1
|
In a case of longstanding low vision regions of visual cortex that respond to tactile stimulation of the finger with Braille characters are not causally involved in the discrimination of those same Braille characters. Cortex 2022; 155:277-286. [DOI: 10.1016/j.cortex.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/25/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
|
2
|
Bläsing B, Zimmermann E. Dance Is More Than Meets the Eye-How Can Dance Performance Be Made Accessible for a Non-sighted Audience? Front Psychol 2021; 12:643848. [PMID: 33935898 PMCID: PMC8085341 DOI: 10.3389/fpsyg.2021.643848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Dance is regarded as visual art form by common arts and science perspectives. Definitions of dance as means of communication agree that its message is conveyed by the dancer/choreographer via the human body for the observer, leaving no doubt that dance is performed to be watched. Brain activation elicited by the visual perception of dance has also become a topic of interest in cognitive neuroscience, with regards to action observation in the context of learning, expertise and aesthetics. The view that the aesthetic experience of dance is primarily a visual one is still shared by many artists and cultural institutions, yet there is growing interest in making dance performances accessible for individuals with visual impairment / blindness. Means of supporting the non-visual experience of dance include verbal (audio description), auditive (choreographed body sounds, movement sonification), and haptic (touch tour) techniques, applied for different purposes by artists and researchers, with three main objectives: to strengthen the cultural participation of a non-sighted audience in the cultural and aesthetic experience of dance; to expand the scope of dance as an artistic research laboratory toward novel ways of perceiving what dance can convey; and to inspire new lines of (neuro-cognitive) research beyond watching dance. Reviewing literature from different disciplines and drawing on the personal experience of an inclusive performance of Simon Mayer's "Sons of Sissy," we argue that a non-exclusively visual approach can be enriching and promising for all three perspectives and conclude by proposing hypotheses for multidisciplinary lines of research.
Collapse
Affiliation(s)
- Bettina Bläsing
- Fakultät Rehabilitationswissenschaften, Musik und Bewegung in Rehabilitation und Pädagogik bei Behinderung, Technische Universität Dortmund, Dortmund, Germany.,Fakultät für Psychologie und Sportwissenschaft, Neurokognition und Bewegung-Biomechnanik, Universität Bielefeld, Bielefeld, Germany
| | - Esther Zimmermann
- Institut für Lehrerinnenbildung, Inklusive Pädagogik, Universität Wien, Wien, Austria
| |
Collapse
|
3
|
Gaze direction influences grasping actions towards unseen, haptically explored, objects. Sci Rep 2020; 10:15774. [PMID: 32978418 PMCID: PMC7519081 DOI: 10.1038/s41598-020-72554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Haptic exploration produces mental object representations that can be memorized for subsequent object-directed behaviour. Storage of haptically-acquired object images (HOIs), engages, besides canonical somatosensory areas, the early visual cortex (EVC). Clear evidence for a causal contribution of EVC to HOI representation is still lacking. The use of visual information by the grasping system undergoes necessarily a frame of reference shift by integrating eye-position. We hypothesize that if the motor system uses HOIs stored in a retinotopic coding in the visual cortex, then its use is likely to depend at least in part on eye position. We measured the kinematics of 4 fingers in the right hand of 15 healthy participants during the task of grasping different unseen objects behind an opaque panel, that had been previously explored haptically. The participants never saw the object and operated exclusively based on haptic information. The position of the object was fixed, in front of the participant, but the subject’s gaze varied from trial to trial between 3 possible positions, towards the unseen object or away from it, on either side. Results showed that the middle and little fingers’ kinematics during reaching for the unseen object changed significantly according to gaze position. In a control experiment we showed that intransitive hand movements were not modulated by gaze direction. Manipulating eye-position produces small but significant configuration errors, (behavioural errors due to shifts in frame of reference) possibly related to an eye-centered frame of reference, despite the absence of visual information, indicating sharing of resources between the haptic and the visual/oculomotor system to delayed haptic grasping.
Collapse
|
4
|
Heimler B, Amedi A. Are critical periods reversible in the adult brain? Insights on cortical specializations based on sensory deprivation studies. Neurosci Biobehav Rev 2020; 116:494-507. [DOI: 10.1016/j.neubiorev.2020.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
|
5
|
Allison TS, Moritz J, Turk P, Stone-Roy LM. Lingual electrotactile discrimination ability is associated with the presence of specific connective tissue structures (papillae) on the tongue surface. PLoS One 2020; 15:e0237142. [PMID: 32764778 PMCID: PMC7413419 DOI: 10.1371/journal.pone.0237142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of nerve endings in the tongue can be used to communicate information to users and has been shown to be highly effective in sensory substitution applications. The anterior tip of the tongue has very small somatosensory receptive fields, comparable to those of the finger tips, allowing for precise two-point discrimination and high tactile sensitivity. However, perception of electrotactile stimuli varies significantly between users, and across the tongue surface. Despite this, previous studies all used uniform electrode grids to stimulate a region of the dorsal-medial tongue surface. In an effort to customize electrode layouts for individual users, and thus improve efficacy for sensory substitution applications, we investigated whether specific neuroanatomical and physiological features of the tongue are associated with enhanced ability to perceive active electrodes. Specifically, the study described here was designed to test whether fungiform papillae density and/or propylthiouracil sensitivity are positively or negatively associated with perceived intensity and/or discrimination ability for lingual electrotactile stimuli. Fungiform papillae number and distribution were determined for 15 participants and they were exposed to patterns of electrotactile stimulation (ETS) and asked to report perceived intensity and perceived number of stimuli. Fungiform papillae number and distribution were then compared to ETS characteristics using comprehensive and rigorous statistical analyses. Our results indicate that fungiform papillae density is correlated with enhanced discrimination ability for electrical stimuli. In contrast, papillae density, on average, is not correlated with perceived intensity of active electrodes. However, results for at least one participant suggest that further research is warranted. Our data indicate that propylthiouracil taster status is not related to ETS perceived intensity or discrimination ability. These data indicate that individuals with higher fungiform papillae number and density in the anterior medial tongue region may be better able to use lingual ETS for sensory substitution.
Collapse
Affiliation(s)
- Tyler S. Allison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Joel Moritz
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- Sapien LLC, Fort Collins, Colorado, United States of America
| | - Philip Turk
- Department of Statistics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Leslie M. Stone-Roy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Carter RM, Jung H, Reaven J, Blakeley-Smith A, Dichter GS. A Nexus Model of Restricted Interests in Autism Spectrum Disorder. Front Hum Neurosci 2020; 14:212. [PMID: 32581753 PMCID: PMC7283772 DOI: 10.3389/fnhum.2020.00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/11/2020] [Indexed: 11/23/2022] Open
Abstract
Restricted interests (RIs) in autism spectrum disorder (ASD) are clinically impairing interests of unusual focus or intensity. They are a subtype of restricted and repetitive behaviors which are one of two diagnostic criteria for the disorder. Despite the near ubiquity of RIs in ASD, the neural basis for their development is not well understood. However, recent cognitive neuroscience findings from nonclinical samples and from individuals with ASD shed light on neural mechanisms that may explain the emergence of RIs. We propose the nexus model of RIs in ASD, a novel conceptualization of this symptom domain that suggests that RIs may reflect a co-opting of brain systems that typically serve to integrate complex attention, memory, semantic, and social communication functions during development. The nexus model of RIs hypothesizes that when social communicative development is compromised, brain functions typically located within the lateral surface of cortex may expand into social processing brain systems and alter cortical representations of various cognitive functions during development. These changes, in turn, promote the development of RIs as an alternative process mediated by these brain networks. The nexus model of RIs makes testable predictions about reciprocal relations between the impaired development of social communication and the emergence of RIs in ASD and suggests novel avenues for treatment development.
Collapse
Affiliation(s)
- R. McKell Carter
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Heejung Jung
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Judy Reaven
- JFK Partners, Department of Psychiatry and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Audrey Blakeley-Smith
- JFK Partners, Department of Psychiatry and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriel S. Dichter
- School of Medicine, Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Norman LJ, Thaler L. Retinotopic-like maps of spatial sound in primary 'visual' cortex of blind human echolocators. Proc Biol Sci 2019; 286:20191910. [PMID: 31575359 PMCID: PMC6790759 DOI: 10.1098/rspb.2019.1910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 01/30/2023] Open
Abstract
The functional specializations of cortical sensory areas were traditionally viewed as being tied to specific modalities. A radically different emerging view is that the brain is organized by task rather than sensory modality, but it has not yet been shown that this applies to primary sensory cortices. Here, we report such evidence by showing that primary 'visual' cortex can be adapted to map spatial locations of sound in blind humans who regularly perceive space through sound echoes. Specifically, we objectively quantify the similarity between measured stimulus maps for sound eccentricity and predicted stimulus maps for visual eccentricity in primary 'visual' cortex (using a probabilistic atlas based on cortical anatomy) to find that stimulus maps for sound in expert echolocators are directly comparable to those for vision in sighted people. Furthermore, the degree of this similarity is positively related with echolocation ability. We also rule out explanations based on top-down modulation of brain activity-e.g. through imagery. This result is clear evidence that task-specific organization can extend even to primary sensory cortices, and in this way is pivotal in our reinterpretation of the functional organization of the human brain.
Collapse
Affiliation(s)
| | - Lore Thaler
- Department of Psychology, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
8
|
Abstract
A previous study from our lab demonstrated retention of high tactile acuity throughout the lifespan in blind subjects in contrast to the typical decline found for sighted subjects (Legge, Madison, Vaughn, Cheong & Miller, Percept Psychophys, 70 (8), 1471-1488, 2008). We hypothesize that preserved tactile acuity in old age is due to lifelong experience with focused attention to touch and not to blindness per se. Proficient pianists devote attention to touch - fingerings and dynamics - over years of practice. To test our hypothesis, we measured tactile acuity in groups of ten young (mean age 24.5 years) and 11 old (mean age 64.7 years) normally sighted pianists and compared their results to the blind and sighted subjects in our 2008 study. The pianists, like the subjects in 2008, were tested on two tactile-acuity charts requiring active touch, one composed of embossed Landolt rings and the other composed of dot patterns similar to braille. For both tests, the pianists performed more like the blind subjects than the sighted subjects from our 2008 study. For the ring chart, there was no significant difference in tactile acuity between the young and old pianists and no significant difference between the pianists and the blind subjects. For the dot chart, the pianists showed an age-related decline in tactile acuity, but not as severe as the sighted subjects from 2008. Our results are consistent with the hypothesis that lifelong experience with focused attention to touch acts to preserve tactile acuity into old age for both blind and sighted subjects.
Collapse
|
9
|
Dai R, Huang Z, Tu H, Wang L, Tanabe S, Weng X, He S, Li D. Interplay between Heightened Temporal Variability of Spontaneous Brain Activity and Task-Evoked Hyperactivation in the Blind. Front Hum Neurosci 2017; 10:632. [PMID: 28066206 PMCID: PMC5169068 DOI: 10.3389/fnhum.2016.00632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 11/13/2022] Open
Abstract
The brain's functional organization can be altered by visual deprivation. This is observed by comparing blind and sighted people's activation response to tactile discrimination tasks, like braille reading. Where, the blind have higher activation than the sighted upon tactile discrimination tasks, especially high activation difference is seen in ventral occipitotemporal (vOT) cortex. However, it remains unknown, whether this vOT hyperactivation is related to alteration of spontaneous activity. To address this question, we examined 16 blind subjects, 19 low-vision individuals, and 21 normally sighted controls using functional magnetic resonance imaging (fMRI). Subjects were scanned in resting-state and discrimination tactile task. In spontaneous activity, when compared to sighted subjects, we found both blind and low vision subjects had increased local signal synchronization and increased temporal variability. During tactile tasks, compared to sighted subjects, blind and low-vision subject's vOT had stronger tactile task-induced activation. Furthermore, through inter-subject partial correlation analysis, we found temporal variability is more related to tactile-task activation, than local signal synchronization's relation to tactile-induced activation. Our results further support that vision impairment induces vOT cortical reorganization. The hyperactivation in the vOT during tactile stimulus processing in the blind may be related to their greater dynamic range of spontaneous activity.
Collapse
Affiliation(s)
- Rui Dai
- School of Life Science, South China Normal University Guangzhou, China
| | - Zirui Huang
- Institute of Mental Health Research, University of Ottawa Ottawa, ON, Canada
| | - Huihui Tu
- Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
| | - Sean Tanabe
- Faculty of Science, University of Ottawa Ottawa, ON, Canada
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijing, China; Department of Psychology, University of MinnesotaMinneapolis, MN, USA
| | - Dongfeng Li
- School of Life Science, South China Normal University Guangzhou, China
| |
Collapse
|
10
|
Abstract
Low vision is any type of visual impairment that affects activities of daily living. In the context of low vision, we define plasticity as changes in brain or perceptual behavior that follow the onset of visual impairment and that are not directly due to the underlying pathology. An important goal of low-vision research is to determine how plasticity affects visual performance of everyday activities. In this review, we consider the levels of the visual system at which plasticity occurs, the impact of age and visual experience on plasticity, and whether plastic changes are spontaneous or require explicit training. We also discuss how plasticity may affect low-vision rehabilitation. Developments in retinal imaging, noninvasive brain imaging, and eye tracking have supplemented traditional clinical and psychophysical methods for assessing how the visual system adapts to visual impairment. Findings from contemporary research are providing tools to guide people with low vision in adopting appropriate rehabilitation strategies.
Collapse
Affiliation(s)
- Gordon E Legge
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455;
| | - Susana T L Chung
- School of Optometry, University of California, Berkeley, California 94720;
| |
Collapse
|
11
|
Rosenblum LD, Dias JW, Dorsi J. The supramodal brain: implications for auditory perception. JOURNAL OF COGNITIVE PSYCHOLOGY 2016. [DOI: 10.1080/20445911.2016.1181691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Perceptual learning modifies the functional specializations of visual cortical areas. Proc Natl Acad Sci U S A 2016; 113:5724-9. [PMID: 27051066 DOI: 10.1073/pnas.1524160113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.
Collapse
|
13
|
Fine I, Cepko CL, Landy MS. Vision research special issue: Sight restoration: Prosthetics, optogenetics and gene therapy. Vision Res 2015; 111:115-23. [PMID: 25937376 DOI: 10.1016/j.visres.2015.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Connie L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
14
|
Dormal G, Lepore F, Harissi-Dagher M, Albouy G, Bertone A, Rossion B, Collignon O. Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration. J Neurophysiol 2014; 113:1727-42. [PMID: 25520432 DOI: 10.1152/jn.00420.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood.
Collapse
Affiliation(s)
- Giulia Dormal
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montreal, Quebec, Canada; Institute of Research in Psychology (IPSY), Center for Cognitive and Systems Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montreal, Quebec, Canada
| | - Mona Harissi-Dagher
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM) Notre Dame, Montreal, Quebec, Canada
| | - Geneviève Albouy
- Centre de recherche de l'Institut Universitaire de Gériatrie de l'Université de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Armando Bertone
- Department of Education and Counselling Psychology, McGill University, Montreal, Quebec, Canada; and
| | - Bruno Rossion
- Institute of Research in Psychology (IPSY), Center for Cognitive and Systems Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Collignon
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montreal, Quebec, Canada; Centro Interdipartimentale Mente/Cervello (CIMeC), Università di Trento, Mattarello, Italy
| |
Collapse
|
15
|
Cunningham SI, Weiland JD, Bao P, Lopez-Jaime GR, Tjan BS. Correlation of vision loss with tactile-evoked V1 responses in retinitis pigmentosa. Vision Res 2014; 111:197-207. [PMID: 25449160 DOI: 10.1016/j.visres.2014.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Neuroimaging studies have shown that the visual cortex of visually impaired humans is active during tactile tasks. We sought to determine if this cross-modal activation in the primary visual cortex is correlated with vision loss in individuals with retinitis pigmentosa (RP), an inherited degenerative photoreceptor disease that progressively diminishes vision later in life. RP and sighted subjects completed three tactile tasks: a symmetry discrimination task, a Braille-dot counting task, and a sandpaper roughness discrimination task. We measured tactile-evoked blood oxygenation level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI). For each subject, we quantified the cortical extent of the tactile-evoked response by the proportion of modulated voxels within the primary visual cortex (V1) and its strength by the mean absolute modulation amplitude of the modulated voxels. We characterized vision loss in terms of visual acuity and the areal proportion of V1 that corresponds to the preserved visual field. Visual acuity and proportion of the preserved visual field both had a highly significant effect on the cortical extent of the V1 BOLD response to tactile stimulation, while visual acuity also had a significant effect on the strength of the V1 response. These effects of vision loss on cross-modal responses were reliable despite high inter-subject variability. Controlling for task-evoked responses in the primary somatosensory cortex (S1) across subjects further strengthened the effects of vision loss on cross-model responses in V1. We propose that such cross-modal responses in V1 and other visual areas may be used as a cortically localized biomarker to account for individual differences in visual performance following sight recovery treatments.
Collapse
Affiliation(s)
- Samantha I Cunningham
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Pinglei Bao
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | | | - Bosco S Tjan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
16
|
Dietrich S, Hertrich I, Ackermann H. Training of ultra-fast speech comprehension induces functional reorganization of the central-visual system in late-blind humans. Front Hum Neurosci 2013; 7:701. [PMID: 24167485 PMCID: PMC3805979 DOI: 10.3389/fnhum.2013.00701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022] Open
Abstract
Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per seconds (s)—exceeding by far the maximum performance level of untrained listeners (ca. 8 syl/s). Previous findings indicate the central-visual system to contribute to the processing of accelerated speech in blind subjects. As an extension, the present training study addresses the issue whether acquisition of ultra-fast (18 syl/s) speech perception skills induces de novo central-visual hemodynamic activation in late-blind participants. Furthermore, we asked to what extent subjects with normal or residual vision can improve understanding of accelerated verbal utterances by means of specific training measures. To these ends, functional magnetic resonance imaging (fMRI) was performed while subjects were listening to forward and reversed sentence utterances of moderately fast and ultra-fast syllable rates (8 or 18 syl/s) prior to and after a training period of ca. 6 months. Four of six participants showed—independently from residual visual functions—considerable enhancement of ultra-fast speech perception (about 70% points correctly repeated words) whereas behavioral performance did not change in the two remaining participants. Only subjects with very low visual acuity displayed training-induced hemodynamic activation of the central-visual system. By contrast, participants with moderately impaired or even normal visual acuity showed, instead, increased right-hemispheric frontal or bilateral anterior temporal lobe responses after training. All subjects with significant training effects displayed a concomitant increase of hemodynamic activation of left-hemispheric SMA. In spite of similar behavioral performance, trained “experts” appear to use distinct strategies of ultra-fast speech processing depending on whether the occipital cortex is still deployed for visual processing.
Collapse
Affiliation(s)
- Susanne Dietrich
- Department of General Neurology, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | | | | |
Collapse
|
17
|
Shape-specific activation of occipital cortex in an early blind echolocation expert. Neuropsychologia 2013; 51:938-49. [DOI: 10.1016/j.neuropsychologia.2013.01.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 02/02/2023]
|
18
|
Bedny M, Pascual-Leone A, Dravida S, Saxe R. A sensitive period for language in the visual cortex: distinct patterns of plasticity in congenitally versus late blind adults. BRAIN AND LANGUAGE 2012; 122:162-70. [PMID: 22154509 PMCID: PMC3536016 DOI: 10.1016/j.bandl.2011.10.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/08/2011] [Accepted: 10/12/2011] [Indexed: 05/12/2023]
Abstract
Recent evidence suggests that blindness enables visual circuits to contribute to language processing. We examined whether this dramatic functional plasticity has a sensitive period. BOLD fMRI signal was measured in congenitally blind, late blind (blindness onset 9-years-old or later) and sighted participants while they performed a sentence comprehension task. In a control condition, participants listened to backwards speech and made match/non-match to sample judgments. In both congenitally and late blind participants BOLD signal increased in bilateral foveal-pericalcarine cortex during response preparation, irrespective of whether the stimulus was a sentence or backwards speech. However, left occipital areas (pericalcarine, extrastriate, fusiform and lateral) responded more to sentences than backwards speech only in congenitally blind people. We conclude that age of blindness onset constrains the non-visual functions of occipital cortex: while plasticity is present in both congenitally and late blind individuals, recruitment of visual circuits for language depends on blindness during childhood.
Collapse
Affiliation(s)
- Marina Bedny
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
19
|
Cunningham SI, Weiland JD, Bao P, Tjan BS. Visual cortex activation induced by tactile stimulation in late-blind individuals with retinitis pigmentosa. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:2841-2844. [PMID: 22254933 PMCID: PMC3411316 DOI: 10.1109/iembs.2011.6090785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The inter-subject variability of visual cortex reorganization was assessed in late-blind subjects suffering from retinitis pigmentosa (RP), a degenerative retinal disease that results in tunnel vision and eventual loss of sight. fMRI BOLD responses were measured as blindfolded RP and blindfolded sighted control groups completed a tactile discrimination task (in which subjects determined the relative roughness of sandpaper discs) during successive scans in a 3T Siemens scanner. Resulting activation patterns were compared between the two groups in a whole-brain analysis. We found that vision deprivation leads to elevated activation of the visual cortex elicited with tactile stimuli, and the degree of activation correlates with the degree of visual field loss: higher visual cortex activation is associated with greater vision loss. The location of vision loss in the visual field also correlates with the location of tactile responses in the visual cortex, with greater peripheral vision loss leading to stronger activation in the peripheral of V1. Visual cortex responses to tactile stimuli may hence be used as a diagnostic marker in determining the extent of an individual's vision loss and tracking sight recovery following treatments.
Collapse
Affiliation(s)
- Samantha I Cunningham
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
20
|
Baseler HA, Gouws A, Morland AB. The Organization of the Visual Cortex in Patients with Scotomata Resulting from Lesions of the Central Retina. Neuroophthalmology 2009. [DOI: 10.1080/01658100903050053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|