated (indicating a more unpredictable path) for a sustained period (at least 10 s) after the attack. The complexity of the path was context dependent: paths were more complex when attacks were made closer to the fish, suggesting that these responses are tailored to the perceived level of threat. We separated out the components of speed and turning rate changes to determine which of these components contributed to the overall increase in path complexity following an attack. We found that both speed and turning rate measures contributed similarly to an individual's path complexity in absolute terms. Overall, our work highlights the context-dependent escape responses that animals use to avoid predators, and also provides a method for quantifying the escape paths of animals.
Collapse
Affiliation(s)
- J E Herbert-Read
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden .,Department of Mathematics, Uppsala University, 75106 Uppsala, Sweden
| | - A J W Ward
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - D J T Sumpter
- Department of Mathematics, Uppsala University, 75106 Uppsala, Sweden
| | - R P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
41
|
Shi X, Møller JS, Højgaard J, Johansen JL, Steffensen JF, Liu D, Domenici P. The angular position of a refuge affects escape responses in staghorn sculpin Leptocottus armatus. JOURNAL OF FISH BIOLOGY 2017; 90:2434-2442. [PMID: 28370093 DOI: 10.1111/jfb.13306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
The effect of the presence and angular position of a refuge on the direction and kinematics of mechanically-induced escape responses was observed in staghorn sculpins Leptocottus armatus using high-speed video. The results showed that the angular position of the refuge did not affect locomotor performance (speed and acceleration), although it did affect the escape trajectories. Therefore, the angular position of a refuge can modulate the direction taken by the L. armatus during the early stages of their escape response and this response can be affected by both repulsive (i.e. threats) and attractive (i.e. refuges) points of reference.
Collapse
Affiliation(s)
- X Shi
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - J S Møller
- University of Copenhagen, Marine Biological Section, Department of Biology, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - J Højgaard
- University of Copenhagen, Marine Biological Section, Department of Biology, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - J L Johansen
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, 32080, U.S.A
| | - J F Steffensen
- University of Copenhagen, Marine Biological Section, Department of Biology, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - D Liu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - P Domenici
- CNR - IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
42
|
Sen R, Wu M, Branson K, Robie A, Rubin GM, Dickson BJ. Moonwalker Descending Neurons Mediate Visually Evoked Retreat in Drosophila. Curr Biol 2017; 27:766-771. [PMID: 28238656 DOI: 10.1016/j.cub.2017.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Insects, like most animals, tend to steer away from imminent threats [1-7]. Drosophila melanogaster, for example, generally initiate an escape take-off in response to a looming visual stimulus, mimicking a potential predator [8]. The escape response to a visual threat is, however, flexible [9-12] and can alternatively consist of walking backward away from the perceived threat [11], which may be a more effective response to ambush predators such as nymphal praying mantids [7]. Flexibility in escape behavior may also add an element of unpredictability that makes it difficult for predators to anticipate or learn the prey's likely response [3-6]. Whereas the fly's escape jump has been well studied [8, 9, 13-18], the neuronal underpinnings of evasive walking remain largely unexplored. We previously reported the identification of a cluster of descending neurons-the moonwalker descending neurons (MDNs)-the activity of which is necessary and sufficient to trigger backward walking [19], as well as a population of visual projection neurons-the lobula columnar 16 (LC16) cells-that respond to looming visual stimuli and elicit backward walking and turning [11]. Given the similarity of their activation phenotypes, we hypothesized that LC16 neurons induce backward walking via MDNs and that turning while walking backward might reflect asymmetric activation of the left and right MDNs. Here, we present data from functional imaging, behavioral epistasis, and unilateral activation experiments that support these hypotheses. We conclude that LC16 and MDNs are critical components of the neural circuit that transduces threatening visual stimuli into directional locomotor output.
Collapse
Affiliation(s)
- Rajyashree Sen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ming Wu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Alice Robie
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
43
|
Kakaria KS, de Bivort BL. Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge. Front Behav Neurosci 2017; 11:8. [PMID: 28261066 PMCID: PMC5306390 DOI: 10.3389/fnbeh.2017.00008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 11/18/2022] Open
Abstract
Animal navigation is accomplished by a combination of landmark-following and dead reckoning based on estimates of self motion. Both of these approaches require the encoding of heading information, which can be represented as an allocentric or egocentric azimuthal angle. Recently, Ca2+ correlates of landmark position and heading direction, in egocentric coordinates, were observed in the ellipsoid body (EB), a ring-shaped processing unit in the fly central complex (CX; Seelig and Jayaraman, 2015). These correlates displayed key dynamics of so-called ring attractors, namely: (1) responsiveness to the position of external stimuli; (2) persistence in the absence of external stimuli; (3) locking onto a single external stimulus when presented with two competitors; (4) stochastically switching between competitors with low probability; and (5) sliding or jumping between positions when an external stimulus moves. We hypothesized that ring attractor-like activity in the EB arises from reciprocal neuronal connections to a related structure, the protocerebral bridge (PB). Using recent light-microscopy resolution catalogs of neuronal cell types in the PB (Lin et al., 2013; Wolff et al., 2015), we determined a connectivity matrix for the PB-EB circuit. When activity in this network was simulated using a leaky-integrate-and-fire model, we observed patterns of activity that closely resemble the reported Ca2+ phenomena. All qualitative ring attractor behaviors were recapitulated in our model, allowing us to predict failure modes of the putative PB-EB ring attractor and the circuit dynamics phenotypes of thermogenetic or optogenetic manipulations. Ring attractor dynamics emerged under a wide variety of parameter configurations, even including non-spiking leaky-integrator implementations. This suggests that the ring-attractor computation is a robust output of this circuit, apparently arising from its high-level network properties (topological configuration, local excitation and long-range inhibition) rather than fine-scale biological detail.
Collapse
Affiliation(s)
- Kyobi S Kakaria
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Benjamin L de Bivort
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University Cambridge, MA, USA
| |
Collapse
|
44
|
Cooper WE, Sherbrooke WC. Strategic Escape Direction: Orientation, Turning, and Escape Trajectories of Zebra-Tailed Lizards (Callisaurus draconoides). Ethology 2016. [DOI: 10.1111/eth.12501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William E. Cooper
- Department of Biology; Indiana University Purdue University Fort Wayne; Fort Wayne IN USA
| | - Wade C. Sherbrooke
- Southwestern Research Station; American Museum of Natural History; Portal AZ USA
| |
Collapse
|
45
|
Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, Del Bene F. Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish. Neuron 2016; 89:613-28. [PMID: 26804997 PMCID: PMC4742414 DOI: 10.1016/j.neuron.2015.12.021] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/20/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
Abstract
Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.
Collapse
Affiliation(s)
- Timothy W Dunn
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Gebhardt
- Institut Curie, PSL Research University, INSERM, U 934, CNRS UMR3215, 26 rue d'Ulm, 75005 Paris, France
| | - Eva A Naumann
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Clemens Riegler
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
| | - Misha B Ahrens
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM, U 934, CNRS UMR3215, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
46
|
Cooper W. Directional escape strategy by the striped plateau lizard (Sceloporus virgatus): turning to direct escape away from predators at variable escape angles. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A prey’s orientation to a predator’s approach path affects risk of fleeing straight ahead. By turning to flee closer to straight away from the predator before fleeing, prey can reduce risk. Laboratory studies suggest that escape angles should lead away from predators and be unpredictable. I studied orientation, turn, and escape angles and in a study of striped plateau lizards,Sceloporus virgatus. Lizards fled away from a predator, but often not straight away. Escape angles were variable and bimodally distributed: one mode was straight away for distancing prey from predator and one was near 90°, which maintains ability to monitor the predator or requires turning by the predator. Turn angles increased as orientation shifted toward the predator. Escape angle was closer to straight away when turn angle was larger, but turning did not fully compensate for degree of orientation toward the predator. Directional escape strategies of diverse prey are compared.
Collapse
Affiliation(s)
- William E. Cooper
- Department of Biology, Indiana University Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, USA
| |
Collapse
|
47
|
Fukutomi M, Someya M, Ogawa H. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus. ACTA ACUST UNITED AC 2015; 218:3968-77. [PMID: 26519512 DOI: 10.1242/jeb.128751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/20/2015] [Indexed: 11/20/2022]
Abstract
Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context.
Collapse
Affiliation(s)
- Matasaburo Fukutomi
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Someya
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- PREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
48
|
Clemente CJ, Wilson RS. Speed and maneuverability jointly determine escape success: exploring the functional bases of escape performance using simulated games. Behav Ecol 2015. [DOI: 10.1093/beheco/arv080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christofer J. Clemente
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Robbie S. Wilson
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
49
|
Outrun or Outmaneuver: Predator–Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context. Integr Comp Biol 2015; 55:1188-97. [DOI: 10.1093/icb/icv074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Soto A, Stewart WJ, McHenry MJ. When Optimal Strategy Matters to Prey Fish. Integr Comp Biol 2015; 55:110-20. [PMID: 25964496 DOI: 10.1093/icb/icv027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Predator-prey interactions are commonly studied with an interest in determining the optimal strategy for prey. However, the implications of deviating from optimal strategy are often unclear. The present study considered these consequences by studying how the direction of an escape response affects the strategy of prey fish. We simulated these interactions with numerical and analytical mathematics and compared our predictions with measurements in zebrafish larvae (Danio rerio), which are preyed upon by adults of the same species. Consistent with existing theory, we treated the minimum distance between predator and prey as the strategic payoff that prey aim to maximize. We found that these interactions may be characterized by three strategic domains that are defined by the speed of predator relative to the prey. The "fast predator" domain occurs when the predator is more than an order of magnitude faster than the prey. The escape direction of the prey had only a small effect on the minimum distance under these conditions. For the "slow predator" domain, when the prey is faster than the predator, we found that differences in direction had no effect on the minimum distance for a broad range of escape angles. This was the regime in which zebrafish were found to operate. In contrast, the optimal escape angle offers a large benefit to the minimum distance in the intermediate strategic domain. Therefore, optimal strategy is most meaningful to prey fish when predators are faster than prey by less than a factor of 10. This demonstrates that the strategy of a prey animal does not matter under certain conditions that are created by the behavior of the predator.
Collapse
Affiliation(s)
- Alberto Soto
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - William J Stewart
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|