1
|
Akpoghiran O, Strich AK, Koh K. Effects of sex, mating status, and genetic background on circadian behavior in Drosophila. Front Neurosci 2025; 18:1532868. [PMID: 39844849 PMCID: PMC11750873 DOI: 10.3389/fnins.2024.1532868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Circadian rhythms play a crucial role in regulating behavior, physiology, and health. Sexual dimorphism, a widespread phenomenon across species, influences circadian behaviors. Additionally, post-mating physiological changes in females are known to modulate various behaviors, yet their effects on circadian rhythms remain underexplored. Here, using Drosophila melanogaster, a powerful model for studying circadian mechanisms, we systematically assessed the impact of sex and mating status on circadian behavior. We measured circadian period length and rhythm strength in virgin and mated males and females, including females mated to males lacking Sex Peptide (SP), a key mediator of post-mating changes. Across four wild-type and control strains, we found that males consistently exhibited shorter circadian periods than females, regardless of mating status, suggesting that circadian period length is a robust sexually dimorphic trait. In contrast, rhythm strength was influenced by the interaction between sex and mating status, with female mating generally reducing rhythm strength in the presence of SP signaling. Notably, genetic background significantly modulated these effects on rhythm strength. Our findings demonstrate that while circadian period length is a stable sex-specific trait, rhythm strength is shaped by a complex interplay between sex, mating status, and genetic background. This study advances our understanding of how sex and mating influence circadian rhythms in Drosophila and provides a foundation for future research into sexually dimorphic mechanisms underlying human diseases associated with circadian disruptions.
Collapse
Affiliation(s)
| | | | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Prekas P, Terblanche JS, Hahn DA, Papadopoulos NT. Age and mating status have complex but modest effects on the critical thermal limits of adult Mediterranean fruit flies from geographically divergent populations. J Therm Biol 2024; 126:104013. [PMID: 39586117 DOI: 10.1016/j.jtherbio.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status. Furthermore, the relationships between the above factors and tolerances may differ among geographically distinct populations. Here, the effects of age and mating status on thermal tolerance of three geographically distinct medfly populations along a latitudinal gradient ranging from Greece (Crete & Volos) to Croatia (Dubrovnik) were examined. The upper and lower critical thermal limits (scored as loss of neuromuscular function during controlled cooling or heating) of adult males and females (a) at 1-, 6-, 15-, and 35 days old and of (b) both mated and virgin flies were assessed. Results showed that estimates of lower and upper thermal limits (CTmin and CTmax) were both population- and age-dependent. In most age classes tested, CTmin values were lower for the adults obtained from Crete and higher for those from Dubrovnik. CTmax values were lower for the females from Dubrovnik compared to the females from any other population on day one after emergence but not on days 6, 15 and 35. Differences among populations were observed across different age classes both for cold and heat tolerance but mostly in CTmin estimates. Mating status had a little effect on cold and heat tolerance. Complex patterns of thermal limit variation within and among populations suggest a suite of factors determine population-level mortality from thermal extremes under field conditions in medfly. These results contribute towards understanding the invasion dynamics of medfly and its range expansion to northern, more temperate regions of Europe.
Collapse
Affiliation(s)
- Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Panagiota Koskinioti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Kostas D Zarpas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Paraschos Prekas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
3
|
Akpoghiran O, Strich AK, Koh K. Effects of sex, mating status, and genetic background on circadian behavior in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624853. [PMID: 39605702 PMCID: PMC11601570 DOI: 10.1101/2024.11.22.624853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Circadian rhythms play a crucial role in regulating behavior, physiology, and health. Sexual dimorphism, a widespread phenomenon across species, influences circadian behaviors. Additionally, post-mating physiological changes in females are known to modulate various behaviors, yet their effects on circadian rhythms remain underexplored. Here, using Drosophila melanogaster, a powerful model for studying circadian mechanisms, we systematically assessed the impact of sex and mating status on circadian behavior. We measured circadian period length and rhythm strength in virgin and mated males and females, including females mated to males lacking Sex Peptide (SP), a key mediator of post-mating changes. Across four wild-type and control strains, we found that males consistently exhibited shorter circadian periods than females, regardless of mating status, suggesting that circadian period length is a robust sexually dimorphic trait. In contrast, rhythm strength was influenced by the interaction between sex and mating status, with female mating generally reducing rhythm strength in the presence of SP signaling. Notably, genetic background significantly modulated these effects on rhythm strength. Our findings demonstrate that while circadian period length is a stable sex-specific trait, rhythm strength is shaped by a complex interplay between sex, mating status, and genetic background. This study advances our understanding of how sex and mating influence circadian rhythms in Drosophila and provides a foundation for future research into sexually dimorphic mechanisms underlying human diseases associated with circadian disruptions.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandra K. Strich
- Department of Neuroscience, Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Akiki P, Delamotte P, Poidevin M, van Dijk EL, Petit AJR, Le Rouzic A, Mery F, Marion-Poll F, Montagne J. Male manipulation impinges on social-dependent tumor suppression in Drosophila melanogaster females. Sci Rep 2024; 14:6411. [PMID: 38494531 PMCID: PMC10944827 DOI: 10.1038/s41598-024-57003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Physiological status can influence social behavior, which in turn can affect physiology and health. Previously, we reported that tumor growth in Drosophila virgin females depends on the social context, but did not investigate the underlying physiological mechanisms. Here, we sought to characterize the signal perceived between tumorous flies, ultimately discovering that the tumor suppressive effect varies depending on reproductive status. Firstly, we show that the tumor suppressive effect is neither dependent on remnant pheromone-like products nor on the microbiota. Transcriptome analysis of the heads of these tumorous flies reveals social-dependent gene-expression changes related to nervous-system activity, suggesting that a cognitive-like relay might mediate the tumor suppressive effect. The transcriptome also reveals changes in the expression of genes related to mating behavior. Surprisingly, we observed that this social-dependent tumor-suppressive effect is lost in fertilized females. After mating, Drosophila females change their behavior-favoring offspring survival-in response to peptides transferred via the male ejaculate, a phenomenon called "male manipulation". Remarkably, the social-dependent tumor suppressive effect is restored in females mated by sex-peptide deficient males. Since male manipulation has likely been selected to favor male gene transmission, our findings indicate that this evolutionary trait impedes social-dependent tumor growth slowdown.
Collapse
Affiliation(s)
- Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Erwin L van Dijk
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Apolline J R Petit
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
| | - Arnaud Le Rouzic
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
| | - Frederic Mery
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
- Laboratoire Biométrie Et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622, Villeurbanne Cedex, France
| | - Frederic Marion-Poll
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
- Université Paris-Saclay, AgroParisTech, 91123, Palaiseau Cedex, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Suo S. Sperm function is required for suppressing locomotor activity of C. elegans hermaphrodites. PLoS One 2024; 19:e0297802. [PMID: 38271363 PMCID: PMC10810530 DOI: 10.1371/journal.pone.0297802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Sex differences in sex-shared behavior are common across various species. During mating, males transfer sperm and seminal fluid to females, which can affect female behavior. Sperm can be stored in the female reproductive tract for extended periods of time and used to fertilize eggs. However, the role of either sperm or embryo production in regulating female behavior is poorly understood. In the androdioecious nematode C. elegans, hermaphrodites produce both oocytes and sperm, enabling them to self-fertilize or mate with males. Hermaphrodites exhibit less locomotor activity compared to males, indicating sex difference in behavioral regulation. In this study, mutants defective in the sperm production and function were examined to investigate the role of sperm function in the regulation of locomotor behavior. Infertile hermaphrodites exhibited increased locomotor activity, which was suppressed after mating with fertile males. The results suggest that sperm, seminal fluid, or the presence of embryos are detected by hermaphrodites, leading to a reduction in locomotor activity. Additionally, females of closely related gonochoristic species, C. remanei and C. brenneri, exhibited reduced locomotor activity after mating. The regulation of locomotion by sperm function may be an adaptive mechanism that enables hermaphrodites lacking sperm or embryo to search for mates and allow females to cease their search for mates after mating.
Collapse
Affiliation(s)
- Satoshi Suo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
6
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Jin P, Zhu B, Jia Y, Zhang Y, Wang W, Shen Y, Zhong Y, Zheng Y, Wang Y, Tong Y, Zhang W, Li S. Single-cell transcriptomics reveals the brain evolution of web-building spiders. Nat Ecol Evol 2023; 7:2125-2142. [PMID: 37919396 PMCID: PMC10697844 DOI: 10.1038/s41559-023-02238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders' web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
Collapse
Affiliation(s)
- Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Guangxi Normal University, Guilin, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yami Zheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
9
|
Neupane S, Hall B, Brooke G, Nayduch D. Sex-specific Feeding Behavior of Adult House Flies, Musca domestica L. (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:7-13. [PMID: 36305732 DOI: 10.1093/jme/tjac161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 06/16/2023]
Abstract
House flies, Musca domestica L., (Diptera: Muscidae) mechanically vector diverse disease-causing microorganisms while foraging for food in agricultural and urban habitats. Although flies are diverse feeders, nutrient composition of food is important for both fly longevity and reproduction, especially for anautogenous females who require protein for egg production. We investigated whether fly sex and/or mating status influenced their preference for foods with varying macronutrient composition. Presumably mated or unmated male and female flies were separated by sex and offered four food, each in 10% solution offered on cotton wicks: sugar (carbohydrate-rich), fat-free milk (protein-rich, moderate carbohydrate), egg-yolk (protein and lipid-rich), and water (no macronutrients). Foods were colored with nontoxic dyes, which were rotated between replicates. After 4h exposure, flies were dissected to determine the type of food(s) ingested. The interaction of house fly sex and food type significantly influenced food preference, where females preferred milk (protein and carbohydrate-rich food), and males preferred mainly sugar (carbohydrate-rich). Furthermore, 32.8% of females and 10.6% of males foraged on multiple foods. While interaction of sex and mating status had no effect on food preference, milk preference was significantly higher in presumably mated than unmated females. We also tested whether food color influenced fly feeding preference, and found that color was most significant when flies were offered one food type, but negligible when multiple food types were present. This study suggests that bait-based fly control strategies should consider sex-specific preferences for various food attractants if aiming to target and control both male and female house flies.
Collapse
Affiliation(s)
- Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Brandon Hall
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Grant Brooke
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-ARS, Manhattan, KS 66502, USA
| | - Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-ARS, Manhattan, KS 66502, USA
| |
Collapse
|
10
|
Gordon KE, Wolfner MF, Lazzaro BP. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104414. [PMID: 35728669 PMCID: PMC10162487 DOI: 10.1016/j.jinsphys.2022.104414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/07/2023]
Abstract
In many species, female reproductive investment comes at a cost to immunity and resistance to infection. Mated Drosophila melanogaster females are more susceptible to bacterial infection than unmated females. Transfer of the male seminal fluid protein Sex Peptide reduces female post-mating immune defense. Sex Peptide is known to cause both short- and long-term changes to female physiology and behavior. While previous studies showed that females were less resistant to bacterial infection as soon as 2.5 h and as long as 26.5 h after mating, it is unknown whether this is a binary switch from mated to unmated state or whether females can recover to unmated levels of immunity. It is additionally unknown whether repeated mating causes progressive reduction in defense capacity. We compared the immune defense of mated females when infected at 2, 4, 7, or 10 days after mating to that of unmated females and saw no recovery of immune capacity regardless of the length of time between mating and infection. Because D. melanogaster females can mate multiply, we additionally tested whether a second mating, and therefore a second transfer of seminal fluids, caused deeper reduction in immune performance. We found that females mated either once or twice before infection survived at equal proportions, both with significantly lower probability than unmated females. We conclude that a single mating event is sufficient to persistently suppress the female immune system. Interestingly, we observed that induced levels of expression of genes encoding antimicrobial peptides (AMPs) decreased with age in both experiments, partially obscuring the effects of mating. Collectively, the data indicate that being reproductively active versus reproductively inactive are alternative binary states with respect to female D. melanogaster immunity. The establishment of a suppressed immune status in reproductively active females can inform our understanding of the regulation of immune defense and the mechanisms of physiological trade-offs.
Collapse
Affiliation(s)
- Kathleen E Gordon
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Maggu K, Kapse S, Ahlawat N, Geeta Arun M, Prasad NG. Finding love: fruit fly males evolving under higher sexual selection are inherently better at finding receptive females. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
13
|
Horn CJ, Wasylenko JA, Luong LT. Scared of the dark? Phototaxis as behavioural immunity in a host-parasite system. Biol Lett 2022; 18:20210531. [PMID: 35078333 PMCID: PMC8790348 DOI: 10.1098/rsbl.2021.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Behavioural immunity describes suites of behaviours hosts use to minimize the risks of infection by parasites/pathogens. Research has focused primarily on the evasion and physical removal of infectious stages, as well as behavioural fever. However, other behaviours affect infection risk while carrying ecologically significant trade-offs. Phototaxis, in particular, has host fitness implications (e.g. altering feeding and thermoregulation) that also impact infection outcomes. In this study, we hypothesized that a fly host, Drosophila nigrospiracula, employs phototaxis as a form of behavioural immunity to reduce the risk of infection. First, we determined that the risk of infection is lower for flies exposed in the light relative to the dark using micro-arena experiments. Because Drosophila vary in ectoparasite resistance based on mating status we examined parasite-mediated phototaxis in mated and unmated females. We found that female flies spent more time in the light side of phototaxis chambers when mites were present than in the absence of mites. Mating marginally decreased female photophobia independently of mite exposure. Female flies moved to lighter, i.e. less infectious, environments when threatened with mites, suggesting phototaxis is a mechanism of behavioural immunity. We discuss how parasite-mediated phototaxis potentially trades-off with host nutrition and thermoregulation.
Collapse
Affiliation(s)
- Collin J. Horn
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Jacob A. Wasylenko
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Lien T. Luong
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| |
Collapse
|
14
|
Rodrigues MA, Merckelbach A, Durmaz E, Kerdaffrec E, Flatt T. Transcriptomic evidence for a trade-off between germline proliferation and immunity in Drosophila. Evol Lett 2021; 5:644-656. [PMID: 34917403 PMCID: PMC8645197 DOI: 10.1002/evl3.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022] Open
Abstract
Life-history theory posits that investment into reproduction might occur at the expense of investment into somatic maintenance, including immune function. If so, reduced or curtailed reproductive effort might be expected to increase immunity. In support of this notion, work in Caenorhabditis elegans has shown that worms lacking a germline exhibit improved immunity, but whether the antagonistic relation between germline proliferation and immunity also holds for other organisms is less well understood. Here, we report that transgenic ablation of germ cells in late development or early adulthood in Drosophila melanogaster causes elevated baseline expression and increased induction of Toll and Imd immune genes upon bacterial infection, as compared to fertile flies with an intact germline. We also identify immune genes whose expression after infection differs between fertile and germline-less flies in a manner that is conditional on their mating status. We conclude that germline activity strongly impedes the expression and inducibility of immune genes and that this physiological trade-off might be evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Esra Durmaz
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Envel Kerdaffrec
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| |
Collapse
|
15
|
Garaulet DL, Moro A, Lai EC. A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Rep 2021; 36:109335. [PMID: 34233178 PMCID: PMC8344067 DOI: 10.1016/j.celrep.2021.109335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Virgin females of many species conduct distinctive behaviors, compared with post-mated and/or pregnant individuals. In Drosophila, this post-mating switch is initiated by seminal factors, implying that the default female state is virgin. However, we recently showed that loss of miR-iab-4/8-mediated repression of the transcription factor Homothorax (Hth) within the abdominal ventral nerve cord (VNC) causes virgins to execute mated behaviors. Here, we use genomic analysis of mir-iab-4/8 deletion and hth-microRNA (miRNA) binding site mutants (hth[BSmut]) to elucidate doublesex (dsx) as a critical downstream factor. Dsx and Hth proteins are highly complementary in CNS, and Dsx is downregulated in miRNA/hth[BSmut] mutants. Moreover, virgin behavior is highly dose sensitive to developmental dsx function. Strikingly, depletion of Dsx from very restricted abdominal neurons (SAG-1 cells) abrogates female virgin conducts, in favor of mated behaviors. Thus, a double-negative regulatory pathway in the VNC (miR-iab-4/8 ⫞ Hth ⫞ Dsx) specifies the virgin behavioral state. Garaulet et al. use transcriptomic analysis to reveal new downstream elements in a post-transcriptional cascade, via miR-iab-4/8 and Homothorax, that affects patterning of the CNS. This genetic circuit regulates the accumulation of a secondary target (Doublesex), whose level in specific neurons determines the behavior of adult virgin flies.
Collapse
Affiliation(s)
- Daniel L Garaulet
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Albertomaria Moro
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
16
|
Palmateer CM, Moseley SC, Ray S, Brovero SG, Arbeitman MN. Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior. PLoS Genet 2021; 17:e1009240. [PMID: 33901168 PMCID: PMC8102012 DOI: 10.1371/journal.pgen.1009240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/06/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. Additionally, we find chromatin modifications that persist in different sets of genes from pupal to adult stages, which may point to genes important for cell fate determination in fru P1 neurons. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP). We identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We also find chromatin modification enrichment patterns that are associated with gene expression. Next, we use the chromatin modification data to identify cell-type-specific super-enhancer-containing genes. We show that genes with super-enhancers in fru P1 neurons differ across development and between the sexes. We validated that a set of genes are expressed in fru P1 neurons, which were chosen based on having a super-enhancer and TRAP-enriched expression in fru P1 neurons.
Collapse
Affiliation(s)
- Colleen M. Palmateer
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida, United States of America
| | - Shawn C. Moseley
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida, United States of America
| | - Surjyendu Ray
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida, United States of America
| | - Savannah G. Brovero
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida, United States of America
| | - Michelle N. Arbeitman
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida, United States of America
- Program of Neuroscience, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Immarigeon C, Frei Y, Delbare SYN, Gligorov D, Machado Almeida P, Grey J, Fabbro L, Nagoshi E, Billeter JC, Wolfner MF, Karch F, Maeda RK. Identification of a micropeptide and multiple secondary cell genes that modulate Drosophila male reproductive success. Proc Natl Acad Sci U S A 2021; 118:e2001897118. [PMID: 33876742 PMCID: PMC8053986 DOI: 10.1073/pnas.2001897118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
Collapse
Affiliation(s)
- Clément Immarigeon
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Yohan Frei
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Dragan Gligorov
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pedro Machado Almeida
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jasmine Grey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Léa Fabbro
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - François Karch
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| |
Collapse
|
18
|
Moschilla JA, Tomkins JL, Simmons LW. Identification of seminal proteins related to the inhibition of mate searching in female crickets. Behav Ecol 2020. [DOI: 10.1093/beheco/araa090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In response to the reduction in fitness associated with sperm competition, males are expected to evolve tactics that hinder female remating. For example, females often display a postmating reduction in their sexual receptivity that has been shown to be mediated by proteins contained in a male’s seminal fluid (sfps). However, although there has been comprehensive research on sfps in genetically well-characterized species, few nonmodel species have been studied in such detail. We initially confirm that female Australian field crickets, Teleogryllus oceanicus, do display a significant reduction in their mate-searching behavior 24 h after mating. This effect was still apparent 3 days after mating but was entirely absent after 1 week. We then attempted to identify the sfps that might play a role in inducing this behavioral response. We identified two proteins, ToSfp022 and ToSfp011, that were associated with the alteration in female postmating behavior. The knockdown of both proteins resulted in mated females that displayed a significant increase in their mate-searching behaviors compared with females mated to males having the full compliment of seminal fluid proteins in their ejaculate. Our results indicate that the female refractory period in T. oceanicus likely reflects a sperm competition avoidance tactic by males, achieved through the action of male seminal fluid proteins.
Collapse
Affiliation(s)
- Joe A Moschilla
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
19
|
Sturm S, Dowle A, Audsley N, Isaac RE. The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103414. [PMID: 32589920 DOI: 10.1016/j.ibmb.2020.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.
Collapse
Affiliation(s)
- Sebastian Sturm
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil Audsley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Walton A, Sheehan MJ, Toth AL. Going wild for functional genomics: RNA interference as a tool to study gene-behavior associations in diverse species and ecological contexts. Horm Behav 2020; 124:104774. [PMID: 32422196 DOI: 10.1016/j.yhbeh.2020.104774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
Identifying the genetic basis of behavior has remained a challenge for biologists. A major obstacle to this goal is the difficulty of examining gene function in an ecologically relevant context. New tools such as CRISPR/Cas9, which alter the germline of an organism, have taken center stage in functional genomics in non-model organisms. However, germline modifications of this nature cannot be ethically implemented in the wild as a part of field experiments. This impediment is more than technical. Gene function is intimately tied to the environment in which the gene is expressed, especially for behavior. Most lab-based studies fail to recapitulate an organism's ecological niche, thus most published functional genomics studies of gene-behavior relationships may provide an incomplete or even inaccurate assessment of gene function. In this review, we highlight RNA interference as an especially effective experimental method to deepen our understanding of the interplay between genes, behavior, and the environment. We highlight the utility of RNAi for researchers investigating behavioral genetics, noting unique attributes of RNAi including transience of effect and the feasibility of releasing treated animals into the wild, that make it especially useful for studying the function of behavior-related genes. Furthermore, we provide guidelines for planning and executing an RNAi experiment to study behavior, including challenges to consider. We urge behavioral ecologists and functional genomicists to adopt a more fully integrated approach which we call "ethological genomics". We advocate this approach, utilizing tools such as RNAi, to study gene-behavior relationships in their natural context, arguing that such studies can provide a deeper understanding of how genes can influence behavior, as well as ecological aspects beyond the organism that houses them.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Entomology, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Temporal and genetic variation in female aggression after mating. PLoS One 2020; 15:e0229633. [PMID: 32348317 PMCID: PMC7190144 DOI: 10.1371/journal.pone.0229633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Aggression between individuals of the same sex is almost ubiquitous across the animal kingdom. Winners of intrasexual contests often garner considerable fitness benefits, through greater access to mates, food, or social dominance. In females, aggression is often tightly linked to reproduction, with females displaying increases in aggressive behavior when mated, gestating or lactating, or when protecting dependent offspring. In the fruit fly, Drosophila melanogaster, females spend twice as long fighting over food after mating as when they are virgins. However, it is unknown when this increase in aggression begins or whether it is consistent across genotypes. Here we show that aggression in females increases between 2 to 4 hours after mating and remains elevated for at least a week after a single mating. In addition, this increase in aggression 24 hours after mating is consistent across three diverse genotypes, suggesting this may be a universal response to mating in the species. We also report here the first use of automated tracking and classification software to study female aggression in Drosophila and assess its accuracy for this behavior. Dissecting the genetic diversity and temporal patterns of female aggression assists us in better understanding its generality and adaptive function, and will facilitate the identification of its underlying mechanisms.
Collapse
|
22
|
Szabad J, Peng J, Kubli E. Control of mating plug expelling and sperm storage in Drosophila: A gynandromorph- and mutation-based dissection. Biol Futur 2019; 70:301-311. [PMID: 34554542 DOI: 10.1556/019.70.2019.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In this study, we analyzed gynandromorphs with female terminalia, to dissect mating-related female behaviors in Drosophila. MATERIALS AND METHODS We used gynandromorphs, experimentally modified wild-type (Oregon-R) females, and mutant females that lacked different components of the female reproductive apparatus. RESULTS Many of the gynandromorphs mated but did not expel the mating plug (MP). Some of these - with thousands of sperm in the uterus - failed to take up sperm into the storage organs. There were gynandromorphs that stored plenty of sperm but failed to release them to fertilize eggs. Expelling the MP, sperm uptake into the storage organs, and the release of stored sperm along egg production are separate steps occurring during Drosophila female fertility. Cuticle landmarks of the gynandromorphs revealed that while the nerve foci that control MP expelling and also those that control sperm uptake reside in the abdominal, the sperm release foci derive from the thoracic region of the blastoderm. DISCUSSION AND CONCLUSION The gynandromorph study is confirmed by analyses of (a) mutations that cause female sterility: Fs(3)Avar (preventing egg deposition), Tm2gs (removing germline cells), and iab-4DB (eliminating gonad formation) and (b) by experimentally manipulated wild-type females: decapitated or cut through ventral nerve cord.
Collapse
Affiliation(s)
- János Szabad
- Institute of Molecular Life Sciences, University of Zurich, Ch-8057, Zurich, Switzerland. .,Department of Biology, University of Szeged, H-6720, Szeged, Hungary.
| | - Jing Peng
- Institute of Molecular Life Sciences, University of Zurich, Ch-8057, Zurich, Switzerland
| | - Eric Kubli
- Institute of Molecular Life Sciences, University of Zurich, Ch-8057, Zurich, Switzerland
| |
Collapse
|
23
|
Scheunemann L, Lampin-Saint-Amaux A, Schor J, Preat T. A sperm peptide enhances long-term memory in female Drosophila. SCIENCE ADVANCES 2019; 5:eaax3432. [PMID: 31799390 PMCID: PMC6867886 DOI: 10.1126/sciadv.aax3432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Can mating influence cognitive functions such as learning and memory in a permanent way? We have addressed this question using a combined behavioral and in vivo imaging approach, finding that aversive long-term memory performance strongly increases in Drosophila females in response to sperm transfer following mating. A peptide in the male sperm, the sex peptide, is known to cause marked changes in female reproductive behavior, as well as other behaviors such as dietary preference. Here, we demonstrate that this sex peptide enhances memory by acting on a single pair of serotonergic brain neurons, in which activation of the sex peptide receptor stimulates the cyclic adenosine monophosphate/protein kinase A pathway. We thus reveal a strong effect of mating on memory via the neuromodulatory action of a sperm peptide on the female brain.
Collapse
|
24
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
25
|
Prince E, Kroeger B, Gligorov D, Wilson C, Eaton S, Karch F, Brankatschk M, Maeda RK. Rab-mediated trafficking in the secondary cells of Drosophila male accessory glands and its role in fecundity. Traffic 2018; 20:137-151. [PMID: 30426623 PMCID: PMC6492190 DOI: 10.1111/tra.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
The male seminal fluid contains factors that affect female post‐mating behavior and physiology. In Drosophila, most of these factors are secreted by the two epithelial cell types that make up the male accessory gland: the main and secondary cells. Although secondary cells represent only ~4% of the cells of the accessory gland, their contribution to the male seminal fluid is essential for sustaining the female post‐mating response. To better understand the function of the secondary cells, we investigated their molecular organization, particularly with respect to the intracellular membrane transport machinery. We determined that large vacuole‐like structures found in the secondary cells are trafficking hubs labeled by Rab6, 7, 11 and 19. Furthermore, these organelles require Rab6 for their formation and many are essential in the process of creating the long‐term postmating behavior of females. In order to better serve the intracellular membrane and protein trafficking communities, we have created a searchable, online, open‐access imaging resource to display our complete findings regarding Rab localization in the accessory gland.
Collapse
Affiliation(s)
- Elodie Prince
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dragan Gligorov
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Suzanne Eaton
- Biotechnology Center of the TU Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - François Karch
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Marko Brankatschk
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Robert K Maeda
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Bath E, Morimoto J, Wigby S. The developmental environment modulates mating-induced aggression and fighting success in adult female Drosophila. Funct Ecol 2018; 32:2542-2552. [PMID: 31007331 PMCID: PMC6472669 DOI: 10.1111/1365-2435.13214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Competition over access to resources early in life can influence development, and, in turn, affect competitive phenotypes in reproductive adults. Theory predicts that competition between adult females should be especially context-dependent, because of constraints imposed by high costs of reproduction. However, the potential impact of developmental environments on competition in adult females remains little understood.In Drosophila melanogaster, the developmental environment can strongly influence adult condition, and prime adult competitive behaviour. In this species, female-female aggression is dependent on reproductive state and increases after mating due to the receipt of sperm and seminal fluid components. However, the effects of the developmental environment on adult female aggression, and any potential interactions with mating status, are unknown.To address this problem, we first raised flies at low and high larval density, which altered competition over limited resources, produced large and small adult females, respectively, and potentially primed them for differing levels of adult competition. We then fought the resulting adult females, either as virgins, or after receiving aggression-stimulating ejaculates at mating, to test for interacting effects.We found, as expected, that mating elevated contest duration. However, this mating-induced boost in aggression was strongly exacerbated for high density (small) females. Low density (large) females won more contests overall, but were not more successful in fights after mating. In contrast, mating increased the fighting success in females raised in high density environments.Our results suggest that individuals who experience competitive, resource-limited, rearing conditions are more sensitive to the aggression-stimulating effects of the male ejaculate. This finding highlights the importance of the developmental environment in mediating adult social interactions and provides support for the theory that female-female aggression should be highly context-dependent. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13214/suppinfo is available for this article.
Collapse
Affiliation(s)
- Eleanor Bath
- Department of Zoology, Edward Grey InstituteUniversity of OxfordOxfordUK
- Christ Church CollegeUniversity of OxfordOxfordUK
| | - Juliano Morimoto
- Department of Biological SciencesMacquarie UniversityNorth RydeNSWAustralia
- Programa de Pós‐Graduação em Ecologia e ConservaçãoFederal University of ParanáCuritibaBrazil
| | - Stuart Wigby
- Department of Zoology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
He Z, Zhang HB, Li ST, Yu WJ, Biwot J, Yu XQ, Peng Y, Wang YF. Effects of Wolbachia infection on the postmating response in Drosophila melanogaster. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2561-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Smith DT, Clarke NVE, Boone JM, Fricke C, Chapman T. Sexual conflict over remating interval is modulated by the sex peptide pathway. Proc Biol Sci 2018; 284:rspb.2016.2394. [PMID: 28250180 PMCID: PMC5360916 DOI: 10.1098/rspb.2016.2394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Sexual conflict, in which the evolutionary interests of males and females diverge, shapes the evolution of reproductive systems across diverse taxa. Here, we used the fruit fly to study sexual conflict in natural, three-way interactions comprising a female, her current and previous mates. We manipulated the potential for sexual conflict by using sex peptide receptor (SPR) null females and by varying remating from 3 to 48 h, a period during which natural rematings frequently occur. SPR-lacking females do not respond to sex peptide (SP) transferred during mating and maintain virgin levels of high receptivity and low fecundity. In the absence of SPR, there was a convergence of fitness interests, with all individuals gaining highest productivity at 5 h remating. This suggests that the expression of sexual conflict was reduced. We observed an unexpected second male-specific advantage to early remating, resulting from an increase in the efficiency of second male sperm use. This early window of opportunity for exploitation by second males depended on the presence of SPR. The results suggest that the SP pathway can modulate the expression of sexual conflict in this system, and show how variation in the selective forces that shape conflict and cooperation can be maintained.
Collapse
Affiliation(s)
- Damian T Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - James M Boone
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149 Muenster, Germany
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
29
|
Meslin C, Cherwin TS, Plakke MS, Hill J, Small BS, Goetz BJ, Wheat CW, Morehouse NI, Clark NL. Structural complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex history of selection. Proc Natl Acad Sci U S A 2017; 114:E5406-E5413. [PMID: 28630352 PMCID: PMC5502654 DOI: 10.1073/pnas.1707680114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male ejaculates are often structurally complex, and this complexity is likely to influence key reproductive interactions between males and females. However, despite its potential evolutionary significance, the molecular underpinnings of ejaculate structural complexity have received little empirical attention. To address this knowledge gap, we sought to understand the biochemical and functional properties of the structurally complex ejaculates of Pieris rapae butterflies. Males in this species produce large ejaculates called spermatophores composed of an outer envelope, an inner matrix, and a bolus of sperm. Females are thought to benefit from the nutrition contained in the soluble inner matrix through increases in longevity and fecundity. However, the indigestible outer envelope of the spermatophore delays female remating, allowing males to monopolize paternity for longer. Here, we show that these two nonsperm-containing spermatophore regions, the inner matrix and the outer envelope, differ in their protein composition and functional properties. We also reveal how these divergent protein mixtures are separately stored in the male reproductive tract and sequentially transferred to the female reproductive tract during spermatophore assembly. Intriguingly, we discovered large quantities of female-derived proteases in both spermatophore regions shortly after mating, which may contribute to spermatophore digestion and hence, female control over remating rate. Finally, we report evidence of past selection on these spermatophore proteins and female proteases, indicating a complex evolutionary history. Our findings illustrate how structural complexity of ejaculates may allow functionally and/or spatially associated suites of proteins to respond rapidly to divergent selective pressures, such as sexual conflict or reproductive cooperation.
Collapse
Affiliation(s)
- Camille Meslin
- Institut National de la Recherche Agronomique (INRA), Institute of Ecology and Environmental Sciences of Paris (IEES-Paris), 78026 Versailles Cedex, France
| | - Tamara S Cherwin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Melissa S Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Brandon S Small
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Breanna J Goetz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260;
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260;
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
30
|
Bath E, Bowden S, Peters C, Reddy A, Tobias JA, Easton-Calabria E, Seddon N, Goodwin SF, Wigby S. Sperm and sex peptide stimulate aggression in female Drosophila. Nat Ecol Evol 2017; 1:0154. [PMID: 28580431 PMCID: PMC5447820 DOI: 10.1038/s41559-017-0154] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Female aggression towards other females is associated with reproduction in many taxa, and traditionally thought to be related to the protection or provisioning of offspring, such as through increased resource acquisition. However, the underlying reproductive factors causing aggressive behaviour in females remain unknown. Here we show that female aggression in the fruit fly Drosophila melanogaster is strongly stimulated by the receipt of sperm at mating, and in part by an associated seminal fluid protein, the sex peptide. We further show that the post-mating increase in female aggression is decoupled from the costs of egg production and from post-mating decreases in sexual receptivity. Our results suggest that male ejaculates can have a surprisingly direct influence on aggression in recipient females. Male ejaculate traits thus influence the female social competitive environment with potentially far-reaching ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Eleanor Bath
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Samuel Bowden
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Carla Peters
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Anjali Reddy
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Joseph A Tobias
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS.,Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK SW7 2AZ
| | - Evan Easton-Calabria
- Department of International Development, University of Oxford, Oxford, UK OX1 3TB
| | - Nathalie Seddon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK OX1 3SR
| | - Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| |
Collapse
|
31
|
Denis B, Claisse G, Le Rouzic A, Wicker-Thomas C, Lepennetier G, Joly D. Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:67-77. [PMID: 28342762 DOI: 10.1016/j.jinsphys.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
In sexual species, mating success depends on the male's capacity to find sexual partners and on female receptivity to mating. Mating is under evolutionary constraints to prevent interspecific mating and to maximize the reproductive success of both sexes. In Drosophila melanogaster, female receptivity to mating is mainly controlled by Sex peptide (SP, i.e. Acp70A) produced by the male accessory glands with other proteins (Acps). The transfer of SP during copulation dramatically reduces female receptivity to mating and prevents remating with other males. To date, female postmating responses are well-known in D. melanogaster but have been barely investigated in closely-related species or strains exhibiting different mating systems (monoandrous versus polyandrous). Here, we describe the diversity of mating systems in two strains of D. melanogaster and the three species of the yakuba complex. Remating delay and sexual receptivity were measured in cross-experiments following SP orthologs or Acp injections within females. Interestingly, we discovered strong differences between the two strains of D. melanogaster as well as among the three species of the yakuba complex. These results suggest that reproductive behavior is under the control of complex sexual interactions between the sexes and evolves rapidly, even among closely-related species.
Collapse
Affiliation(s)
- Béatrice Denis
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Gaëlle Claisse
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Gildas Lepennetier
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Dominique Joly
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Kurz CL, Charroux B, Chaduli D, Viallat-Lieutaud A, Royet J. Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition. eLife 2017; 6. [PMID: 28264763 PMCID: PMC5365318 DOI: 10.7554/elife.21937] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/26/2017] [Indexed: 12/15/2022] Open
Abstract
As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviors that lower the impact of the infection. The molecular mechanisms by which microbes impact host behavior are not well understood. We demonstrate that bacterial infection of Drosophila females reduces oviposition and that peptidoglycan, the component that activates Drosophila antibacterial response, is also the elicitor of this behavioral change. We show that peptidoglycan regulates egg-laying rate by activating NF-κB signaling pathway in octopaminergic neurons and that, a dedicated peptidoglycan degrading enzyme acts in these neurons to buffer this behavioral response. This study shows that a unique ligand and signaling cascade are used in immune cells to mount an immune response and in neurons to control fly behavior following infection. This may represent a case of behavioral immunity. DOI:http://dx.doi.org/10.7554/eLife.21937.001 Bacteria are all around us: they are on our skin, in the food that we eat and inside our bodies, particularly in the gut. While many of these bacteria are harmless and some even help us digest our food, others can make us ill. Upon detecting harmful bacteria, our bodies therefore trigger an immune response intended to destroy them. Some insects – including butterflies, moths and grasshoppers – have an additional way of defending themselves against bacteria besides their immune response. Whenever they detect harmful microorganisms, the insects change their behavior so as to reduce their chances of becoming infected and limit the damage an infection would cause. The insects move away from areas containing harmful bacteria, for example, and temporarily stop eating. But whereas the insects’ immune response to bacteria is well documented, little was known about the mechanisms that underlie these changes in behavior. Kurz, Charroux et al. set out to rectify this using another insect species, the fruit fly Drosophila. Flies that are infected with bacteria lay fewer eggs than healthy flies: a change in behavior that helps protect the offspring from infection. Kurz, Charroux et al. show that fruit flies are able to detect a component of the cell wall that surrounds all bacteria. This substance, known as peptidoglycan, activates a set of neurons in the fly that produce a chemical called octopamine. These neurons in turn activate a signaling pathway featuring a molecule known as NF-κB, and this causes the flies to lay fewer eggs. Notably, peptidoglycan and NF-κB are also the molecules that trigger the anti-bacterial immune response. Fruit flies thus use the same pathway in immune cells and in neurons to trigger immune responses and behavioral changes, respectively. The challenge now is to identify precisely which neurons respond to bacterial peptidoglycan, and to work out how peptidoglycan changes the activity of these cells. Furthermore, studies have recently shown that bacterial peptidoglycan can influence the development of the mouse brain, as well as mouse behavior. This suggests that mechanisms for detecting harmful bacteria may be conserved across evolution, a possibility that requires further investigation. DOI:http://dx.doi.org/10.7554/eLife.21937.002
Collapse
Affiliation(s)
- C Leopold Kurz
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Bernard Charroux
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Delphine Chaduli
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Annelise Viallat-Lieutaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Julien Royet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| |
Collapse
|
33
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
34
|
Gabrieli P, Scolari F, Di Cosimo A, Savini G, Fumagalli M, Gomulski LM, Malacrida AR, Gasperi G. Sperm-less males modulate female behaviour in Ceratitis capitata (Diptera: Tephritidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:13-26. [PMID: 27720923 DOI: 10.1016/j.ibmb.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
In the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)(Diptera: Tephritidae), mating has a strong impact on female biology, leading to a decrease in sexual receptivity and increased oviposition and fecundity. Previous studies suggest that sperm transfer may play a role in inducing these behavioural changes. Here we report the identification of a medfly innexin gene, Cc-inx5, whose expression is limited to the germ-line of both sexes. Through RNA interference of this gene, we generated males without testes and, consequently, sperm, but apparently retaining all the other reproductive organs intact. These sperm-less males were able to mate and, like their wild-type counterparts, to induce in their partners increased oviposition rates and refractoriness to remating. Interestingly, matings to sperm-less males results in oviposition rates higher than those induced by copulation with control males. In addition, the observed female post-mating behavioural changes were congruent with changes in transcript abundance of genes known to be regulated by mating in this species. Our results suggest that sperm transfer is not necessary to reduce female sexual receptivity and to increase oviposition and fecundity. These data pave the way to a better understanding of the role/s of seminal components in modulating female post-mating responses. In the long term, this knowledge will be the basis for the development of novel approaches for the manipulation of female fertility, and, consequently, innovative tools to be applied to medfly control strategies in the field.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Di Cosimo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anna R Malacrida
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
35
|
Murillo-Maldonado JM, Riesgo-Escovar JR. Development and diabetes on the fly. Mech Dev 2016; 144:150-155. [PMID: 27702607 DOI: 10.1016/j.mod.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
We review the use of a model organism to study the effects of a slow course, degenerative disease: namely, diabetes mellitus. Development and aging are biological phenomena entailing reproduction, growth, and differentiation, and then decline and progressive loss of functionality leading ultimately to failure and death. It occurs at all biological levels of organization, from molecular interactions to organismal well being and homeostasis. Yet very few models capable of addressing the different levels of complexity in these chronic, developmental phenomena are available to study, and model organisms are an exception and a welcome opportunity for these approaches. Genetic model organisms, like the common fruit fly, Drosophila melanogaster, offer the possibility of studying the panoply of life processes in normal and diseased states like diabetes mellitus, from a plethora of different perspectives. These long-term aspects are now beginning to be characterized.
Collapse
Affiliation(s)
- Juan Manuel Murillo-Maldonado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Juan Rafael Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Querétaro 76230, Mexico.
| |
Collapse
|
36
|
Redhai S, Hellberg JEEU, Wainwright M, Perera SW, Castellanos F, Kroeger B, Gandy C, Leiblich A, Corrigan L, Hilton T, Patel B, Fan SJ, Hamdy F, Goberdhan DCI, Wilson C. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells. PLoS Genet 2016; 12:e1006366. [PMID: 27727275 PMCID: PMC5065122 DOI: 10.1371/journal.pgen.1006366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022] Open
Abstract
Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.
Collapse
Affiliation(s)
- Siamak Redhai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sumeth W. Perera
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Felix Castellanos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Laura Corrigan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas Hilton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Patel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Wilson C, Leiblich A, Goberdhan DCI, Hamdy F. The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Curr Top Dev Biol 2016; 121:339-375. [PMID: 28057306 PMCID: PMC5224695 DOI: 10.1016/bs.ctdb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human prostate is a gland of the male reproductive tract, which together with the seminal vesicles, is responsible for most seminal fluid production. It is a common site of cancer, and unlike other glands, it typically enlarges in aging men. In flies, the male accessory glands make many major seminal fluid components. Like their human equivalents, they secrete proteins from several conserved families, including proteases, lectins, and cysteine-rich secretory proteins, some of which interact with sperm and affect fertility. A key protein, sex peptide, is not conserved in vertebrates but plays a central role in mediating long-term effects on females after mating. Although postmitotic, one epithelial cell type in the accessory glands, the secondary cell, continues to grow in adults. It secretes microvesicles called exosomes from the endosomal multivesicular body, which, after mating, fuse with sperm. They also appear to affect female postmating behavior. Remarkably, the human prostate epithelium also secretes exosomes, which fuse to sperm in vitro to modulate their activity. Exosomes from prostate and other cancer cells are increasingly proposed to play fundamental roles in modulating the tumor microenvironment and in metastasis. Here we review a diverse accessory gland literature, which highlights functional analogies between the male reproductive glands of flies and humans, and a critical role for extracellular vesicles in allowing seminal fluid to promote male interests within the female. We postulate that secondary cells and prostate epithelial cells use common mechanisms to control growth, secretion, and signaling, which are relevant to prostate and other cancers, and can be genetically dissected in the uniquely tractable fly model.
Collapse
Affiliation(s)
- C Wilson
- University of Oxford, Oxford, United Kingdom.
| | - A Leiblich
- University of Oxford, Oxford, United Kingdom; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - F Hamdy
- University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
38
|
Differential effects of male nutrient balance on pre- and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster. Sci Rep 2016; 6:27673. [PMID: 27270223 PMCID: PMC4897696 DOI: 10.1038/srep27673] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022] Open
Abstract
Male fitness depends on the expression of costly traits involved in obtaining mates (pre-copulatory) and fertilization (post-copulatory). However, very little is known about the nutrient requirements for these traits and whether males compromise their diet to maximize one trait at the expense of another. Here we used Nutritional Geometry to investigate macronutrient requirements for pre- and post-copulatory traits in Drosophila, when males were the first or second to mate with females. We found no significant effects of male diet on sperm competitiveness. However, although males self-regulate their macronutrient intake at a protein-to-carbohydrate ratio ("P:C ratio") of 1:1.5, this ratio does not coincide with their optima for several key reproductive traits: both the short-term (~24 hr) rate of offspring production after a female's first mating, as well as the total offspring number sired when males were second to mate were maximized at a P:C ratio of 1:9, whereas male attractiveness (latency to mate), were maximised at a P:C ratio of 1:1. These results suggest a compromised optimum diet, and no single diet that simultaneously maximizes all male reproductive traits. The protein intake of first males also negatively affected female offspring production following remating, suggesting a long-term intersexual effect of male nutrition.
Collapse
|
39
|
Dickson LB, Sharakhova MV, Timoshevskiy VA, Fleming KL, Caspary A, Sylla M, Black WC. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements. PLoS Negl Trop Dis 2016; 10:e0004626. [PMID: 27105225 PMCID: PMC4841568 DOI: 10.1371/journal.pntd.0004626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/23/2016] [Indexed: 01/16/2023] Open
Abstract
Aedes aegypti, the primary vector of dengue, yellow fever and Zika flaviviruses, consists of at least two subspecies. Aedes aegypti (Aaa) is light in color, has pale scales on the first abdominal tergite, oviposits in artificial containers, and preferentially feeds on humans. Aedes aegypti formosus (Aaf), has a dark cuticle, is restricted to sub-Saharan Africa, has no pale scales on the first abdominal tergite and frequently oviposits in natural containers. Scale patterns correlate with cuticle color in East Africa but not in Senegal, West Africa where black cuticle mosquitoes display a continuum of scaling patterns and breed domestically indoors. An earlier laboratory study did not indicate any pre- or postzygotic barriers to gene flow between Aaa and Aaf in East Africa. However, similar attempts to construct F1 intercross families between Aaa laboratory strains and Senegal Ae. aegypti (SenAae) failed due to poor F1 oviposition and low F2 egg-to-adult survival. Insemination and assortative mating experiments failed to identify prezygotic mating barriers. Backcrosses were performed to test for postzygotic isolation patterns consistent with Haldane’s rule modified for species, like Aedes, that have an autosomal sex determining locus (SDL). Egg-pupal survival was predicted to be low in females mated to hybrid F1 males but average when a male mates with a hybrid F1 female. Survival was in fact significantly reduced when females mated to hybrid males but egg-pupal survival was significantly increased when males were mated to hybrid F1 females. These observations are therefore inconclusive with regards to Haldane’s rule. Basic cytogenetic analyses and Fluorescent In Situ Hybridization (FISH) experiments were performed to compare SenAae strains with the IB12 strain of Aaa that was used for genome sequencing and physical mapping. Some SenAae strains had longer chromosomes than IB12 and significantly different centromeric indices on chromosomes 1 and 3. DAPI staining was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3. Aedes aegypti is one of the best studied mosquito species and it is the principal vector of dengue, Zika, and yellow fever flaviviruses and the Chikungunya alphavirus. Aedes aegypti occurs throughout all tropical and subtropical regions of the world, and previous population genetic studies have shown that the highest genetic diversity occurs in Africa. Aedes aegypti from Senegal, West Africa (SenAae) have a low oviposition rate; those that do oviposit have a low fecundity and poor egg-to-adult survival. Furthermore rearrangements were detected on all three chromosomes in SenAae. These observations are consistent with the presence of at least two cryptic subspecies of Ae. aegypti in Senegal arising from reproductive isolation due to chromosome rearrangements. Genetic control strategies are being considered for the suppression of Ae. aegypti populations worldwide. Barriers to gene flow in African Ae. aegypti populations could compromise these future control efforts.
Collapse
Affiliation(s)
- Laura B. Dickson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria V. Sharakhova
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vladimir A. Timoshevskiy
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Karen L. Fleming
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alex Caspary
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Massamba Sylla
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
40
|
Carmel I, Tram U, Heifetz Y. Mating induces developmental changes in the insect female reproductive tract. CURRENT OPINION IN INSECT SCIENCE 2016; 13:106-113. [PMID: 27436559 DOI: 10.1016/j.cois.2016.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 06/06/2023]
Abstract
In response to mating, the Drosophila female undergoes a series of rapid molecular, morphological, behavioral and physiological changes. Studies in Drosophila and other organisms have shown that stimuli received during courtship and copulation, sperm, and seminal fluid are needed for the full mating response and thus reproductive success. Very little is known, however, about how females respond to these male-derived stimuli/factors at the molecular level. More specifically, it is unclear what mechanisms regulate and mediate the mating response, how the signals received during mating are integrated and processed, and what network of molecules are essential for a successful mating response. Moreover, it is yet to be determined whether the rapid transition of the reproductive tract induced by mating is a general phenomenon in insects. This review highlights current knowledge and advances on the developmental switch that rapidly transitions the female from the 'unmated' to 'mated' state.
Collapse
Affiliation(s)
- I Carmel
- Department of Entomology, The Hebrew University, Rehovot, Israel
| | - U Tram
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Y Heifetz
- Department of Entomology, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
41
|
Gorter JA, Jagadeesh S, Gahr C, Boonekamp JJ, Levine JD, Billeter JC. The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females. Sci Rep 2016; 6:19441. [PMID: 26777264 PMCID: PMC4726014 DOI: 10.1038/srep19441] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022] Open
Abstract
Food and sex often go hand in hand because of the nutritional cost of reproduction. For Drosophila melanogaster females, this relationship is especially intimate because their offspring develop on food. Since yeast and sugars are important nutritional pillars for Drosophila, availability of these foods should inform female reproductive behaviours. Yet mechanisms coupling food and sex are poorly understood. Here we show that yeast increases female sexual receptivity through interaction between its protein content and its odorous fermentation product acetic acid, sensed by the Ionotropic odorant receptor neuron Ir75a. A similar interaction between nutritional and hedonic value applies to sugars where taste and caloric value only increase sexual receptivity when combined. Integration of nutritional and sensory values would ensure that there are sufficient internal nutrients for egg production as well as sufficient environmental nutrients for offspring survival. These findings provide mechanisms through which females may maximize reproductive output in changing environments.
Collapse
Affiliation(s)
- Jenke A Gorter
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands
| | - Samyukta Jagadeesh
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands.,Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Christoph Gahr
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands
| |
Collapse
|
42
|
Abstract
When a female fly mates it produces a hormone that increases the size of its midgut and enhances fat metabolism in order to provide the energy needed for reproduction.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Laurent P, Soltesz Z, Nelson GM, Chen C, Arellano-Carbajal F, Levy E, de Bono M. Decoding a neural circuit controlling global animal state in C. elegans. eLife 2015; 4. [PMID: 25760081 PMCID: PMC4440410 DOI: 10.7554/elife.04241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/10/2015] [Indexed: 02/05/2023] Open
Abstract
Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed. DOI:http://dx.doi.org/10.7554/eLife.04241.001 From humans to worms, animals must respond appropriately to environmental challenges to survive. Starving animals must conserve energy while they seek food; animals that encounter a predator must fight or flee. These responses involve the animals re-programming their bodies and behavior, and, in humans, are thought to coincide with feelings or emotions such as ‘hunger’ and ‘fear’. Understanding these states in humans is difficult, but studies of simpler animals may provide some insights. The microscopic worm Caenorhabditis elegans offers a unique advantage to these studies because it has the most precisely described nervous system of any animal. The worm lives in rotting fruit, but it avoids the fruit's surface, perhaps because there is an increased risk of it drying out or being eaten by predators. Microbes that grow within the rotting fruit reduce the oxygen level below the 21% oxygen found in the surrounding air, and so one strategy that C. elegans uses to avoid surface exposure is to continuously monitor the oxygen concentration. If the worm senses that the oxygen level is approaching 21%, which suggests it is nearing the surface, it reverses and turns around. If it cannot find a lower-oxygen environment, the worm switches to continuous rapid movement until it locates such an environment, and adapts its body for surface exposure. Laurent, Soltesz et al. sought to understand the circuit of neurons that controls this switch. Monitoring gene expression in the worms revealed that specific oxygen-sensing neurons help generate the widespread changes that occur in the worm's body. These neurons also control the switch in the worm's behavior. Sensory neurons relay signals to downstream neurons that act on muscles to alter behavior. Neurons typically communicate with other neurons via specific connections; but neurons can also release signaling molecules, which act like ‘wireless’ signals and can affect many other cells. Laurent, Soltesz et al. showed that both kinds of signaling are needed to change the worm's behavior, and suggest that the release of signaling molecules may explain the widespread effects of 21% oxygen on the worm. Laurent, Soltesz et al. then monitored the activity of neurons in freely moving worms, and found that some neurons appear to encode and relay specific sensory information. Other neurons encode the behavior the animal is performing, and yet others can encode both kinds of information. To confirm which neurons control particular behavioral responses, Laurent, Soltesz et al. measured changes in the worm’s behavior after destroying or altering specific cells, or while they used light-based techniques to artificially excite or inhibit specific neurons. At a simple level the worm's response to 21% oxygen resembles the response of a mammal to a dangerous environment: both become more aroused, change how they respond to other sensory cues, and adapt both their bodies and behavior. As such, C. elegans provides a great model to explore at a small and accessible scale how changes in animals' states are generated. DOI:http://dx.doi.org/10.7554/eLife.04241.002
Collapse
Affiliation(s)
| | - Zoltan Soltesz
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Changchun Chen
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Emmanuel Levy
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
44
|
Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A 2014; 111:16353-8. [PMID: 25368171 DOI: 10.1073/pnas.1410488111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.
Collapse
|
45
|
Tsukamoto Y, Kataoka H, Nagasawa H, Nagata S. Mating changes the female dietary preference in the two-spotted cricket, Gryllus bimaculatus. Front Physiol 2014; 5:95. [PMID: 24659970 PMCID: PMC3952122 DOI: 10.3389/fphys.2014.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
Most insect species exhibit characteristic behavioral changes after mating. Typical post-mating behaviors in female insects include noticeable increases in food intake, elevated oviposition rates, lowered receptivity to courting males, and enhanced immune response. Although it has been reported that mated females of several insect species including the fruit fly, Drosophila melanogaster increase the amount of food intake and change their dietary preferences, the limited number of comparative studies prevent the formulation of generalities regarding post-mating behaviors in other insects in particular amongst orthopteran species. Here, we investigated whether females of the two-spotted cricket, Gryllus bimaculatus, alter their feeding behavior after mating. Although significant differences in the amount of food intake after mating were not observed, all experimental data indicated a clear trend among crickets toward the ingestion of larger quantities of food. Geometric framework analyses revealed that the mated female crickets preferred food with higher protein content compared to virgin female crickets. This implies that this species required different nutritional demands after mating. These findings further expand our understanding of the behavioral and biological changes that are triggered in female insects post-mating, and highlight the potential for this species in investigating the molecular-based nutritional dependent activities that are linked to post-mating behaviors.
Collapse
Affiliation(s)
- Yusuke Tsukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| |
Collapse
|
46
|
Haussmann IU, Hemani Y, Wijesekera T, Dauwalder B, Soller M. Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc Biol Sci 2013; 280:20131938. [PMID: 24089336 DOI: 10.1098/rspb.2013.1938] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Male-derived sex-peptide (SP) induces profound changes in the behaviour of Drosophila females, resulting in decreased receptivity to further mating and increased egg laying. SP can mediate the switch in female reproductive behaviours via a G protein-coupled receptor, SPR, in neurons expressing fruitless, doublesex and pickpocket. Whether SPR is the sole receptor and whether SP induces the postmating switch in a single pathway has not, to our knowledge been tested. Here we report that the SP response can be induced in the absence of SPR when SP is ectopically expressed in neurons or when SP, transferred by mating, can access neurons through a leaky blood brain barrier. Membrane-tethered SP can induce oviposition via doublesex, but not fruitless and pickpocket neurons in SPR mutant females. Although pickpocket and doublesex neurons rely on G(o) signalling to reduce receptivity and induce oviposition, G(o) signalling in fruitless neurons is required only to induce oviposition, but not to reduce receptivity. Our results show that SP's action in reducing receptivity and inducing oviposition can be separated in fruitless and doublesex neurons. Hence, the SP-induced postmating switch incorporates shared, but also distinct circuitry of fruitless, doublesex and pickpocket neurons and additional receptors.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, , Birmingham B15 2TT, UK, Department of Biology and Biochemistry, University of Houston, , Houston, TX, USA
| | | | | | | | | |
Collapse
|
47
|
Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L. More than two decades of research on insect neuropeptide GPCRs: an overview. Front Endocrinol (Lausanne) 2012; 3:151. [PMID: 23226142 PMCID: PMC3510462 DOI: 10.3389/fendo.2012.00151] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- *Correspondence: Liliane Schoofs, Department of Biology, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, KU Leuven, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|