1
|
He X, Wu M, Chen L, Liu M, Hu X, Meng Y, Yue H, Yang X, Zheng P, Dai Y. APMCG-1 attenuates ischemic stroke injury by reducing oxidative stress and apoptosis and promoting angiogenesis via activating PI3K/AKT pathway. Biomed Pharmacother 2024; 180:117506. [PMID: 39368213 DOI: 10.1016/j.biopha.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS. Moreover, despite their millennial legacy of IS remediation, natural remedies such as ginseng incur high production costs. The novel glycopeptide APMCG-1, extracted from mountain-cultivated ginseng dregs in our previous study, is a potent therapeutic candidate for IS. This study investigated APMCG-1's remedial mechanisms against IS injury using an H2O2-induced oxidative stress paradigm in human umbilical vein endothelial cells (HUVECs) emulating ischemic endothelial cells, in a ponatinib-induced zebrafish IS model, and in rat middle cerebral artery occlusion (MCAO) prototypes. Cellular assays confirmed the proficiency of APMCG-1 in preventing oxidative stress and cell death, fostering regeneration, and facilitating neovascularization within the H2O2-stressed HUVECs framework. Moreover, APMCG-1 augmented hemodynamic velocity, oxidative stress mitigation, apoptosis reduction, and motor enhancement in a zebrafish model of IS. In MCAO rats, APMCG-1 ameliorated neurological deficits and cerebral injury, as evidenced by increased neurological scores and diminished infarct dimensions. In cells and animal models, APMCG-1 activated the PI3K/AKT signaling pathway, modulating factors such as Nrf2, Bcl-2, Caspase 3, eNOS, and VEGFA, thereby ameliorating cellular oxidative distress and catalyzing angiogenesis. Collectively, these results demonstrate the potential protective effects of APMCG-1 in IS pharmacotherapy and its prospective utility as an herbal-derived IS treatment modality.
Collapse
Affiliation(s)
- Xingyue He
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingdian Wu
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Likun Chen
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun Liu
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Xuan Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoshan Yang
- Guangzhou Baiyun Meiwan Testing Co., Ltd, Guangzhou 510403, China
| | - Peng Zheng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Li P, Chen L, Liu J. Network pharmacology and molecular docking approach to elucidate the mechanisms of safflower, phellodendron, scutellaria baicalensis, coptis, and gardenia in hand-foot syndrome. Front Med (Lausanne) 2024; 11:1454776. [PMID: 39355840 PMCID: PMC11443508 DOI: 10.3389/fmed.2024.1454776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Background Safflower, phellodendron, scutellaria baicalensis, coptis, and gardenia (SPSCG) are medicinal plants with a wide range of anti-inflammatory and antioxidant effects. However, the related mechanism of SPSCG against hand-foot syndrome (HFS) has yet to be revealed. Objective To investigate the mechanisms of SPSCG in the treatment of HFS using the Network Pharmacology. Methods Active ingredients and targets of SPSCG for HFS were screened by the Chinese Medicine Systems Pharmacology (TCMSP) and Swiss Target Prediction databases. Potential therapeutic targets were collected from the GeneCards and OMIM databases. Subsequently, protein-protein interactions (PPI), Gene Ontology (GO) annotations, and pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to investigate the potential mechanism of the SPSCG in HFS. Then, molecular docking and molecular dynamics simulations were performed to predict the binding interactions between the active compound and the core target. Finally, vitro experiments were used to verify the repair effect of key ingredients of SPSCG on cell damage caused by 5-Fluorouracil. Results Quercetin, kaempferol, β-sitosterol, and stigmasterol were identified as the major active components of SPSCG. GO analysis showed a total of 1,127 biological processes, 42 terms cellular components, and 57 molecular functions. KEGG analysis showed that the MAPK, TNF, and IL-17 signaling pathways were significantly enriched. The PPI analysis discovered that EGFR, CASP3, AKT1, CCND1, and CTNNB1 shared the highest centrality among all target genes. The experimental results confirmed that these SPSCG active ingredients could treat HFS by reducing inflammation reaction and promoting cell damage repair. Conclusion SPSCG may alleviate HFS by exerting antioxidative effects and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Pengxing Li
- Department of Gastrointestinal Surgery, Shaowu Municiple Hospital of Fujian Province, Nanping, China
| | - Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianhui Liu
- Department of Traditional Chinese Medicine, Shaowu Municiple Hospital of Fujian Province, Nanping, China
| |
Collapse
|
3
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Madsen RR, Toker A. PI3K signaling through a biochemical systems lens. J Biol Chem 2023; 299:105224. [PMID: 37673340 PMCID: PMC10570132 DOI: 10.1016/j.jbc.2023.105224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Tan X, Chen YF, Zou SY, Wang WJ, Zhang NN, Sun ZY, Xian W, Li XR, Tang B, Wang HJ, Gao Q, Kang PF. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic Biol Med 2023; 195:219-230. [PMID: 36587924 DOI: 10.1016/j.freeradbiomed.2022.12.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The function of mitochondrial fusion and fission is one of the important factors causing ischemia-reperfusion (I/R) injury in diabetic myocardium. Aldehyde dehydrogenase 2 (ALDH2) is abundantly expressed in heart, which involved in the regulation of cellular energy metabolism and stress response. However, the mechanism of ALDH2 regulating mitochondrial fusion and fission in diabetic myocardial I/R injury has not been elucidated. In the present study, we found that the expression of ALDH2 was downregulated in rat diabetic myocardial I/R model. Functionally, the activation of ALDH2 resulted in the improvement of cardiac hemodynamic parameters and myocardial injury, which were abolished by the treatment of Daidzin, a specific inhibitor of ALDH2. In H9C2 cardiomyocyte hypoxia-reoxygenation model, ALDH2 regulated the dynamic balance of mitochondrial fusion and fission and maintained mitochondrial morphology stability. Meanwhile, ALDH2 reduced mitochondrial ROS levels, and apoptotic protein expression in cardiomyocytes, which was associated with the upregulation of phosphorylation (p-PI3KTyr458, p-AKTSer473, p-mTOR). Moreover, ALDH2 suppressed the mitoPTP opening through reducing 4-HNE. Therefore, our results demonstrated that ALDH2 alleviated the ischemia and reperfusion injury in diabetic cardiomyopathy through inhibition of mitoPTP opening and activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong-Feng Chen
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Ying Zou
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei-Jie Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ning-Ning Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng-Yu Sun
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Xian
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao-Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
6
|
Sarma U, Ripka L, Anyaegbunam UA, Legewie S. Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway. Methods Mol Biol 2023; 2634:215-251. [PMID: 37074581 DOI: 10.1007/978-1-0716-3008-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Nongenetic heterogeneity is key to cellular decisions, as even genetically identical cells respond in very different ways to the same external stimulus, e.g., during cell differentiation or therapeutic treatment of disease. Strong heterogeneity is typically already observed at the level of signaling pathways that are the first sensors of external inputs and transmit information to the nucleus where decisions are made. Since heterogeneity arises from random fluctuations of cellular components, mathematical models are required to fully describe the phenomenon and to understand the dynamics of heterogeneous cell populations. Here, we review the experimental and theoretical literature on cellular signaling heterogeneity, with special focus on the TGFβ/SMAD signaling pathway.
Collapse
Affiliation(s)
- Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Lorenz Ripka
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Uchenna Alex Anyaegbunam
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center for Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
7
|
Huang Y, He S, Chen Y, Sheng J, Fu Y, Du X, Yang Y, Liu H, Han Z, Huang Y, Wen Q, Zhou C, Zhou X, Hu S, Ma L. UCHL1 Promoted Polarization of M1 Macrophages by Regulating the PI3K/AKT Signaling Pathway. J Inflamm Res 2022; 15:735-746. [PMID: 35153498 PMCID: PMC8824699 DOI: 10.2147/jir.s343487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Correspondence: Li Ma; Shengfeng Hu, Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China, Email ;
| |
Collapse
|
8
|
Wikan N, Hankittichai P, Thaklaewphan P, Potikanond S, Nimlamool W. Oxyresveratrol Inhibits TNF-α-Stimulated Cell Proliferation in Human Immortalized Keratinocytes (HaCaT) by Suppressing AKT Activation. Pharmaceutics 2021; 14:63. [PMID: 35056961 PMCID: PMC8781909 DOI: 10.3390/pharmaceutics14010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a complex inflammatory disease characterized by hyperproliferative keratinocyte caused by active PI3K/AKT signaling. TNF-α concentrated in the psoriatic lesions stimulates AKT activation. We previously discovered that oxyresveratrol inhibited inflammation via suppressing AKT phosphorylation, therefore oxyresveratrol may possess a conserved property to block AKT activation and proliferation in keratinocyte in response to TNF-α. Our current study proved that oxyresveratrol exhibited potent anti-proliferative effects against TNF-α. These effects are explained by the findings that oxyresveratrol could potentially inhibit TNF-α-stimulated AKT and GSK3-β activation in a dose-dependent manner, and its inhibitory pattern was comparable to that of a specific PI3K inhibitor. Results from immunofluorescence supported that oxyresveratrol effectively inhibited AKT and GSK3-β activation in individual cells upon TNF-α stimulation. Furthermore, functional assay confirmed that oxyresveratrol repressed the expansion of the HaCaT colony over 3 days, and this was caused by the ability of oxyresveratrol to induce cell cycle arrest at S and G2/M phases and the reduction in the expression of a proliferative marker (Ki-67) and a survival marker (MCL-1). Given the importance of TNF-α and the PI3K/AKT pathway in the psoriatic phenotype, we anticipate that oxyresveratrol, which targets the TNF-α-stimulated PI3K/AKT pathway, would represent a promising psoriasis therapy in the near future.
Collapse
Affiliation(s)
- Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
| | - Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Smith V, Mukherjee D, Lunj S, Choudhury A, Hoskin P, West C, Illidge T. The effect of hypoxia on PD-L1 expression in bladder cancer. BMC Cancer 2021; 21:1271. [PMID: 34819027 PMCID: PMC8613983 DOI: 10.1186/s12885-021-09009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Recent data has demonstrated that hypoxia drives an immunosuppressive tumour microenvironment (TME) via various mechanisms including hypoxia inducible factor (HIF)-dependent upregulation of programmed death ligand 1 (PD-L1). Both hypoxia and an immunosuppressive TME are targetable independent negative prognostic factors for bladder cancer. Therefore we sought to investigate whether hypoxia is associated with upregulation of PD-L1 in the disease. MATERIALS AND METHODS Three human muscle-invasive bladder cancer cell lines (T24, J82, UMUC3) were cultured in normoxia (20% oxygen) or hypoxia (1 and 0.1% oxygen) for 24 h. Differences in PD-L1 expression were measured using Western blotting, quantitative polymerase chain reaction (qPCR) and flow cytometry (≥3 independent experiments). Statistical tests performed were unpaired t tests and ANOVA. For in silico work an hypoxia signature was used to apply hypoxia scores to muscle-invasive bladder cancers from a clinical trial (BCON; n = 142) and TCGA (n = 404). Analyses were carried out using R and RStudio and statistical tests performed were linear models and one-way ANOVA. RESULTS When T24 cells were seeded at < 70% confluence, there was decreased PD-L1 protein (p = 0.009) and mRNA (p < 0.001) expression after culture in 0.1% oxygen. PD-L1 protein expression decreased in both 0.1% oxygen and 1% oxygen in a panel of muscle-invasive bladder cancer cells: T24 (p = 0.009 and 0.001), J82 (p = 0.008 and 0.013) and UMUC3 (p = 0.003 and 0.289). Increasing seeding density decreased PD-L1 protein (p < 0.001) and mRNA (p = 0.001) expression in T24 cells grown in both 20 and 1% oxygen. Only when cells were 100% confluent, were PD-L1 protein and mRNA levels higher in 1% versus 20% oxygen (p = 0.056 and p = 0.037). In silico analyses showed a positive correlation between hypoxia signature scores and PD-L1 expression in both BCON (p = 0.003) and TCGA (p < 0.001) cohorts, and between hypoxia and IFNγ signature scores (p < 0.001 for both). CONCLUSION Tumour hypoxia correlates with increased PD-L1 expression in patient derived bladder cancer tumours. In vitro PD-L1 expression was affected by cell density and decreased PD-L1 expression was observed after culture in hypoxia in muscle-invasive bladder cancer cell lines. As cell density has such an important effect on PD-L1 expression, it should be considered when investigating PD-L1 expression in vitro.
Collapse
Affiliation(s)
- Vicky Smith
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK.
| | - Debayan Mukherjee
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Catharine West
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Tim Illidge
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
10
|
PI3K-AKT, JAK2-STAT3 pathways and cell-cell contact regulate maspin subcellular localization. Cell Commun Signal 2021; 19:86. [PMID: 34391444 PMCID: PMC8364028 DOI: 10.1186/s12964-021-00758-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Maspin (SERPINB5) is a potential tumor suppressor gene with pleiotropic biological activities, including regulation of cell proliferation, death, adhesion, migration and gene expression. Several studies indicate that nuclear localization is essential for maspin tumor suppression activity. We have previously shown that the EGFR activation leads to maspin nuclear localization in MCF-10A cells. The present study investigated which EGFR downstream signaling molecules are involved in maspin nuclear localization and explored a possible role of cell–cell contact in this process. Methods MCF-10A cells were treated with pharmacological inhibitors against EGFR downstream pathways followed by EGF treatment. Maspin subcellular localization was determined by immunofluorescence. Proteomic and interactome analyses were conducted to identify maspin-binding proteins in EGF-treated cells only. To investigate the role of cell–cell contact these cells were either treated with chelating agents or plated on different cell densities. Maspin and E-cadherin subcellular localization was determined by immunofluorescence. Results We found that PI3K-Akt and JAK2-STAT3, but not MAP kinase pathway, regulate EGF-induced maspin nuclear accumulation in MCF-10A cells. We observed that maspin is predominantly nuclear in sparse cell culture, but it is redistributed to the cytoplasm in confluent cells even in the presence of EGF. Proteomic and interactome results suggest a role of maspin on post-transcriptional and translation regulation, protein folding and cell–cell adhesion. Conclusions Maspin nuclear accumulation is determined by an interplay between EGFR (via PI3K-Akt and JAK2-STAT3 pathways) and cell–cell contact.![]() Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00758-3.
Collapse
|
11
|
Samson J, Derlipanska M, Zaheed O, Dean K. Molecular and cellular characterization of two patient-derived ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010. BMC Cancer 2021; 21:790. [PMID: 34238275 PMCID: PMC8268371 DOI: 10.1186/s12885-021-08511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently it is unclear how in situ breast cancer progresses to invasive disease; therefore, a better understanding of the events that occur during the transition to invasive carcinoma is warranted. Here we have conducted a detailed molecular and cellular characterization of two, patient-derived, ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010. METHODS Human DCIS cell lines, ETCC-006 and ETCC-010, were compared against a panel of cell lines including the immortalized, breast epithelial cell line, MCF10A, breast cancer cell lines, MCF7 and MDA-MB-231, and another DCIS line, MCF10DCIS.com. Cell morphology, hormone and HER2/ERBB2 receptor status, cell proliferation, survival, migration, anchorage-independent growth, indicators of EMT, cell signalling pathways and cell cycle proteins were examined using immunostaining, immunoblots, and quantitative, reverse transcriptase PCR (qRT-PCR), along with clonogenic, wound-closure and soft agar assays. RNA sequencing (RNAseq) was used to provide a transcriptomic profile. RESULTS ETCC-006 and ETCC-010 cells displayed notable differences to another DCIS cell line, MCF10DCIS.com, in terms of morphology, steroid-receptor/HER status and markers of EMT. The ETCC cell lines lack ER/PR and HER, form colonies in clonogenic assays, have migratory capacity and are capable of anchorage-independent growth. Despite being isogenic, less than 30% of differentially expressed transcripts overlapped between the two lines, with enrichment in pathways involving receptor tyrosine kinases and DNA replication/cell cycle programs and in gene sets responsible for extracellular matrix organisation and ion transport. CONCLUSIONS For the first time, we provide a molecular and cellular characterization of two, patient-derived DCIS cell lines, ETCC-006 and ETCC-010, facilitating future investigations into the molecular basis of DCIS to invasive ductal carcinoma transition.
Collapse
Affiliation(s)
- Julia Samson
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, T12XF62 Ireland
- Present address: EFOR, 25-29 Rue Anatole France, 92300 Levallois-Perret, France
| | - Magdalina Derlipanska
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, T12XF62 Ireland
| | - Oza Zaheed
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, T12XF62 Ireland
| | - Kellie Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, T12XF62 Ireland
| |
Collapse
|
12
|
Kinnunen PC, Luker KE, Luker GD, Linderman JJ. Computational methods for characterizing and learning from heterogeneous cell signaling data. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 26:98-108. [PMID: 35647414 DOI: 10.1016/j.coisb.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heterogeneity in cell signaling pathways is increasingly appreciated as a fundamental feature of cell biology and a driver of clinically relevant disease phenotypes. Understanding the causes of heterogeneity, the cellular mechanisms used to control heterogeneity, and the downstream effects of heterogeneity in single cells are all key obstacles for manipulating cellular populations and treating disease. Recent advances in genetic engineering, including multiplexed fluorescent reporters, have provided unprecedented measurements of signaling heterogeneity, but these vast data sets are often difficult to interpret, necessitating the use of computational techniques to extract meaning from the data. Here, we review recent advances in computational methods for extracting meaning from these novel data streams. In particular, we evaluate how machine learning methods related to dimensionality reduction and classification can identify structure in complex, dynamic datasets, simplifying interpretation. We also discuss how mechanistic models can be merged with heterogeneous data to understand the underlying differences between cells in a population. These methods are still being developed, but the work reviewed here offers useful applications of specific analysis techniques that could enable the translation of single-cell signaling data to actionable biological understanding.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Gary D Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, MI, 48109-2200, USA.,Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA, 48109.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA, 48109
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA.,Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA, 48109
| |
Collapse
|
13
|
Zhang R, Wang YH, Shi X, Ji J, Zhan FQ, Leng H. Sortilin regulates keratinocyte proliferation and apoptosis through the PI3K-AKT signaling pathway. Life Sci 2021; 278:119630. [PMID: 34004257 DOI: 10.1016/j.lfs.2021.119630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/24/2022]
Abstract
Sortilin is found to regulate proliferation and death of different cells, while its role in regulating keratinocyte proliferation and apoptosis is still unknown. In this study, we found that sortilin levels significantly increased in psoriasis patients, and sortilin suppression eliminated the proliferation of HaCaT cells induced by M5 cocktail solution and enhanced the levels of cleaved caspase 3 protein and the Bax/Bcl-2 ratio; however, levels of p-PI3K and p-AKT were decreased. In addition, sortilin silencing remitted the characteristic changes associated with psoriasis-like skin lesions. In summary, suppressed sortilin expression helped inhibit keratinocyte proliferation in HaCaT cells by inactivating PI3K/AKT signaling, which provides a new target for the therapy of psoriasis.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China
| | - Ye Hua Wang
- Department of Cell Biology, School of Biology and Basic Medical, Soochow University, No. 199 Renai Road, Suzhou 215123, China
| | - Xin Shi
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China
| | - Fu Qin Zhan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, 215004, China
| | - Hong Leng
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China.
| |
Collapse
|
14
|
Spinosa PC, Kinnunen PC, Humphries BA, Luker GD, Luker KE, Linderman JJ. Pre-existing Cell States Control Heterogeneity of Both EGFR and CXCR4 Signaling. Cell Mol Bioeng 2021; 14:49-64. [PMID: 33643466 PMCID: PMC7878609 DOI: 10.1007/s12195-020-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION CXCR4 and epidermal growth factor receptor (EGFR) represent two major families of receptors, G-protein coupled receptors and receptor tyrosine kinases, with central functions in cancer. While utilizing different upstream signaling molecules, both CXCR4 and EGFR activate kinases ERK and Akt, although single-cell activation of these kinases is markedly heterogeneous. One hypothesis regarding the origin of signaling heterogeneity proposes that intercellular variations arise from differences in pre-existing intracellular states set by extrinsic noise. While pre-existing cell states vary among cells, each pre-existing state defines deterministic signaling outputs to downstream effectors. Understanding causes of signaling heterogeneity will inform treatment of cancers with drugs targeting drivers of oncogenic signaling. METHODS We built a single-cell computational model to predict Akt and ERK responses to CXCR4- and EGFR-mediated stimulation. We investigated signaling heterogeneity through these receptors and tested model predictions using quantitative, live-cell time-lapse imaging. RESULTS We show that the pre-existing cell state predicts single-cell signaling through both CXCR4 and EGFR. Computational modeling reveals that the same set of pre-existing cell states explains signaling heterogeneity through both EGFR and CXCR4 at multiple doses of ligands and in two different breast cancer cell lines. The model also predicts how phosphatidylinositol-3-kinase (PI3K) targeted therapies potentiate ERK signaling in certain breast cancer cells and that low level, combined inhibition of MEK and PI3K ablates potentiated ERK signaling. CONCLUSIONS Our data demonstrate that a conserved motif exists for EGFR and CXCR4 signaling and suggest potential clinical utility of the computational model to optimize therapy.
Collapse
Affiliation(s)
- Phillip C. Spinosa
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800 USA
| | - Patrick C. Kinnunen
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800 USA
| | - Brock A. Humphries
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Gary D. Luker
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI USA 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI USA 48109
| | - Kathryn E. Luker
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Department of Radiology, Center for Molecular Imaging, University of Michigan, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, MI 48109-2200 USA
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800 USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI USA 48109
| |
Collapse
|
15
|
Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput Struct Biotechnol J 2020; 18:2145-2165. [PMID: 32913583 PMCID: PMC7451872 DOI: 10.1016/j.csbj.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells respond to their physical neighborhood with mechano-sensitive behaviors required for development and tissue maintenance. These include anchorage dependence, matrix stiffness-dependent proliferation, contact inhibition of proliferation and migration, and collective migration that balances cell crawling with the maintenance of cell junctions. While required for development and tissue repair, these coordinated responses to the microenvironment also contribute to cancer metastasis. Predictive models of the signaling networks that coordinate these behaviors are critical in controlling cell behavior to halt disease. Here we propose a Boolean regulatory network model that synthesizes mechanosensitive signaling that links anchorage to a matrix of varying stiffness and cell density sensing to contact inhibition, proliferation, migration, and apoptosis. Our model can reproduce anchorage dependence and anoikis, detachment-induced cytokinesis errors, the effect of matrix stiffness on proliferation, and contact inhibition of proliferation and migration by two mechanisms that converge on the YAP transcription factor. In addition, we offer testable predictions related to cell cycle-dependent anoikis sensitivity, the molecular requirements for abolishing contact inhibition, and substrate stiffness dependent expression of the catalytic subunit of PI3K. Moreover, our model predicts heterogeneity in migratory vs. non-migratory phenotypes in sub-confluent monolayers, and co-inhibition but semi-independent induction of proliferation vs. migration as a function of cell density and mitogenic stimulation. Our model serves as a stepping-stone towards modeling mechanosensitive routes to the epithelial to mesenchymal transition, capturing the effects of the mesenchymal state on anoikis resistance, and understanding the balance between migration versus proliferation at each stage of the epithelial to mesenchymal transition.
Collapse
|
16
|
Moon J, Kim D, Kim EK, Lee SY, Na HS, Kim GN, Lee A, Jung K, Choi JW, Park SH, Roh S, Cho ML. Brown adipose tissue ameliorates autoimmune arthritis via inhibition of Th17 cells. Sci Rep 2020; 10:12374. [PMID: 32704024 PMCID: PMC7378076 DOI: 10.1038/s41598-020-68749-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
The functions of adipose tissue are associated with autoimmune diseases, such as rheumatoid arthritis (RA). Some studies have shown that the three compositions of adipose tissue (white, brown, and beige) have different functions. Brown adipose tissue (BAT) is known to secrete several factors that differ from those in white adipose tissue. This suggests that BAT might have potential positive advantages in the physiology of autoimmune diseases. We compared the functions of collagen-induced arthritis mice-derived BAT (CIA BAT) with normal mice-derived BAT. DBA/1J mice (6-7 weeks of age) were immunized by intradermal injection at the base of the tail with 100 μg of bovine type II collagen (CII) emulsified in complete Freund's adjuvant. Immunized mice then received booster immunizations by intraperitoneal injection with 100 μg of CII in incomplete Freund's adjuvant. We transplanted CIA BAT and normal BAT into CIA recipient mice. After transplantation, we measured the functions of CIA BAT and normal BAT in mice. Normal BAT-transplanted mice showed significantly lower scores of bone damage, inflammation, and cartilage damage. The proinflammatory cytokines in normal BAT-transplanted mice, such as IL-12, IL-17, IL-6, and tumor necrosis factor-α (TNF-α), tended to decrease. Microarray analysis showed that the PI3K-AKT signaling pathway and IL-17 levels of CIA BAT tissues were significantly higher than those of normal BAT tissues. These results suggest that the transplantation of normal brown fat may have a therapeutic effect in RA patients.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21 PLUS Dental Life Science, Seoul National University School of Dentistry, Seoul, 08826, Republic of Korea
| | - Dasom Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea
| | - Eun Kyung Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea
| | - Gyoung Nyun Kim
- College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Aram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea
| | - KyungAh Jung
- Impact Biotech, Korea 505 Banpo-dong, Seocho-ku, Seoul, 137-040, Republic of Korea
| | - Jeong Won Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21 PLUS Dental Life Science, Seoul National University School of Dentistry, Seoul, 08826, Republic of Korea.
| | - Mi-La Cho
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
17
|
Kavatalkar V, Saini S, Bhat PJ. Role of Noise-Induced Cellular Variability in Saccharomyces cerevisiae During Metabolic Adaptation: Causes, Consequences and Ramifications. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Renoprotective effects of Gushen Jiedu capsule on diabetic nephropathy in rats. Sci Rep 2020; 10:2040. [PMID: 32029775 PMCID: PMC7005167 DOI: 10.1038/s41598-020-58781-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Gushen Jiedu capsule (GSJD) is a formula that has been widely used in traditional Chinese medicine for the prevention and treatment of diabetic nephropathy (DN). However, the mechanism underlying the protective effects of GSJD on DN is still unclear. This study was performed to clarify the therapeutic effects of GSJD on DN and its underlying mechanisms. High-fat diet- and streptozotocin-induced DN rats were treated with or without GSJD suspension by gavage for 8 weeks, and biochemical changes in blood and urine were analysed. Kidneys were isolated for histological, TUNEL and Western blot analysis. Compared to the DN group, the GSJD-treated groups exhibited decreased urinary albumin, ameliorated renal dysfunction, including serum creatinine and blood urea nitrogen, and attenuated total cholesterol, triglyceride and total protein levels. However, there were no significant effects of GSJD on body weight, fasting blood glucose or albuminuria. Histology showed that GSJD could retard the progression of DN and decrease the apoptosis rate from 52% to less than 20%. Western blot analysis showed that GSJD could regulate the mitochondrial apoptotic pathway by downregulating the expression of Bax and upregulating the expression of BCL-2 in the kidneys of DN rats. Moreover, the Akt pathway, an upstream signalling pathway of the BCL-2 family, was also ameliorated by GSJD. Further, the podocyte foot process markers podocin and nephrin were upregulated by GSJD in DN rats. This study demonstrated that GSJD might play a renoprotective role by inhibiting apoptosis and regulating the mitochondrial apoptotic and Akt pathways during pathological changes in DN.
Collapse
|
19
|
Abstract
Specificity in signal transduction is determined by the ability of cells to "encode" and subsequently "decode" different environmental signals. Akin to computer software, this "signaling code" governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
20
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
21
|
Yang G, Jin L, Zheng D, Tang X, Yang J, Fan L, Xie X. Fucoxanthin Alleviates Oxidative Stress through Akt/Sirt1/FoxO3α Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar Drugs 2019; 17:md17120702. [PMID: 31842414 PMCID: PMC6950607 DOI: 10.3390/md17120702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
As one of the main marine carotenoids, fucoxanthin has strong antioxidant activity. FoxO3α, a member of the forkhead box O family of transcription factors, plays an important role in DN by regulating oxidative stress. The activity of FoxO3α is related to its phosphorylation and acetylation status, regulated by Akt and Sirt1, a lysine deacetylase. Our study aimed to investigate whether fucoxanthin could alleviate oxidative stress and fibrosis via FoxO3α in DN and whether Akt and Sirt1 were involved. We found that in GMCs cultured in HG, fucoxanthin treatment significantly reduced the expression of FN and collagen IV, as well as reactive oxygen species generation, suggesting that fucoxanthin is beneficial to alleviate both fibrosis and oxidative stress in DN. In addition, we found that fucoxanthin decreased the phosphorylation and acetylation level of FoxO3α, reversed the protein level of FoxO3α inhibited by HG, and then promoted the nuclear transport of FoxO3α. Besides, fucoxanthin promoted the expression of manganese superoxide dismutase, a downstream target of FoxO3α. Furthermore, we found that fucoxanthin reversed the activation of Akt and inhibition of Sirt1. However, the enhancement of fucoxanthin in FoxO3α expression and nuclear transport was significantly decreased by pretreatment with Akt activator SC79 or Sirt1 inhibitor EX527. In summary, our study explored fucoxanthin alleviated oxidative stress and fibrosis induced by HG through Akt/Sirt1/FoxO3α signaling in GMCs, suggesting fucoxanthin is a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaoliang Tang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Junwei Yang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lingxuan Fan
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Correspondence: ; Tel.: +86-18-6089-58-617
| |
Collapse
|
22
|
Chen EP, Song RS, Chen X. Mathematical model of hypoxia and tumor signaling interplay reveals the importance of hypoxia and cell-to-cell variability in tumor growth inhibition. BMC Bioinformatics 2019; 20:507. [PMID: 31638911 PMCID: PMC6802183 DOI: 10.1186/s12859-019-3098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023] Open
Abstract
Background Human tumor is a complex tissue with multiple heterogeneous hypoxic regions and significant cell-to-cell variability. Due to the complexity of the disease, the explanation of why anticancer therapies fail cannot be attributed to intrinsic or acquired drug resistance alone. Furthermore, there are inconsistent reports of hypoxia-induced kinase activities in different cancer cell-lines, where increase, decreases, or no change has been observed. Thus, we asked, why are there widely contrasting results in kinase activity under hypoxia in different cancer cell-lines and how does hypoxia play a role in anti-cancer drug sensitivity? Results We took a modeling approach to address these questions by analyzing the model simulation to explain why hypoxia driven signals can have dissimilar impact on tumor growth and alter the efficacy of anti-cancer drugs. Repeated simulations with varying concentrations of biomolecules followed by decision tree analysis reveal that the highly differential effects among heterogeneous subpopulation of tumor cells could be governed by varying concentrations of just a few key biomolecules. These biomolecules include activated serine/threonine-specific protein kinases (pRAF), mitogen-activated protein kinase kinase (pMEK), protein kinase B (pAkt), or phosphoinositide-4,5-bisphosphate 3-kinase (pPI3K). Additionally, the ratio of activated extracellular signal-regulated kinases (pERK) or pAkt to its respective total was a key factor in determining the sensitivity of pERK or pAkt to hypoxia. Conclusion This work offers a mechanistic insight into how hypoxia can affect the efficacy of anti-cancer drug that targets tumor signaling and provides a framework to identify the types of tumor cells that are either sensitive or resistant to anti-cancer therapy.
Collapse
Affiliation(s)
- Emile P Chen
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, 19426, USA.
| | - Roy S Song
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Xueer Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206-3701, USA
| |
Collapse
|
23
|
Vanhaesebroeck B, Bilanges B, Madsen RR, Dale KL, Lau E, Vladimirou E. Perspective: Potential Impact and Therapeutic Implications of Oncogenic PI3K Activation on Chromosomal Instability. Biomolecules 2019; 9:E331. [PMID: 31374965 PMCID: PMC6723836 DOI: 10.3390/biom9080331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Ralitsa R Madsen
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katie L Dale
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Evelyn Lau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Elina Vladimirou
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
24
|
Spinosa PC, Humphries BA, Lewin Mejia D, Buschhaus JM, Linderman JJ, Luker GD, Luker KE. Short-term cellular memory tunes the signaling responses of the chemokine receptor CXCR4. Sci Signal 2019; 12:eaaw4204. [PMID: 31289212 PMCID: PMC7059217 DOI: 10.1126/scisignal.aaw4204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemokine receptor CXCR4 regulates fundamental processes in development, normal physiology, and diseases, including cancer. Small subpopulations of CXCR4-positive cells drive the local invasion and dissemination of malignant cells during metastasis, emphasizing the need to understand the mechanisms controlling responses at the single-cell level to receptor activation by the chemokine ligand CXCL12. Using single-cell imaging, we discovered that short-term cellular memory of changes in environmental conditions tuned CXCR4 signaling to Akt and ERK, two kinases activated by this receptor. Conditioning cells with growth stimuli before CXCL12 exposure increased the number of cells that initiated CXCR4 signaling and the amplitude of Akt and ERK activation. Data-driven, single-cell computational modeling revealed that growth factor conditioning modulated CXCR4-dependent activation of Akt and ERK by decreasing extrinsic noise (preexisting cell-to-cell differences in kinase activity) in PI3K and mTORC1. Modeling established mTORC1 as critical for tuning single-cell responses to CXCL12-CXCR4 signaling. Our single-cell model predicted how combinations of extrinsic noise in PI3K, Ras, and mTORC1 superimposed on different driver mutations in the ERK and/or Akt pathways to bias CXCR4 signaling. Computational experiments correctly predicted that selected kinase inhibitors used for cancer therapy shifted subsets of cells to states that were more permissive to CXCR4 activation, suggesting that such drugs may inadvertently potentiate pro-metastatic CXCR4 signaling. Our work establishes how changing environmental inputs modulate CXCR4 signaling in single cells and provides a framework to optimize the development and use of drugs targeting this signaling pathway.
Collapse
Affiliation(s)
- Phillip C Spinosa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brock A Humphries
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniela Lewin Mejia
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Johanna M Buschhaus
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathryn E Luker
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Ryu JY, Kim J, Shon MJ, Sun J, Jiang X, Lee W, Yoon TY. Profiling protein-protein interactions of single cancer cells with in situ lysis and co-immunoprecipitation. LAB ON A CHIP 2019; 19:1922-1928. [PMID: 31073561 DOI: 10.1039/c9lc00139e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heterogeneity in a tumor allows a small portion of cancer cells to survive and regrow upon targeted cancer therapy, eventually leading to cancer relapse. Such drug-resistant cells often exhibit dynamic adaptation of their signaling pathways at the level of protein-protein interactions (PPIs). To probe the rewiring of signaling pathways and the heterogeneity across individual cancer cells, we developed a single-cell version of the co-immunoprecipitation (co-IP) analysis that examines the amount and PPIs of target proteins immunoprecipitated from individual cells. The method captures cancer cells at predefined locations using a microfluidic chip, pulls down target proteins on the surface using antibodies, and lyses the captured cells in situ. Then, subsequent addition of eGFP-labeled downstream proteins enables the determination of the corresponding PPIs for the minimal amount of target proteins sampled from a single cell. We applied the technique to probe epidermal growth factor receptors (EGFRs) in PC9 lung adenocarcinoma cells. The results reveal that the strength of EGFR PPIs can be largely uncorrelated with the expression level of EGFRs in single cells. In addition, the individual PC9 cells showed markedly different patterns of PPIs, indicating a high heterogeneity in EGFR signaling within a genetically homogeneous population.
Collapse
Affiliation(s)
- Ji Young Ryu
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea. and R&D Center, Proteina, Inc., Seoul 08826, South Korea
| | - Jihye Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea.
| | - Min Ju Shon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wonhee Lee
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea. and Department of Physics, KAIST, Daejeon 34141, South Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
26
|
Riester M, Xu Q, Moreira A, Zheng J, Michor F, Downey RJ. The Warburg effect: persistence of stem-cell metabolism in cancers as a failure of differentiation. Ann Oncol 2019; 29:264-270. [PMID: 29045536 DOI: 10.1093/annonc/mdx645] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Two recent observations regarding the Warburg effect are that (i) the metabolism of stem cells is constitutive (aerobic) glycolysis while normal cellular differentiation involves a transition to oxidative phosphorylation and (ii) the degree of glucose uptake of a malignancy as imaged by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is associated with histologic measures of tumor differentiation. Combining these observations, we hypothesized that the high levels of glucose uptake observed in poorly differentiated cancers may reflect persistence of the glycolytic metabolism of stem cells in malignant cells that fail to fully differentiate. Patients and methods Tumor glucose uptake was measured by FDG-PET in 552 patients with histologically diverse cancers. We used normal mixture modeling to explore FDG-PET standardized uptake value (SUV) distributions and tested for associations between glucose uptake and histological differentiation, risk of lymph node metastasis, and survival. Using RNA-seq data, we carried out pathway and transcription factor analyses to compare tumors with high and low levels of glucose uptake. Results We found that well-differentiated tumors had low FDG uptake, while moderately and poorly differentiated tumors had higher uptake. The distribution of SUV for each histology was bimodal, with a low peak around SUV 2-5 and a high peak at SUV 8-14. The cancers in the two modes were clinically distinct in terms of the risk of nodal metastases and death. Carbohydrate metabolism and the pentose-related pathway were elevated in the poorly differentiated/high SUV clusters. Embryonic stem cell-related signatures were activated in poorly differentiated/high SUV clusters. Conclusions Our findings support the hypothesis that the biological basis for the Warburg effect is a persistence of stem cell metabolism (i.e. aerobic glycolysis) in cancers as a failure to transition from glycolysis-utilizing undifferentiated cells to oxidative phosphorylation-utilizing differentiated cells. We found that cancers cluster along the differentiation pathway into two groups, utilizing either glycolysis or oxidative phosphorylation. Our results have implications for multiple areas of clinical oncology.
Collapse
Affiliation(s)
- M Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Q Xu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - A Moreira
- Department of Pathology, NYU Medical Center, New York, USA
| | - J Zheng
- Department of Epidemiology and Biostatistics, Memorial Sloan - Kettering Cancer Center, New York, USA
| | - F Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA.,Broad Institute of Harvard and MIT, Cambridge, USA.,Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, USA
| | - R J Downey
- Thoracic Service, Department of Surgery, Memorial Hospital, Memorial Sloan - Kettering Cancer Center, New York, USA
| |
Collapse
|
27
|
Microfluidic Fabrication of Encoded Hydrogel Microparticles for Application in Multiplex Immunoassay. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3104-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol 2019; 15:e1006402. [PMID: 30875364 PMCID: PMC6436762 DOI: 10.1371/journal.pcbi.1006402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/27/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.
Collapse
Affiliation(s)
- Herbert Sizek
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Andrew Hamel
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Dávid Deritei
- Department of Physics, Pennsylvania State University, State College, PA, United States of America
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Sarah Campbell
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| |
Collapse
|
29
|
Shan M, Dai D, Vudem A, Varner JD, Stroock AD. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors. PLoS Comput Biol 2018; 14:e1006584. [PMID: 30532226 PMCID: PMC6285468 DOI: 10.1371/journal.pcbi.1006584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer metabolism has received renewed interest as a potential target for cancer therapy. In this study, we use a multi-scale modeling approach to interrogate the implications of three metabolic scenarios of potential clinical relevance: the Warburg effect, the reverse Warburg effect and glutamine addiction. At the intracellular level, we construct a network of central metabolism and perform flux balance analysis (FBA) to estimate metabolic fluxes; at the cellular level, we exploit this metabolic network to calculate parameters for a coarse-grained description of cellular growth kinetics; and at the multicellular level, we incorporate these kinetic schemes into the cellular automata of an agent-based model (ABM), iDynoMiCS. This ABM evaluates the reaction-diffusion of the metabolites, cellular division and motion over a simulation domain. Our multi-scale simulations suggest that the Warburg effect provides a growth advantage to the tumor cells under resource limitation. However, we identify a non-monotonic dependence of growth rate on the strength of glycolytic pathway. On the other hand, the reverse Warburg scenario provides an initial growth advantage in tumors that originate deeper in the tissue. The metabolic profile of stromal cells considered in this scenario allows more oxygen to reach the tumor cells in the deeper tissue and thus promotes tumor growth at earlier stages. Lastly, we suggest that glutamine addiction does not confer a selective advantage to tumor growth with glutamine acting as a carbon source in the tricarboxylic acid (TCA) cycle, any advantage of glutamine uptake must come through other pathways not included in our model (e.g., as a nitrogen donor). Our analysis illustrates the importance of accounting explicitly for spatial and temporal evolution of tumor microenvironment in the interpretation of metabolic scenarios and hence provides a basis for further studies, including evaluation of specific therapeutic strategies that target metabolism. Cancer metabolism is an emerging hallmark of cancer. In the past decade, a renewed focus on cancer metabolism has led to several distinct hypotheses describing the role of metabolism in cancer. To complement experimental efforts in this field, a scale-bridging computational framework is needed to allow rapid evaluation of emerging hypotheses in cancer metabolism. In this study, we present a multi-scale modeling platform and demonstrate the distinct outcomes in population-scale growth dynamics under different metabolic scenarios: the Warburg effect, the reverse Warburg effect and glutamine addiction. Within this modeling framework, we confirmed population-scale growth advantage enabled by the Warburg effect, provided insights into the symbiosis between stromal cells and tumor cells in the reverse Warburg effect and argued that the anaplerotic role of glutamine is not exploited by tumor cells to gain growth advantage under resource limitations. We point to the opportunity for this framework to help understand tissue-scale response to therapeutic strategies that target cancer metabolism while accounting for the tumor complexity at multiple scales.
Collapse
Affiliation(s)
- Mengrou Shan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MS); (ADS)
| | - David Dai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Arunodai Vudem
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Abraham D. Stroock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MS); (ADS)
| |
Collapse
|
30
|
Zhang M, Zhang X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 2018; 311:83-91. [PMID: 30483877 DOI: 10.1007/s00403-018-1879-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway play a central role in multiple cellular functions such as cell proliferation and survival. The forkhead box O (FOXO) transcription factors are negatively regulated by the PI3K/AKT signaling pathway and considered to have inhibitory effect on cell proliferation. Psoriasis is a multifactorial disease with a strong genetic background and characterized by hyperproliferative keratinocyte. PI3K signaling regulates proliferation of keratinocyte by activating AKT and other targets, and by inducing FOXO downregulation. The amplification of PI3K and AKT and the loss of the FOXO are gradually being recognized in psoriatic lesions. The upstream and downstream of PI3K/AKT signaling molecules such as tumor suppressor phosphatase and tensin homolog (PTEN) and mammalian target of Rapamycin (mTOR), respectively, are also frequently altered in psoriasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and AKT in regulating hyperproliferation of keratinocyte, and the roles of the downstream targets FOXO in psoriasis. Finally, we summarized that PI3K/AKT/FOXO signaling and its upstream and downstream molecule which could be underlying therapeutic target for psoriasis. This article is part of a special issue entitled: PI3K-AKT-FOXO axis in psoriasis.
Collapse
Affiliation(s)
- Miao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyan Zhang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
31
|
Lira-Albarrán S, Durand M, Barrera D, Vega C, Becerra RG, Díaz L, García-Quiroz J, Rangel C, Larrea F. A single preovulatory administration of ulipristal acetate affects the decidualization process of the human endometrium during the receptive period of the menstrual cycle. Mol Cell Endocrinol 2018; 476:70-78. [PMID: 29709683 DOI: 10.1016/j.mce.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
In order to get further information on the effects of ulipristal acetate (UPA) upon the process of decidualization of endometrium, a functional analysis of the differentially expressed genes in endometrium (DEG) from UPA treated-versus control-cycles of normal ovulatory women was performed. A list of 1183 endometrial DEG, from a previously published study by our group, was submitted to gene ontology, gene enrichment and ingenuity pathway analyses (IPA). This functional analysis showed that decidualization was a biological process overrepresented. Gene set enrichment analysis identified LIF, PRL, IL15 and STAT3 among the most down-regulated genes within the JAK STAT canonical pathway. IPA showed that decidualization of uterus was a bio-function predicted as inhibited by UPA. The results demonstrated that this selective progesterone receptor modulator, when administered during the periovulatory phase of the menstrual cycle, may affect the molecular mechanisms leading to endometrial decidualization in response to progesterone during the period of maximum embryo receptivity.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Claudia Vega
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Rocio García Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
32
|
Mainz ER, Wang Q, Lawrence DS, Allbritton NL. An Integrated Chemical Cytometry Method: Shining a Light on Akt Activity in Single Cells. Angew Chem Int Ed Engl 2018; 55:13095-13098. [PMID: 27647713 DOI: 10.1002/anie.201606914] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/20/2016] [Indexed: 12/17/2022]
Abstract
Tools to evaluate oncogenic kinase activity in small clinical samples have the power to guide precision medicine in oncology. Existing platforms have demonstrated impressive insights into the activity of protein kinases, but these technologies are unsuitable for the study of kinase behavior in large numbers of primary human cells. To address these limitations, we developed an integrated analysis system that utilizes a light-programmable, cell-permeable reporter deliverable simultaneously to many cells. The reporter's ability to act as a substrate for Akt, a key oncogenic kinase, was masked by a 2-4,5-dimethoxy 2-nitrobenzyl (DMNB) moiety. Upon exposure to ultraviolet light and release of the masking moiety, the substrate sequence enabled programmable reaction times within the cell cytoplasm. When coupled to automated single-cell capillary electrophoresis, statistically significant numbers of primary human cells were readily evaluated for Akt activity.
Collapse
Affiliation(s)
- Emilie R Mainz
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Qunzhao Wang
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry and Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David S Lawrence
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry and Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nancy L Allbritton
- Department of Chemistry and Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill and Raleigh, NC, USA.
| |
Collapse
|
33
|
McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim Biophys Acta Rev Cancer 2018; 1870:185-197. [PMID: 30318472 DOI: 10.1016/j.bbcan.2018.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
The PI3K/Akt/mTOR pathway plays a role in various oncogenic processes in breast cancer and key pathway aberrations have been identified which drive the different molecular subtypes. Early drugs developed targeting this pathway produced some clinical success but were hampered by pharmacokinetics, tolerability and efficacy problems. This created a need for new PI3K pathway-inhibiting drugs, which would produce more robust results allowing incorporation into treatment regimens for breast cancer patients. In this review, the most promising candidates from the new generation of PI3K-pathway inhibitors is explored, presenting evidence from preclinical and early clinical research, as well as ongoing trials utilising these drugs in breast cancer cohorts. The problems hindering the development of drugs targeting the PI3K pathway are examined, which have created problems for their use as monotherapies. PI3K pathway inhibitor combinations therefore remains a dynamic research area, and their role in combination with immunotherapies and epigenetic therapies is also inspected.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sarah McGarrigle
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Graham P Pidgeon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
34
|
Stallaert W, Brüggemann Y, Sabet O, Baak L, Gattiglio M, Bastiaens PIH. Contact inhibitory Eph signaling suppresses EGF-promoted cell migration by decoupling EGFR activity from vesicular recycling. Sci Signal 2018; 11:11/541/eaat0114. [DOI: 10.1126/scisignal.aat0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Wu W, Hu W, Han WB, Liu YL, Tu Y, Yang HM, Fang QJ, Zhou MY, Wan ZY, Tang RM, Tang HT, Wan YG. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy. Front Pharmacol 2018; 9:443. [PMID: 29881349 PMCID: PMC5976825 DOI: 10.3389/fphar.2018.00443] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro, murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over-expression of transforming growth factor-β1 in kidneys. In vitro, the phosphorylation of PI3K, Akt, mTOR and p70S6K in MCs induced by high-glucose was abrogated by treatment of HYP or RAP. On the whole, this study further demonstrated HKC safely and efficiently alleviates the early glomerular pathological changes of DN, likely by inhibiting Akt/mTOR/p70S6K signaling activity in vivo and in vitro, and provided the first evidence that HKC directly contributes to the prevention of the early DN.
Collapse
Affiliation(s)
- Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Hu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Bei Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Tu
- Department of TCM Health Preservation, Second Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Ming Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mo-Yi Zhou
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zi-Yue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo, Japan
| | - Ren-Mao Tang
- Institute of Huanghui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Hai-Tao Tang
- Institute of Huanghui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
36
|
Lymphocyte Fate and Metabolism: A Clonal Balancing Act. Trends Cell Biol 2017; 27:946-954. [PMID: 28818395 DOI: 10.1016/j.tcb.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
Abstract
Activated lymphocytes perform a clonal balancing act, yielding a daughter cell that differentiates owing to intense PI3K signaling, alongside a self-renewing sibling cell with blunted anabolic signaling. Divergent cellular anabolism versus catabolism is emerging as a feature of several developmental and regenerative paradigms. Metabolism can dictate cell fate, in part, because lineage-specific regulators are embedded in the circuitry of conserved metabolic switches. Unequal transmission of PI3K signaling during regenerative divisions is reminiscent of compartmentalized PI3K activity during directed motility or polarized information flow in non-dividing cells. The diverse roles of PI3K pathways in membrane traffic, cell polarity, metabolism, and gene expression may have converged to instruct sibling cell feast and famine, thereby enabling clonal differentiation alongside self-renewal.
Collapse
|
37
|
Lu Y, Yang L, Wei W, Shi Q. Microchip-based single-cell functional proteomics for biomedical applications. LAB ON A CHIP 2017; 17:1250-1263. [PMID: 28280819 PMCID: PMC5459479 DOI: 10.1039/c7lc00037e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that traditional population-based methods fail to address. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical frameworks to extract new biology. In this review article, we highlight a few biological and clinical applications in which microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies.
Collapse
Affiliation(s)
- Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Liu Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Joseph JG, Nanda S, Vennamalla S, Bhure G, Singh R, Jana S, Giri L. Integrated quantification based on confocal imaging: cell crowding modulates heterogeneity in GPCR-mediated calcium oscillation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3891-3894. [PMID: 28269136 DOI: 10.1109/embc.2016.7591578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Results from single cell imaging, facilitated by high resolution microscopy, have demonstrated cell-to-cell variability within the same cell population in contexts ranging from cell growth to cell migration. Recent studies suggest that such variability conveys important information about diseased states. However, manual analysis and interpretation of heterogeneous calcium oscillation based on time-lapsed images, as practiced today, is tedious, and essentially infeasible for large datasets. As a practical alternative, we present an integrated platform that includes calcium imaging using confocal microscope, algorithmic cell segmentation, and statistical analysis. Automated quantification of cell crowding via cell segmentation and statistical analysis of cell-to-cell variability on a representative dataset indicates that the heterogeneity in GPCR (G-protein coupled receptor) mediated calcium oscillation is a function of cell crowding.
Collapse
|
39
|
Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6190504. [PMID: 27829984 PMCID: PMC5088338 DOI: 10.1155/2016/6190504] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.
Collapse
|
40
|
Mainz ER, Wang Q, Lawrence DS, Allbritton NL. An Integrated Chemical Cytometry Method: Shining a Light on Akt Activity in Single Cells. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emilie R. Mainz
- Department of Chemistry; University of North Carolina; Chapel Hill NC 27599 USA
| | - Qunzhao Wang
- Department of Chemistry; Division of Chemical Biology and Medicinal Chemistry and Department of Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
| | - David S. Lawrence
- Department of Chemistry; Division of Chemical Biology and Medicinal Chemistry and Department of Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
| | - Nancy L. Allbritton
- Department of Chemistry and Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
- Joint Department of Biomedical Engineering; University of North Carolina and North Carolina State University; Chapel Hill and Raleigh NC USA
| |
Collapse
|
41
|
Lenive O, W Kirk PD, H Stumpf MP. Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation. BMC SYSTEMS BIOLOGY 2016; 10:81. [PMID: 27549182 PMCID: PMC4994381 DOI: 10.1186/s12918-016-0324-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/22/2016] [Indexed: 12/29/2022]
Abstract
Background Gene expression is known to be an intrinsically stochastic process which can involve single-digit numbers of mRNA molecules in a cell at any given time. The modelling of such processes calls for the use of exact stochastic simulation methods, most notably the Gillespie algorithm. However, this stochasticity, also termed “intrinsic noise”, does not account for all the variability between genetically identical cells growing in a homogeneous environment. Despite substantial experimental efforts, determining appropriate model parameters continues to be a challenge. Methods based on approximate Bayesian computation can be used to obtain posterior parameter distributions given the observed data. However, such inference procedures require large numbers of simulations of the model and exact stochastic simulation is computationally costly. In this work we focus on the specific case of trying to infer model parameters describing reaction rates and extrinsic noise on the basis of measurements of molecule numbers in individual cells at a given time point. Results To make the problem computationally tractable we develop an exact, model-specific, stochastic simulation algorithm for the commonly used two-state model of gene expression. This algorithm relies on certain assumptions and favourable properties of the model to forgo the simulation of the whole temporal trajectory of protein numbers in the system, instead returning only the number of protein and mRNA molecules present in the system at a specified time point. The computational gain is proportional to the number of protein molecules created in the system and becomes significant for systems involving hundreds or thousands of protein molecules. Conclusions We employ this simulation algorithm with approximate Bayesian computation to jointly infer the model’s rate and noise parameters from published gene expression data. Our analysis indicates that for most genes the extrinsic contributions to noise will be small to moderate but certainly are non-negligible. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0324-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - Michael P H Stumpf
- Imperial College, London, Centre for Integrative Systems Biology and Bioinformatics, London, SW7 2AZ, UK.
| |
Collapse
|
42
|
Wang Z, Dang T, Liu T, Chen S, Li L, Huang S, Fang M. NEDD4L Protein Catalyzes Ubiquitination of PIK3CA Protein and Regulates PI3K-AKT Signaling. J Biol Chem 2016; 291:17467-77. [PMID: 27339899 DOI: 10.1074/jbc.m116.726083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Oncogenic PIK3CA (p110α), the catalytic subunit of class IA PI3K, plays a major role in PI3K-related cancer progression. The mechanisms underlying the dynamic regulation of PIK3CA protein levels remain unknown. Here we demonstrated that PIK3CA is regulated by polyubiquitination. We identified NEDD4L as the E3 ligase that catalyzes PIK3CA polyubiquitination, leading to its proteasome-dependent degradation. NEDD4L ubiquitinates both the free and regulatory subunit-bound PIK3CA but does not ubiquitinate the regulatory subunit of PI3K. Overexpression of NEDD4L accelerates the turnover rate of PIK3CA, whereas suppression of NEDD4L results in not only the accumulation of PIK3CA but also a paradoxical decrease of AKT activation. Thus, we propose that NEDD4L negatively regulates PIK3CA protein levels via ubiquitination and is required for the maintenance of PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Zixi Wang
- From the Division of Cell Biology, College of Life Sciences, and Joint Center for Life Sciences, Peking University, Yiheyuan Road No. 5, Haidian District, Beijing 100871, China and
| | - Tingting Dang
- From the Division of Cell Biology, College of Life Sciences, and Joint Center for Life Sciences, Peking University, Yiheyuan Road No. 5, Haidian District, Beijing 100871, China and
| | - Tingting Liu
- From the Division of Cell Biology, College of Life Sciences, and Joint Center for Life Sciences, Peking University, Yiheyuan Road No. 5, Haidian District, Beijing 100871, China and
| | - She Chen
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Song Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Min Fang
- From the Division of Cell Biology, College of Life Sciences, and Joint Center for Life Sciences, Peking University, Yiheyuan Road No. 5, Haidian District, Beijing 100871, China and
| |
Collapse
|
43
|
Rodriguez J, Pilkington R, Garcia Munoz A, Nguyen LK, Rauch N, Kennedy S, Monsefi N, Herrero A, Taylor CT, von Kriegsheim A. Substrate-Trapped Interactors of PHD3 and FIH Cluster in Distinct Signaling Pathways. Cell Rep 2016; 14:2745-60. [PMID: 26972000 PMCID: PMC4805855 DOI: 10.1016/j.celrep.2016.02.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 12/20/2022] Open
Abstract
Amino acid hydroxylation is a post-translational modification that regulates intra- and inter-molecular protein-protein interactions. The modifications are regulated by a family of 2-oxoglutarate- (2OG) dependent enzymes and, although the biochemistry is well understood, until now only a few substrates have been described for these enzymes. Using quantitative interaction proteomics, we screened for substrates of the proline hydroxylase PHD3 and the asparagine hydroxylase FIH, which regulate the HIF-mediated hypoxic response. We were able to identify hundreds of potential substrates. Enrichment analysis revealed that the potential substrates of both hydroxylases cluster in the same pathways but frequently modify different nodes of signaling networks. We confirm that two proteins identified in our screen, MAPK6 (Erk3) and RIPK4, are indeed hydroxylated in a FIH- or PHD3-dependent mechanism. We further determined that FIH-dependent hydroxylation regulates RIPK4-dependent Wnt signaling, and that PHD3-dependent hydroxylation of MAPK6 protects the protein from proteasomal degradation.
Collapse
Affiliation(s)
- Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Ruth Pilkington
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Susan Kennedy
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Naser Monsefi
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
44
|
Flusberg DA, Sorger PK. Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 2015; 25:446-58. [PMID: 25920803 PMCID: PMC4570028 DOI: 10.1016/j.tcb.2015.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as Nuclear Factor (NF)-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival and/or pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Roth S, Kholodenko BN, Smit MJ, Bruggeman FJ. G Protein-Coupled Receptor Signaling Networks from a Systems Perspective. Mol Pharmacol 2015; 88:604-16. [PMID: 26162865 DOI: 10.1124/mol.115.100057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
The signal-transduction network of a mammalian cell integrates internal and external cues to initiate adaptive responses. Among the cell-surface receptors are the G protein-coupled receptors (GPCRs), which have remarkable signal-integrating capabilities. Binding of extracellular signals stabilizes intracellular-domain conformations that selectively activate intracellular proteins. Hereby, multiple signaling routes are activated simultaneously to degrees that are signal-combination dependent. Systems-biology studies indicate that signaling networks have emergent processing capabilities that go far beyond those of single proteins. Such networks are spatiotemporally organized and capable of gradual, oscillatory, all-or-none, and subpopulation-generating responses. Protein-protein interactions, generating feedback and feedforward circuitry, are generally required for these spatiotemporal phenomena. Understanding of information processing by signaling networks therefore requires network theories in addition to biochemical and biophysical concepts. Here we review some of the key signaling systems behaviors that have been discovered recurrently across signaling networks. We emphasize the role of GPCRs, so far underappreciated receptors in systems-biology research.
Collapse
Affiliation(s)
- S Roth
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - B N Kholodenko
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - M J Smit
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - F J Bruggeman
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| |
Collapse
|
46
|
Yarar D, Lahdenranta J, Kubasek W, Nielsen UB, MacBeath G. Heregulin-ErbB3-Driven Tumor Growth Persists in PI3 Kinase Mutant Cancer Cells. Mol Cancer Ther 2015; 14:2072-80. [PMID: 26116360 DOI: 10.1158/1535-7163.mct-15-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022]
Abstract
PI3K is frequently mutated in cancer and plays an important role in cell growth and survival. Heregulin (HRG)-mediated autocrine or paracrine signaling through the receptor tyrosine kinase ErbB3 potently activates the PI3K/AKT pathway and has been shown to mediate resistance to a wide variety of anticancer agents. Although PI3K functions downstream of HRG-ErbB3, it is unknown whether activating mutations in PI3K render HRG ineffective. If so, patients with PI3K mutations would not be expected to benefit from ErbB3-directed therapies. Here, we find that a subset of cell lines harboring activating PI3K mutations can be further growth-stimulated by HRG, and this effect is blocked by incubation with seribantumab (MM-121), a monoclonal anti-ErbB3 antibody. Although expression of mutant PI3K in wild-type PI3K cells frequently results in loss of HRG-stimulated growth, some cell lines continue to respond to HRG. In cell lines where HRG-stimulated growth is lost, this loss is invariably accompanied by a reduction in ErbB3 levels, a corresponding increase in basal phosphorylation levels of FOXO-family transcription factors, and a reduction in HRG-induced downstream signaling. Importantly, HRG-stimulated growth is partially rescued by re-expressing ErbB3. This response is blocked by seribantumab, indicating that ErbB3 levels rather than downstream signaling proteins limit HRG-stimulated growth in PI3K mutant cells. Overall, these results suggest that activating mutations in PI3K do not preclude potential benefit from ErbB3-directed therapy, but that it may be important to measure ErbB3 levels in patients with PI3K mutant cancers to determine if they would benefit.
Collapse
Affiliation(s)
- Defne Yarar
- Merrimack Pharmaceuticals, Cambridge, Massachusetts.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Large-scale genetic perturbation screens are a classical approach in biology and have been crucial for many discoveries. New technologies can now provide unbiased quantification of multiple molecular and phenotypic changes across tens of thousands of individual cells from large numbers of perturbed cell populations simultaneously. In this Review, we describe how these developments have enabled the discovery of new principles of intracellular and intercellular organization, novel interpretations of genetic perturbation effects and the inference of novel functional genetic interactions. These advances now allow more accurate and comprehensive analyses of gene function in cells using genetic perturbation screens.
Collapse
|
48
|
Waugh MG. Amplification of Chromosome 1q Genes Encoding the Phosphoinositide Signalling Enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in Breast Cancer. J Cancer 2014; 5:790-6. [PMID: 25368680 PMCID: PMC4216804 DOI: 10.7150/jca.9794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Little is known about the possible oncogenic roles of genes encoding for the phosphatidylinositol 4-kinases, a family of enzymes that regulate an early step in phosphoinositide signalling. To address this issue, the mutational status of all four human phosphatidylinositol 4-kinases genes was analyzed across 852 breast cancer samples using the COSMIC data resource. Point mutations in the phosphatidylinositol 4-kinase genes were uncommon and appeared in less than 1% of the patient samples however, 62% of the tumours had increases in gene copy number for PI4KB which encodes the phosphatidylinositol 4-kinase IIIbeta isozyme. Extending this analysis to subsequent enzymes in the phosphoinositide signalling cascades revealed that the only PIP5K1A, PI3KC2B and AKT3 genes exhibited similar patterns of gene copy number variation. By comparison, gene copy number increases for established oncogenes such as EGFR and HER2/Neu were only evident in 20% of the samples. The PI4KB, PIP5K1A, PI3KC2B and AKT3 genes are related in that they all localize to chromosome 1q which is often structurally and numerically abnormal in breast cancer. These results demonstrate that a gene quartet encoding a potential phosphoinositide signalling pathway is amplified in a subset of breast cancers.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF United Kingdom
| |
Collapse
|
49
|
Bauer TM, Patel MR, Infante JR. Targeting PI3 kinase in cancer. Pharmacol Ther 2014; 146:53-60. [PMID: 25240910 DOI: 10.1016/j.pharmthera.2014.09.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/11/2014] [Indexed: 01/27/2023]
Abstract
The PI3K/Akt/mTOR pathway is the most frequently known activated aberrant pathway in human cancers. Pathologic activation can occur at multiple levels along the signaling pathway by a variety of mechanisms, including point mutations, amplifications, and inactivation of tumor suppressor genes. This pathway is also a known resistance pathway, as it can be activated by both receptor tyrosine kinases and other oncogenes. mTOR inhibitors were the first targeted molecules in this pathway, and have already been FDA-approved in multiple indications. Because of the broad potential applications of inhibiting this pathway upstream of mTOR, multiple compounds targeting PI3K are in development. In this review, we discuss the clinical development of these inhibitors, including dual PI3K/mTOR inhibitors, pan-PI3K inhibitors, and isoform-selective PI3K inhibitors. Common adverse events, including rash, nausea, vomiting, diarrhea, and hyperglycemia, have created a narrow therapeutic window for all classes of PI3K inhibitors. Furthermore, single agent clinical activity has also been limited, with the exception of isoform-selective inhibitors, particularly the PI3Kδ and PI3Kγ inhibitors in hematologic malignancies. The future role of inhibitors of the PI3K/Akt/mTOR pathway in the clinical practice of oncology likely depends on the development of patient selection strategies and the results of combination trials that are currently ongoing.
Collapse
Affiliation(s)
- Todd M Bauer
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Manish R Patel
- Sarah Cannon Research Institute, Nashville, TN, USA; Florida Cancer Specialists, Sarasota, FL, USA
| | - Jeffrey R Infante
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, PLLC, Nashville, TN, USA.
| |
Collapse
|
50
|
Kovarik ML, Dickinson AJ, Roy P, Poonnen RA, Fine JP, Allbritton NL. Response of single leukemic cells to peptidase inhibitor therapy across time and dose using a microfluidic device. Integr Biol (Camb) 2014; 6:164-74. [PMID: 24413844 DOI: 10.1039/c3ib40249e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Single-cell methodologies are revealing cellular heterogeneity in numerous biological processes and pathologies. For example, cancer cells are characterized by substantial heterogeneity in basal signaling and in response to perturbations, such as drug treatment. In this work, we examined the response of 678 individual U937 (human acute myeloid leukemia) cells to an aminopeptidase-inhibiting chemotherapeutic drug (Tosedostat) over the course of 95 days. Using a fluorescent reporter peptide and a microfluidic device, we quantified the rate of reporter degradation as a function of dose. While the single-cell measurements reflected ensemble results, they added a layer of detail by revealing unique degradation patterns and outliers within the larger population. Regression modeling of the data allowed us to quantitatively explore the relationships between reporter loading, incubation time, and drug dose on peptidase activity in individual cells. Incubation time was negatively correlated with the number of peptide fragment peaks observed, while peak area (which was proportional to reporter loading) was positively correlated with both the number of fragment peaks observed and the degradation rate. Notably, a statistically significant change in the number of peaks observed was identified as dose increased from 2 to 4 μM. Similarly, a significant difference in degradation rate as a function of reporter loading was observed for doses ≥2 μM compared to the 1 μM dose. These results suggest that additional enzymes may become inhibited at doses >1 μM and >2 μM, demonstrating the utility of single-cell data to yield novel biological hypotheses.
Collapse
Affiliation(s)
- Michelle L Kovarik
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|