1
|
Graeve FD, Debreuve E, Pushpalatha KV, Zhang X, Rahmoun S, Kozlowski D, Cedilnik N, Vijayakumar J, Cassini P, Schaub S, Descombes X, Besse F. An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules. J Cell Sci 2024; 137:jcs262119. [PMID: 39479884 PMCID: PMC11698055 DOI: 10.1242/jcs.262119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly. The signaling pathways controlling this process in a cellular context are, however, still largely unknown. Here, we aimed at identifying regulators of cytoplasmic RNP granules characterized by the presence of the evolutionarily conserved Imp RNA-binding protein (a homolog of IGF2BP proteins). We performed a high-content image-based RNAi screen targeting all Drosophila genes encoding RNA-binding proteins, phosphatases and kinases. This led to the identification of dozens of genes regulating the number of Imp-positive RNP granules in S2R+ cells, among which were components of the MAPK pathway. Combining functional approaches, phospho-mapping and generation of phospho-variants, we further showed that EGFR signaling inhibits Imp-positive RNP granule assembly through activation of the MAPK-ERK pathway and downstream phosphorylation of Imp at the S15 residue. This work illustrates how signaling pathways can regulate cellular condensate assembly by post-translational modifications of specific components.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Eric Debreuve
- Université Côte D'Azur, CNRS, INRIA, I3S, 06902 Sophia Antipolis, France
| | | | - Xuchun Zhang
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Somia Rahmoun
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Djampa Kozlowski
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Nicolas Cedilnik
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Jeshlee Vijayakumar
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Paul Cassini
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Sebastien Schaub
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
- Université Sorbonne, CNRS, LBDV, 06230 Villefranche-sur-mer, France
| | - Xavier Descombes
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Florence Besse
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
2
|
Roy PR, Link N. Loss of neuronal Imp induces seizure behavior through Syndecan function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624719. [PMID: 39605343 PMCID: PMC11601543 DOI: 10.1101/2024.11.21.624719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Seizures affect a large proportion of the global population and occur due to abnormal neuronal activity in the brain. Unfortunately, widespread genetic and phenotypic heterogeneity contribute to insufficient treatment options. It is critical to identify the genetic underpinnings of how seizures occur to better understand seizure disorders and improve therapeutic development. We used the Drosophila model to identify that IGF-II mRNA Binding Protein (Imp) is linked to the onset of this phenotype. Specific reduction of Imp in neurons causes seizures after mechanical stimulation. Importantly, gross motor behavior is unaffected, showing Imp loss does not affect general neuronal activity. Developmental loss of Imp is sufficient to cause seizures in adults, thus Imp-modulated neuron development affects mature neuronal function. Since Imp is an RNA-binding protein, we sought to identify the mRNA target that Imp regulates in neurons to ensure proper neuronal activity after mechanical stress. We find that Imp protein binds Syndecan ( Sdc ) mRNA, and reduction of Sdc also causes mechanically-induced seizures. Expression of Sdc in Imp deficient neurons rescues seizure defects, showing that Sdc is sufficient to restore normal behavior after mechanical stress. We suggest that Imp protein binds Sdc mRNA in neurons, and this functional interaction is important for normal neuronal biology and animal behavior in a mechanically-induced seizure model. Since Imp and Sdc are conserved, our work highlights a neuronal specific pathway that might contribute to seizure disorder when mutated in humans.
Collapse
|
3
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
4
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
5
|
Grzejda D, Mach J, Schweizer JA, Hummel B, Rezansoff AM, Eggenhofer F, Panhale A, Lalioti ME, Cabezas Wallscheid N, Backofen R, Felsenberg J, Hilgers V. The long noncoding RNA mimi scaffolds neuronal granules to maintain nervous system maturity. SCIENCE ADVANCES 2022; 8:eabo5578. [PMID: 36170367 PMCID: PMC9519039 DOI: 10.1126/sciadv.abo5578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plasticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type. Here, we show in Drosophila that a previously uncharacterized long noncoding RNA, mimi, is required to scaffold large neuronal granules in the adult nervous system. Neuronal ELAV-like proteins directly bind mimi and mediate granule assembly, while Staufen maintains condensate integrity. mimi granules contain mRNAs and proteins involved in synaptic processes; granule loss in mimi mutant flies impairs nervous system maturity and neuropeptide-mediated signaling and causes phenotypes of neurodegeneration. Our work reports an architectural RNA for a neuronal granule and provides a handle to interrogate functions of a condensate independently of those of its constituent proteins.
Collapse
Affiliation(s)
- Dominika Grzejda
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg 79104, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), Freiburg 79108, Germany
| | - Jana Mach
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Johanna Aurelia Schweizer
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel 4058, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Barbara Hummel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Florian Eggenhofer
- Department of Computer Science, Albert Ludwig University of Freiburg, Freiburg 79110, Germany
| | - Amol Panhale
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Maria-Eleni Lalioti
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Rolf Backofen
- Department of Computer Science, Albert Ludwig University of Freiburg, Freiburg 79110, Germany
- BIOSS and CIBSS Centres for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Johannes Felsenberg
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel 4058, Switzerland
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
6
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
7
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
8
|
Pushpalatha KV, Solyga M, Nakamura A, Besse F. RNP components condense into repressive RNP granules in the aging brain. Nat Commun 2022; 13:2782. [PMID: 35589695 PMCID: PMC9120078 DOI: 10.1038/s41467-022-30066-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic RNP condensates enriched in mRNAs and proteins are found in various cell types and associated with both buffering and regulatory functions. While a clear link has been established between accumulation of aberrant RNP aggregates and progression of aging-related neurodegenerative diseases, the impact of physiological aging on neuronal RNP condensates has never been explored. Through high-resolution imaging, we uncover that RNP components progressively cluster into large yet dynamic granules in the aging Drosophila brain. We further show that age-dependent clustering is caused by an increase in the stoichiometry of the conserved helicase Me31B/DDX6, and requires PKA kinase activity. Finally, our functional analysis reveals that mRNA species recruited to RNP condensates upon aging exhibit age-dependent translational repression, indicating that co-clustering of selected mRNAs and translation regulators into repressive condensates may contribute to the specific post-transcriptional changes in gene expression observed in the course of aging. Aberrant RNA condensates are a hallmark of age-related neurodegenerative diseases. Here, the authors show that RNA condensation increases in aging Drosophila brains, triggering translation repression.
Collapse
Affiliation(s)
| | - Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
9
|
Li H, Gavis ER. The Drosophila fragile X mental retardation protein modulates the neuronal cytoskeleton to limit dendritic arborization. Development 2022; 149:275257. [DOI: 10.1242/dev.200379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 01/02/2023]
Abstract
ABSTRACT
Dendritic arbor development is a complex, highly regulated process. Post-transcriptional regulation mediated by RNA-binding proteins plays an important role in neuronal dendrite morphogenesis by delivering on-site, on-demand protein synthesis. Here, we show how the Drosophila fragile X mental retardation protein (FMRP), a conserved RNA-binding protein, limits dendrite branching to ensure proper neuronal function during larval sensory neuron development. FMRP knockdown causes increased dendritic terminal branch growth and a resulting overelaboration defect due, in part, to altered microtubule stability and dynamics. FMRP also controls dendrite outgrowth by regulating the Drosophila profilin homolog chickadee (chic). FMRP colocalizes with chic mRNA in dendritic granules and regulates its dendritic localization and protein expression. Whereas RNA-binding domains KH1 and KH2 are both crucial for FMRP-mediated dendritic regulation, KH2 specifically is required for FMRP granule formation and chic mRNA association, suggesting a link between dendritic FMRP granules and FMRP function in dendrite elaboration. Our studies implicate FMRP-mediated modulation of both the neuronal microtubule and actin cytoskeletons in multidendritic neuronal architecture, and provide molecular insight into FMRP granule formation and its relevance to FMRP function in dendritic patterning.
Collapse
Affiliation(s)
- Hui Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Medioni C, Ephrussi A, Besse F. Live-Imaging of Axonal Cargoes in Drosophila Brain Explants Using Confocal Microscopy. Methods Mol Biol 2022; 2417:19-28. [PMID: 35099788 DOI: 10.1007/978-1-0716-1916-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Live-imaging of axonal cargoes within central nervous system has been a long-lasting interest for neurobiologists as axonal transport plays critical roles in neuronal growth, function, and survival. Many kinds of cargoes are transported within axons, including synaptic vesicles and a variety of membrane-bound and membrane-less organelles. Imaging these cargoes at high spatial and temporal resolution, and within living brains, is technically very challenging. Here, we describe a quantitative method, based on customized mounting chambers, allowing live-imaging of axonal cargoes transported within the maturing brain of the fruit fly, Drosophila melanogaster. With this method, we could visualize in real time, using confocal microscopy, cargoes transported along axons. Our protocol is simple and easy to set up, as brains are mounted in our imaging chambers and ready to be imaged in about 1 h. Another advantage of our method is that it can be combined with pharmacological treatments or super-resolution microscopy.
Collapse
Affiliation(s)
| | - Anne Ephrussi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
11
|
Medioni C, Vijayakumar J, Ephrussi A, Besse F. High-Resolution Live Imaging of Axonal RNP Granules in Drosophila Pupal Brain Explants. Methods Mol Biol 2022; 2431:451-462. [PMID: 35412292 DOI: 10.1007/978-1-0716-1990-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dynamic and local adjustments of the axonal proteome are observed in response to extracellular cues and achieved via translation of axonally localized mRNAs. To be localized, these mRNAs must be recognized by RNA binding proteins and packaged into higher-order ribonucleoprotein (RNP) granules transported along axonal microtubules via molecular motors. Axonal recruitment of RNP granules is not constitutive, but rather regulated by external signals such as developmental cues, through pathways yet to be identified. The Drosophila brain represents an excellent model system where to study the transport of RNP granules as it is triggered in specific populations of neurons undergoing remodeling during metamorphosis. Here, we describe a protocol enabling live imaging of axonal RNP granule transport with high spatiotemporal resolution in Drosophila maturing brains. In this protocol, pupal brains expressing endogenous or ectopic fluorescent RNP components are dissected, mounted in a customized imaging chamber, and imaged with an inverted confocal microscope equipped with sensitive detectors. Axonal RNP granules are then individually tracked for further analysis of their trajectories. This protocol is rapid (less than 1 hour to prepare brains for imaging) and is easy to handle and to implement.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Jeshlee Vijayakumar
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Anne Ephrussi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
12
|
Zglejc-Waszak K, Mukherjee K, Juranek JK. The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review. Eur J Neurosci 2021; 54:5982-5999. [PMID: 34449932 DOI: 10.1111/ejn.15433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Neuropathy, or dysfunction of peripheral nerve, is one of the most common neurological manifestation in patients with diabetes mellitus (DM). DM is typically associated with a hyperglycaemic milieu, which promotes non-enzymatic glycation of proteins. Proteins with advanced glycation are known to engage a cell-surface receptor called the receptor for advanced glycation end products (RAGE). Thus, it is reasonable to assume that RAGE and its associated molecule-mediated cellular signalling may contribute to DM-induced symmetrical axonal (length-dependent) neuropathy. Of particular interest is diaphanous related formin 1 (DIAPH1), a cytoskeletal organizing molecule, which interacts with the cytosolic domain of RAGE and whose dysfunction may precipitate axonopathy/neuropathy. Indeed, it has been demonstrated that both RAGE and DIAPH1 are expressed in the motor and sensory fibres of nerve harvested from DM animal models. Although the detailed molecular role of RAGE and DIAPH1 in diabetic neurological complications remains unclear, here we will discuss available evidence of their involvement in peripheral diabetic neuropathy. Specifically, we will discuss how a hyperglycaemic environment is not only likely to elevate advanced glycation end products (ligands of RAGE) and induce a pro-inflammatory environment but also alter signalling via RAGE and DIAPH1. Further, hyperglycaemia may regulate epigenetic mechanisms that interacts with RAGE signalling. We suggest the cumulative effect of hyperglycaemia on RAGE-DIAPH1-mediated signalling may be disruptive to axonal cytoskeletal organization and transport and is therefore likely to play a key role in pathogenesis of diabetic symmetrical axonal neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech Roanoke, Roanoke, Virginia, USA
| | - Judyta Karolina Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
13
|
Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila. Nat Cell Biol 2021; 23:485-496. [PMID: 33972729 PMCID: PMC7610788 DOI: 10.1038/s41556-021-00676-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here, we uncover a previously unrecognised crosstalk between adult intestinal stem cells (ISCs) in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species (ROS) activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and ISC proliferation following damage. Unexpectedly, ROS-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 mRNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine/vasculature inter-organ communication programme, which is essential to adapt stem cells response to the proliferative demands of the intestinal epithelium.
Collapse
|
14
|
Formicola N, Heim M, Dufourt J, Lancelot AS, Nakamura A, Lagha M, Besse F. Tyramine induces dynamic RNP granule remodeling and translation activation in the Drosophila brain. eLife 2021; 10:65742. [PMID: 33890854 PMCID: PMC8064753 DOI: 10.7554/elife.65742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ribonucleoprotein (RNP) granules are dynamic condensates enriched in regulatory RNA binding proteins (RBPs) and RNAs under tight spatiotemporal control. Extensive recent work has investigated the molecular principles underlying RNP granule assembly, unraveling that they form through the self-association of RNP components into dynamic networks of interactions. How endogenous RNP granules respond to external stimuli to regulate RNA fate is still largely unknown. Here, we demonstrate through high-resolution imaging of intact Drosophila brains that Tyramine induces a reversible remodeling of somatic RNP granules characterized by the decondensation of granule-enriched RBPs (e.g. Imp/ZBP1/IGF2BP) and helicases (e.g. Me31B/DDX-6/Rck). Furthermore, our functional analysis reveals that Tyramine signals both through its receptor TyrR and through the calcium-activated kinase CamkII to trigger RNP component decondensation. Finally, we uncover that RNP granule remodeling is accompanied by the rapid and specific translational activation of associated mRNAs. Thus, this work sheds new light on the mechanisms controlling cue-induced rearrangement of physiological RNP condensates.
Collapse
Affiliation(s)
- Nadia Formicola
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Marjorie Heim
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Anne-Sophie Lancelot
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
15
|
Yaniv SP, Meltzer H, Alyagor I, Schuldiner O. Developmental axon regrowth and primary neuron sprouting utilize distinct actin elongation factors. J Cell Biol 2021; 219:151569. [PMID: 32191286 PMCID: PMC7199854 DOI: 10.1083/jcb.201903181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 01/23/2023] Open
Abstract
Intrinsic neurite growth potential is a key determinant of neuronal regeneration efficiency following injury. The stereotypical remodeling of Drosophila γ-neurons includes developmental regrowth of pruned axons to form adult specific connections, thereby offering a unique system to uncover growth potential regulators. Motivated by the dynamic expression in remodeling γ-neurons, we focus here on the role of actin elongation factors as potential regulators of developmental axon regrowth. We found that regrowth in vivo requires the actin elongation factors Ena and profilin, but not the formins that are expressed in γ-neurons. In contrast, primary γ-neuron sprouting in vitro requires profilin and the formin DAAM, but not Ena. Furthermore, we demonstrate that DAAM can compensate for the loss of Ena in vivo. Similarly, DAAM mutants express invariably high levels of Ena in vitro. Thus, we show that different linear actin elongation factors function in distinct contexts even within the same cell type and that they can partially compensate for each other.
Collapse
Affiliation(s)
- Shiri P Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
16
|
Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, Mann M, Deplancke B, Habermann BH, Schnorrer F. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife 2021; 10:e63726. [PMID: 33404503 PMCID: PMC7815313 DOI: 10.7554/elife.63726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.
Collapse
Affiliation(s)
- Aynur Kaya-Çopur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Fabio Marchiano
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Marco Y Hein
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Matthias Mann
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
17
|
Identification of Genes Involved in the Differentiation of R7y and R7p Photoreceptor Cells in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3949-3958. [PMID: 32972998 PMCID: PMC7642934 DOI: 10.1534/g3.120.401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The R7 and R8 photoreceptor cells of the Drosophila compound eye mediate color vision. Throughout the majority of the eye, these cells occur in two principal types of ommatidia. Approximately 35% of ommatidia are of the pale type and express Rh3 in R7 cells and Rh5 in R8 cells. The remaining 65% are of the yellow type and express Rh4 in R7 cells and Rh6 in R8 cells. The specification of an R8 cell in a pale or yellow ommatidium depends on the fate of the adjacent R7 cell. However, pale and yellow R7 cells are specified by a stochastic process that requires the genes spineless, tango and klumpfuss. To identify additional genes involved in this process we performed genetic screens using a collection of 480 P{EP} transposon insertion strains. We identified genes in gain of function and loss of function screens that significantly altered the percentage of Rh3 expressing R7 cells (Rh3%) from wild-type. 36 strains resulted in altered Rh3% in the gain of function screen where the P{EP} insertion strains were crossed to a sevEP-GAL4 driver line. 53 strains resulted in altered Rh3% in the heterozygous loss of function screen. 4 strains showed effects that differed between the two screens, suggesting that the effect found in the gain of function screen was either larger than, or potentially masked by, the P{EP} insertion alone. Analyses of homozygotes validated many of the candidates identified. These results suggest that R7 cell fate specification is sensitive to perturbations in mRNA transcription, splicing and localization, growth inhibition, post-translational protein modification, cleavage and secretion, hedgehog signaling, ubiquitin protease activity, GTPase activation, actin and cytoskeletal regulation, and Ser/Thr kinase activity, among other diverse signaling and cell biological processes.
Collapse
|
18
|
Abstract
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal stress responses.
Collapse
Affiliation(s)
- Julie Qiaojin Lin
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Sudarsanam S, Yaniv S, Meltzer H, Schuldiner O. Cofilin regulates axon growth and branching of Drosophila γ-neurons. J Cell Sci 2020; 133:jcs232595. [PMID: 32152181 PMCID: PMC7197873 DOI: 10.1242/jcs.232595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/18/2020] [Indexed: 12/29/2022] Open
Abstract
The mechanisms that control intrinsic axon growth potential, and thus axon regeneration following injury, are not well understood. Developmental axon regrowth of Drosophila mushroom body γ-neurons during neuronal remodeling offers a unique opportunity to study the molecular mechanisms controlling intrinsic growth potential. Motivated by the recently uncovered developmental expression atlas of γ-neurons, we here focus on the role of the actin-severing protein cofilin during axon regrowth. We show that Twinstar (Tsr), the fly cofilin, is a crucial regulator of both axon growth and branching during developmental remodeling of γ-neurons. tsr mutant axons demonstrate growth defects both in vivo and in vitro, and also exhibit actin-rich filopodial-like structures at failed branch points in vivo Our data is inconsistent with Tsr being important for increasing G-actin availability. Furthermore, analysis of microtubule localization suggests that Tsr is required for microtubule infiltration into the axon tips and branch points. Taken together, we show that Tsr promotes axon growth and branching, likely by clearing F-actin to facilitate protrusion of microtubules.
Collapse
Affiliation(s)
- Sriram Sudarsanam
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Shiri Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| |
Collapse
|
20
|
Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. eLife 2020; 9:e51529. [PMID: 31934860 PMCID: PMC7025822 DOI: 10.7554/elife.51529] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
The numerous neurons and glia that form the brain originate from tightly controlled growth and division of neural stem cells, regulated systemically by important known stem cell-extrinsic signals. However, the cell-intrinsic mechanisms that control the distinctive proliferation rates of individual neural stem cells are unknown. Here, we show that the size and division rates of Drosophila neural stem cells (neuroblasts) are controlled by the highly conserved RNA binding protein Imp (IGF2BP), via one of its top binding targets in the brain, myc mRNA. We show that Imp stabilises myc mRNA leading to increased Myc protein levels, larger neuroblasts, and faster division rates. Declining Imp levels throughout development limit myc mRNA stability to restrain neuroblast growth and division, and heterogeneous Imp expression correlates with myc mRNA stability between individual neuroblasts in the brain. We propose that Imp-dependent regulation of myc mRNA stability fine-tunes individual neural stem cell proliferation rates.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - Aino I Järvelin
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - David Ish-Horowicz
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
- MRC Laboratory for Molecular Cell BiologyUniversity CollegeLondonUnited Kingdom
| | - Ilan Davis
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| |
Collapse
|
21
|
Surana S, Villarroel‐Campos D, Lazo OM, Moretto E, Tosolini AP, Rhymes ER, Richter S, Sleigh JN, Schiavo G. The evolution of the axonal transport toolkit. Traffic 2019; 21:13-33. [DOI: 10.1111/tra.12710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - David Villarroel‐Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Edoardo Moretto
- UK Dementia Research InstituteUniversity College London London UK
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Sandy Richter
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
- Discoveries Centre for Regenerative and Precision MedicineUniversity College London London UK
| |
Collapse
|
22
|
Pushpalatha KV, Besse F. Local Translation in Axons: When Membraneless RNP Granules Meet Membrane-Bound Organelles. Front Mol Biosci 2019; 6:129. [PMID: 31824961 PMCID: PMC6882739 DOI: 10.3389/fmolb.2019.00129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cell compartmentalization relies on long-known membrane-delimited organelles, as well as on more recently discovered membraneless macromolecular condensates. How these two types of organelles interact to regulate cellular functions is still largely unclear. In this review, we highlight how membraneless ribonucleoprotein (RNP) organelles, enriched in RNAs and associated regulatory proteins, cooperate with membrane-bound organelles for tight spatio-temporal control of gene expression in the axons of neuronal cells. Specifically, we present recent evidence that motile membrane-bound organelles are used as vehicles by RNP cargoes, promoting the long-range transport of mRNA molecules to distal axons. As demonstrated by recent work, membrane-bound organelles also promote local protein synthesis, by serving as platforms for the local translation of mRNAs recruited to their outer surface. Furthermore, dynamic and specific association between RNP cargoes and membrane-bound organelles is mediated by bi-partite adapter molecules that interact with both types of organelles selectively, in a regulated-manner. Maintaining such a dynamic interplay is critical, as alterations in this process are linked to neurodegenerative diseases. Together, emerging studies thus point to the coordination of membrane-bound and membraneless organelles as an organizing principle underlying local cellular responses.
Collapse
Affiliation(s)
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biology Valrose, Nice, France
| |
Collapse
|
23
|
Genovese S, Clément R, Gaultier C, Besse F, Narbonne-Reveau K, Daian F, Foppolo S, Luis NM, Maurange C. Coopted temporal patterning governs cellular hierarchy, heterogeneity and metabolism in Drosophila neuroblast tumors. eLife 2019; 8:e50375. [PMID: 31566561 PMCID: PMC6791719 DOI: 10.7554/elife.50375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
It is still unclear what drives progression of childhood tumors. During Drosophila larval development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We previously showed that temporal patterning also delineates an early developmental window during which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity. Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial redeployment of the temporal patterning program encoded in the cell of origin may govern the hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.
Collapse
Affiliation(s)
- Sara Genovese
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Raphaël Clément
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Cassandra Gaultier
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Florence Besse
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie ValroseNiceFrance
| | | | - Fabrice Daian
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Sophie Foppolo
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Nuno Miguel Luis
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Cédric Maurange
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| |
Collapse
|
24
|
Vijayakumar J, Perrois C, Heim M, Bousset L, Alberti S, Besse F. The prion-like domain of Drosophila Imp promotes axonal transport of RNP granules in vivo. Nat Commun 2019; 10:2593. [PMID: 31197139 PMCID: PMC6565635 DOI: 10.1038/s41467-019-10554-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/15/2019] [Indexed: 01/29/2023] Open
Abstract
Prion-like domains (PLDs), defined by their low sequence complexity and intrinsic disorder, are present in hundreds of human proteins. Although gain-of-function mutations in the PLDs of neuronal RNA-binding proteins have been linked to neurodegenerative disease progression, the physiological role of PLDs and their range of molecular functions are still largely unknown. Here, we show that the PLD of Drosophila Imp, a conserved component of neuronal ribonucleoprotein (RNP) granules, is essential for the developmentally-controlled localization of Imp RNP granules to axons and regulates in vivo axonal remodeling. Furthermore, we demonstrate that Imp PLD restricts, rather than promotes, granule assembly, revealing a novel modulatory function for PLDs in RNP granule homeostasis. Swapping the position of Imp PLD compromises RNP granule dynamic assembly but not transport, suggesting that these two functions are uncoupled. Together, our study uncovers a physiological function for PLDs in the spatio-temporal control of neuronal RNP assemblies. The physiological role of prion-like domains (PLDs) within RNA-binding proteins is not well understood. Here, authors show in Drosophila that the PLD in the protein Imp is required for localization of ribonucleoprotein granules to axons and axonal remodelling.
Collapse
Affiliation(s)
| | | | - Marjorie Heim
- University Côte d'Azur, CNRS, Inserm, iBV, Nice, 06100, France
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience, Orsay, 91505, France
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, Technische Universität Dresden, Dresden, 01307, Germany
| | - Florence Besse
- University Côte d'Azur, CNRS, Inserm, iBV, Nice, 06100, France.
| |
Collapse
|
25
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Fic W, Faria C, St Johnston D. IMP regulates Kuzbanian to control the timing of Notch signalling in Drosophila follicle cells. Development 2019; 146:dev.168963. [PMID: 30635283 PMCID: PMC6361131 DOI: 10.1242/dev.168963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The timing of Drosophila egg chamber development is controlled by a germline Delta signal that activates Notch in the follicle cells to induce them to cease proliferation and differentiate. Here, we report that follicle cells lacking the RNA-binding protein IMP go through one extra division owing to a delay in the Delta-dependent S2 cleavage of Notch. The timing of Notch activation has previously been shown to be controlled by cis-inhibition by Delta in the follicle cells, which is relieved when the miRNA pathway represses Delta expression. imp mutants are epistatic to Delta mutants and give an additive phenotype with belle and Dicer-1 mutants, indicating that IMP functions independently of both cis-inhibition and the miRNA pathway. We find that the imp phenotype is rescued by overexpression of Kuzbanian, the metalloprotease that mediates the Notch S2 cleavage. Furthermore, Kuzbanian is not enriched at the apical membrane in imp mutants, accumulating instead in late endosomes. Thus, IMP regulates Notch signalling by controlling the localisation of Kuzbanian to the apical domain, where Notch cleavage occurs, revealing a novel regulatory step in the Notch pathway.
Collapse
Affiliation(s)
| | | | - Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| |
Collapse
|
27
|
Razetti A, Medioni C, Malandain G, Besse F, Descombes X. A stochastic framework to model axon interactions within growing neuronal populations. PLoS Comput Biol 2018; 14:e1006627. [PMID: 30507939 PMCID: PMC6292646 DOI: 10.1371/journal.pcbi.1006627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The confined and crowded environment of developing brains imposes spatial constraints on neuronal cells that have evolved individual and collective strategies to optimize their growth. These include organizing neurons into populations extending their axons to common target territories. How individual axons interact with each other within such populations to optimize innervation is currently unclear and difficult to analyze experimentally in vivo. Here, we developed a stochastic model of 3D axon growth that takes into account spatial environmental constraints, physical interactions between neighboring axons, and branch formation. This general, predictive and robust model, when fed with parameters estimated on real neurons from the Drosophila brain, enabled the study of the mechanistic principles underlying the growth of axonal populations. First, it provided a novel explanation for the diversity of growth and branching patterns observed in vivo within populations of genetically identical neurons. Second, it uncovered that axon branching could be a strategy optimizing the overall growth of axons competing with others in contexts of high axonal density. The flexibility of this framework will make it possible to investigate the rules underlying axon growth and regeneration in the context of various neuronal populations. Understanding how neuronal cells establish complex circuits with specific functions within a developing brain is a major current challenge. Over the last past years, enormous progress has been done to precisely resolve brain anatomy and to dissect the mechanisms controlling the establishment of precise neuronal networks. However, due to the extreme complexity of the brain, it is still experimentally difficult to investigate in vivo how neurons interact with each other and with their physical environments to innervate target territories during development. Here, we have developed a framework that integrates a dynamic 3D mathematical model of single axonal growth with parameters estimated from neurons grown in vivo and simulations of entire populations of growing axons. The emergent properties of our model enable the study of the mechanistic principles underlying the growth of axonal population in developing brains. Specifically, our results highlight the impact of mechanical interactions on both individual and collective axon growth, and uncover how branching regulate this process.
Collapse
|
28
|
Duncan A, Klassen E, Srivastava A. Statistical shape analysis of simplified neuronal trees. Ann Appl Stat 2018. [DOI: 10.1214/17-aoas1107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Suter B. RNA localization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:938-951. [PMID: 30496039 DOI: 10.1016/j.bbagrm.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.
Collapse
Affiliation(s)
- Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
30
|
Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, Aibar S, Makhzami S, Christiaens V, Bravo González-Blas C, Poovathingal S, Hulselmans G, Spanier KI, Moerman T, Vanspauwen B, Geurs S, Voet T, Lammertyn J, Thienpont B, Liu S, Konstantinides N, Fiers M, Verstreken P, Aerts S. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 2018; 174:982-998.e20. [PMID: 29909982 PMCID: PMC6086935 DOI: 10.1016/j.cell.2018.05.057] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain. A single-cell atlas of the adult fly brain during aging Network inference reveals regulatory states related to oxidative phosphorylation Cell identity is retained during aging despite exponential decline of gene expression SCope: An online tool to explore and compare single-cell datasets across species
Collapse
Affiliation(s)
- Kristofer Davie
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Jasper Janssens
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Duygu Koldere
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Maxime De Waegeneer
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Uli Pech
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Łukasz Kreft
- VIB Bioinformatics Core, VIB, Ghent 9052, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Samira Makhzami
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Valerie Christiaens
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | | | - Gert Hulselmans
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Katina I Spanier
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Thomas Moerman
- ESAT, KU Leuven, Leuven 3001, Belgium; Smart Applications and Innovation Services, IMEC, Leuven 3001, Belgium
| | | | - Sarah Geurs
- Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | | | | | - Sha Liu
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | | | - Mark Fiers
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Patrik Verstreken
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
31
|
Neuronal RNP granules: from physiological to pathological assemblies. Biol Chem 2018; 399:623-635. [DOI: 10.1515/hsz-2018-0141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Neuronal cells rely on macro- and micro-cellular compartmentalization to rapidly process information, and respond locally to external stimuli. Such a cellular organization is achieved via the assembly of neuronal ribonucleoprotein (RNP) granules, dynamic membrane-less organelles enriched in RNAs and associated regulatory proteins. In this review, we discuss how these high-order structures transport mRNAs to dendrites and axons, and how they contribute to the spatio-temporal regulation of localized mRNA translation. We also highlight how recent biophysical studies have shed light on the mechanisms underlying neuronal RNP granule dynamic assembly, remodeling and maturation, in both physiological and pathological contexts.
Collapse
|
32
|
Uncovering Genomic Regions Associated with Trypanosoma Infections in Wild Populations of the Tsetse Fly Glossina fuscipes. G3-GENES GENOMES GENETICS 2018; 8:887-897. [PMID: 29343494 PMCID: PMC5844309 DOI: 10.1534/g3.117.300493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vector-borne diseases are responsible for > 1 million deaths every year but genomic resources for most species responsible for their transmission are limited. This is true for neglected diseases such as sleeping sickness (Human African Trypanosomiasis), a disease caused by Trypanosoma parasites vectored by several species of tseste flies within the genus Glossina. We describe an integrative approach that identifies statistical associations between trypanosome infection status of Glossina fuscipes fuscipes (Gff) flies from Uganda, for which functional studies are complicated because the species cannot be easily maintained in laboratory colonies, and ∼73,000 polymorphic sites distributed across the genome. Then, we identify candidate genes involved in Gff trypanosome susceptibility by taking advantage of genomic resources from a closely related species, G. morsitans morsitans (Gmm). We compiled a comprehensive transcript library from 72 published and unpublished RNAseq experiments of trypanosome-infected and uninfected Gmm flies, and improved the current Gmm transcriptome assembly. This new assembly was then used to enhance the functional annotations on the Gff genome. As a consequence, we identified 56 candidate genes in the vicinity of the 18 regions associated with Trypanosoma infection status in Gff. Twenty-nine of these genes were differentially expressed (DE) among parasite-infected and uninfected Gmm, suggesting that their orthologs in Gff may correlate with disease transmission. These genes were involved in DNA regulation, neurophysiological functions, and immune responses. We highlight the power of integrating population and functional genomics from related species to enhance our understanding of the genetic basis of physiological traits, particularly in nonmodel organisms.
Collapse
|
33
|
Common and Divergent Mechanisms in Developmental Neuronal Remodeling and Dying Back Neurodegeneration. Curr Biol 2017; 26:R628-R639. [PMID: 27404258 DOI: 10.1016/j.cub.2016.05.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell death is an inherent process that is required for the proper wiring of the nervous system. Studies over the last four decades have shown that, in a parallel developmental pathway, axons and dendrites are eliminated without the death of the neuron. This developmentally regulated 'axonal death' results in neuronal remodeling, which is an essential mechanism to sculpt neuronal networks in both vertebrates and invertebrates. Studies across various organisms have demonstrated that a conserved strategy in the formation of adult neuronal circuitry often involves generating too many connections, most of which are later eliminated with high temporal and spatial resolution. Can neuronal remodeling be regarded as developmentally and spatially regulated neurodegeneration? It has been previously speculated that injury-induced degeneration (Wallerian degeneration) shares some molecular features with 'dying back' neurodegenerative diseases. In this opinion piece, we examine the similarities and differences between the mechanisms regulating neuronal remodeling and those being perturbed in dying back neurodegenerative diseases. We focus primarily on amyotrophic lateral sclerosis and peripheral neuropathies and highlight possible shared pathways and mechanisms. While mechanistic data are only just beginning to emerge, and despite the inherent differences between disease-oriented and developmental processes, we believe that some of the similarities between these developmental and disease-initiated degeneration processes warrant closer collaborations and crosstalk between these different fields.
Collapse
|
34
|
Nicastro G, Candel AM, Uhl M, Oregioni A, Hollingworth D, Backofen R, Martin SR, Ramos A. Mechanism of β-actin mRNA Recognition by ZBP1. Cell Rep 2017; 18:1187-1199. [PMID: 28147274 PMCID: PMC5300891 DOI: 10.1016/j.celrep.2016.12.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 12/28/2016] [Indexed: 01/23/2023] Open
Abstract
Zipcode binding protein 1 (ZBP1) is an oncofetal RNA-binding protein that mediates the transport and local translation of β-actin mRNA by the KH3-KH4 di-domain, which is essential for neuronal development. The high-resolution structures of KH3-KH4 with their respective target sequences show that KH4 recognizes a non-canonical GGA sequence via an enlarged and dynamic hydrophobic groove, whereas KH3 binding to a core CA sequence occurs with low specificity. A data-informed kinetic simulation of the two-step binding reaction reveals that the overall reaction is driven by the second binding event and that the moderate affinities of the individual interactions favor RNA looping. Furthermore, the concentration of ZBP1, but not of the target RNA, modulates the interaction, which explains the functional significance of enhanced ZBP1 expression during embryonic development. The dynamic groove of ZBP1’s KH4 domain allows recognition of a G-rich RNA sequence ZBP1’s KH3 and KH4 domains bind their target RNA sequences with similar affinities RNA looping drives the ZBP1-β-actin interaction The protein, rather than the RNA, concentration regulates ZBP1-β-actin mRNA binding
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Adela M Candel
- At the former MRC National Institute for Medical Research, Mill Hill, London
| | - Michael Uhl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Alain Oregioni
- MRC Biomedical NMR Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - David Hollingworth
- Mycobacterial Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany; Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79110 Freiburg, Germany
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London WC1E 6XA, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
35
|
Vallejos Baier R, Picao-Osorio J, Alonso CR. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System. J Mol Biol 2017; 429:3290-3300. [PMID: 28366829 PMCID: PMC5656104 DOI: 10.1016/j.jmb.2017.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system.
Collapse
Affiliation(s)
- Raul Vallejos Baier
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Joao Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
36
|
Sharma V, Kohli S, Brahmachari V. Correlation between desiccation stress response and epigenetic modifications of genes in Drosophila melanogaster: An example of environment-epigenome interaction. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1058-1068. [PMID: 28801151 DOI: 10.1016/j.bbagrm.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/05/2017] [Indexed: 01/12/2023]
Abstract
Animals from different phyla including arthropods tolerate water stress to different extent. This tolerance is accompanied by biochemical changes which in turn are due to transcriptional alteration. The changes in transcription can be an indirect effect on some of the genes, ensuing from the effect of stress on the regulators of transcription including epigenetic regulators. Within this paradigm, we investigated the correlation between stress response and epigenetic modification underlying gene expression modulation during desiccation stress in Canton-S. We report altered resistance of flies in desiccation stress for heterozygote mutants of PcG and TrxG members. Pc/+ mutant shows lower survival, while ash1/+ mutants show higher survival under desiccation stress as compared to Canton-S. We detect expression alteration in stress related genes as well the genes of the Polycomb and trithorax complex in Canton-S subjected to desiccation stress. Concomitant with this, there is an altered enrichment of H3K27me3 and H3K4me3 at the upstream regions of the stress responsive genes. The enrichment of activating mark, H3K4me3, is higher in non-stress condition. H3K27me3, the repressive mark, is more pronounced under stress condition, which in turn, can be correlated with the binding of Pc. Our results show that desiccation stress induces dynamic switching in expression and enrichment of PcG and TrxG in the upstream region of genes, which correlates with histone modifications. We provide evidence that epigenetic modulation could be one of the mechanisms to adapt to the desiccation stress in Drosophila. Thus, our study proposes the interaction of epigenome and environmental factors.
Collapse
Affiliation(s)
- Vineeta Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India.
| | - Surbhi Kohli
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| |
Collapse
|
37
|
Regulatory Mechanisms of Metamorphic Neuronal Remodeling Revealed Through a Genome-Wide Modifier Screen in Drosophila melanogaster. Genetics 2017; 206:1429-1443. [PMID: 28476867 PMCID: PMC5500141 DOI: 10.1534/genetics.117.200378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 02/01/2023] Open
Abstract
During development, neuronal remodeling shapes neuronal connections to establish fully mature and functional nervous systems. Our previous studies have shown that the RNA-binding factor alan shepard (shep) is an important regulator of neuronal remodeling during metamorphosis in Drosophila melanogaster, and loss of shep leads to smaller soma size and fewer neurites in a stage-dependent manner. To shed light on the mechanisms by which shep regulates neuronal remodeling, we conducted a genetic modifier screen for suppressors of shep-dependent wing expansion defects and cellular morphological defects in a set of peptidergic neurons, the bursicon neurons, that promote posteclosion wing expansion. Out of 702 screened deficiencies that covered 86% of euchromatic genes, we isolated 24 deficiencies as candidate suppressors, and 12 of them at least partially suppressed morphological defects in shep mutant bursicon neurons. With RNA interference and mutant alleles of individual genes, we identified Daughters against dpp (Dad) and Olig family (Oli) as shep suppressor genes, and both of them restored the adult cellular morphology of shep-depleted bursicon neurons. Dad encodes an inhibitory Smad protein that inhibits bone morphogenetic protein (BMP) signaling, raising the possibility that shep interacted with BMP signaling through antagonism of Dad. By manipulating expression of the BMP receptor tkv, we found that activated BMP signaling was sufficient to rescue loss-of-shep phenotypes. These findings reveal mechanisms of shep regulation during neuronal development, and they highlight a novel genetic shep interaction with the BMP signaling pathway that controls morphogenesis in mature, terminally differentiated neurons during metamorphosis.
Collapse
|
38
|
Donlin-Asp PG, Rossoll W, Bassell GJ. Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 2017; 591:1508-1525. [PMID: 28295262 DOI: 10.1002/1873-3468.12621] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Coordinated regulation of mRNA localization and local translation are essential steps in cellular asymmetry and function. It is increasingly evident that mRNA-binding proteins play critical functions in controlling the fate of mRNA, including when and where translation occurs. In this review, we discuss the robust and complex roles that mRNA-binding proteins play in the regulation of local translation that impact cellular function in vertebrates. First, we discuss the role of local translation in cellular polarity and possible links to vertebrate development and patterning. Next, we discuss the expanding role for local protein synthesis in neuronal development and function, with special focus on how a number of neurological diseases have given us insight into the importance of translational regulation. Finally, we discuss the ever-increasing set of tools to study regulated translation and how these tools will be vital in pushing forward and addressing the outstanding questions in the field.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
39
|
Yaniv SP, Schuldiner O. A fly's view of neuronal remodeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:618-35. [PMID: 27351747 PMCID: PMC5086085 DOI: 10.1002/wdev.241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618–635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website
Collapse
Affiliation(s)
- Shiri P Yaniv
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Schuldiner
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Narbonne-Reveau K, Lanet E, Dillard C, Foppolo S, Chen CH, Parrinello H, Rialle S, Sokol NS, Maurange C. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. eLife 2016; 5:e13463. [PMID: 27296804 PMCID: PMC4907696 DOI: 10.7554/elife.13463] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/26/2016] [Indexed: 12/30/2022] Open
Abstract
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.
Collapse
Affiliation(s)
| | - Elodie Lanet
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ching-Huan Chen
- Department of Biology, Indiana University, Bloomington, United States
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, United States
| | | |
Collapse
|
41
|
Abstract
Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Heidi Theil Hansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Copenhagen, Denmark
| | - Jan Christiansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Zhang KX, Tan L, Pellegrini M, Zipursky SL, McEwen JM. Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Rep 2016; 14:1258-1271. [PMID: 26832407 DOI: 10.1016/j.celrep.2015.12.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
A common step in the formation of neural circuits is the conversion of growth cones to presynaptic terminals. Characterizing patterns of global gene expression during this process is problematic due to the cellular diversity of the brain and the complex temporal dynamics of development. Here, we take advantage of the synchronous conversion of Drosophila photoreceptor growth cones into presynaptic terminals to explore global changes in gene expression during presynaptic differentiation. Using a tandemly tagged ribosome trap (T-TRAP) and RNA sequencing (RNA-seq) at multiple developmental times, we observed dramatic changes in coding and non-coding RNAs with presynaptic differentiation. Marked changes in the mRNA encoding transmembrane and secreted proteins occurred preferentially. The 3' UTRs of transcripts encoding synaptic proteins were preferentially lengthened, and these extended UTRs were preferentially enriched for sites recognized by RNA binding proteins. These data provide a rich resource for uncovering the regulatory logic underlying presynaptic differentiation.
Collapse
Affiliation(s)
- Kelvin Xi Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, P.O. Box 951606, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| | - Jason M McEwen
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
43
|
Liu Z, Yang CP, Sugino K, Fu CC, Liu LY, Yao X, Lee LP, Lee T. Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science 2015; 350:317-20. [PMID: 26472907 DOI: 10.1126/science.aad1886] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neural stem cells show age-dependent developmental potentials, as evidenced by their production of distinct neuron types at different developmental times. Drosophila neuroblasts produce long, stereotyped lineages of neurons. We searched for factors that could regulate neural temporal fate by RNA-sequencing lineage-specific neuroblasts at various developmental times. We found that two RNA-binding proteins, IGF-II mRNA-binding protein (Imp) and Syncrip (Syp), display opposing high-to-low and low-to-high temporal gradients with lineage-specific temporal dynamics. Imp and Syp promote early and late fates, respectively, in both a slowly progressing and a rapidly changing lineage. Imp and Syp control neuronal fates in the mushroom body lineages by regulating the temporal transcription factor Chinmo translation. Together, the opposing Imp/Syp gradients encode stem cell age, specifying multiple cell fates within a lineage.
Collapse
Affiliation(s)
- Zhiyong Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Chi-Cheng Fu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA. Departments of Bioengineering, Electrical Engineering, and Computer Science, and Biophysics Graduate Program, University of California Berkeley, 408C Stanley Hall, Berkeley, CA, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Xiaohao Yao
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Luke P Lee
- Departments of Bioengineering, Electrical Engineering, and Computer Science, and Biophysics Graduate Program, University of California Berkeley, 408C Stanley Hall, Berkeley, CA, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, USA.
| |
Collapse
|
44
|
Hansen HT, Rasmussen SH, Adolph SK, Plass M, Krogh A, Sanford J, Nielsen FC, Christiansen J. Drosophila Imp iCLIP identifies an RNA assemblage coordinating F-actin formation. Genome Biol 2015; 16:123. [PMID: 26054396 PMCID: PMC4477473 DOI: 10.1186/s13059-015-0687-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022] Open
Abstract
Background Post-transcriptional RNA regulons ensure coordinated expression of monocistronic mRNAs encoding functionally related proteins. In this study, we employ a combination of RIP-seq and short- and long-wave individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) technologies in Drosophila cells to identify transcripts associated with cytoplasmic ribonucleoproteins (RNPs) containing the RNA-binding protein Imp. Results We find extensive binding of Imp to 3′ UTRs of transcripts that are involved in F-actin formation. A common denominator of the RNA–protein interface is the presence of multiple motifs with a central UA-rich element flanked by CA-rich elements. Experiments in single cells and intact flies reveal compromised actin cytoskeletal dynamics associated with low Imp levels. The former shows reduced F-actin formation and the latter exhibits abnormal neuronal patterning. This demonstrates a physiological significance of the defined RNA regulon. Conclusions Our data imply that Drosophila Imp RNPs may function as cytoplasmic mRNA assemblages that encode proteins which participate in actin cytoskeletal remodeling. Thus, they may facilitate coordinated protein expression in sub-cytoplasmic locations such as growth cones. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0687-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Theil Hansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Simon Horskjær Rasmussen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Sidsel Kramshøj Adolph
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Mireya Plass
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Anders Krogh
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Jeremy Sanford
- MCD Biology, University of California, Santa Cruz, CA, 95064, USA.
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Jan Christiansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
45
|
Medioni C, Ephrussi A, Besse F. Live imaging of axonal transport in Drosophila pupal brain explants. Nat Protoc 2015; 10:574-84. [PMID: 25763834 DOI: 10.1038/nprot.2015.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is essential for the initial growth, maintenance and synaptic plasticity of axons, and altered axonal transport has been observed in different models of neurodegenerative pathologies. Dissecting the mechanisms underlying axonal transport in developing or degenerating brains requires dynamic imaging of axonal cargo movement in living samples. Whereas methods exist to image axonal transport in Drosophila larval neurons, they are not suitable to follow this process during metamorphosis, when brains undergo extensive remodeling. Here we present a simple method that enables confocal imaging of both fast and slow axonal transport in Drosophila pupal brain explants. We describe how to prepare chambers adapted for live imaging, how to maintain brain explants under physiological conditions and how to monitor and quantitatively analyze the movement of fluorescently labeled cargoes. This protocol requires minimal equipment and is ideally suited for experiments that combine genetics, optogenetics and pharmacological approaches. The brains can be prepared for image acquisition in 1.5 h, and the protocol can be performed easily in any fly laboratory.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherche (UMR) 7277, Institut National de la Santé et de la Recherche Médicale (INSERM)-UMR1091, University of Nice-Sophia Antipolis, Nice, France
| | | | - Florence Besse
- Institute of Biology Valrose, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherche (UMR) 7277, Institut National de la Santé et de la Recherche Médicale (INSERM)-UMR1091, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
46
|
Piper M, Lee AC, van Horck FPG, McNeilly H, Lu TB, Harris WA, Holt CE. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Dev 2015; 10:3. [PMID: 25886013 PMCID: PMC4350973 DOI: 10.1186/s13064-015-0031-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Local protein synthesis (LPS) via receptor-mediated signaling plays a role in the directional responses of axons to extrinsic cues. An intact cytoskeleton is critical to enact these responses, but it is not known whether the two major cytoskeletal elements, F-actin and microtubules, have any roles in regulating axonal protein synthesis. RESULTS Here, we show that pharmacological disruption of either microtubules or actin filaments in growth cones blocks netrin-1-induced de novo synthesis of proteins, as measured by metabolic incorporation of labeled amino acids, implicating both elements in axonal synthesis. However, comparative analysis of the activated translation initiation regulator, eIF4E-BP1, revealed a striking difference in the point of action of the two elements: actin disruption completely inhibited netrin-1-induced eIF4E-BP1 phosphorylation while microtubule disruption had no effect. An intact F-actin, but not microtubule, cytoskeleton was also required for netrin-1-induced activation of the PI3K/Akt/mTOR pathway, upstream of translation initiation. Downstream of translation initiation, microtubules were required for netrin-1-induced activation of eukaryotic elongation factor 2 kinase (eEF2K) and eEF2. CONCLUSIONS Taken together, our results show that while actin and microtubules are both crucial for cue-induced axonal protein synthesis, they serve distinct roles with F-actin being required for the initiation of translation and microtubules acting later at the elongation step.
Collapse
Affiliation(s)
- Michael Piper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
- Current address: The School of Biomedical Sciences and the Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Aih Cheun Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
- Current address: Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Francisca P G van Horck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Heather McNeilly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Trina Bo Lu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
47
|
From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework. Neuroinformatics 2014; 13:175-91. [DOI: 10.1007/s12021-014-9255-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|