1
|
Santer RD, Allen WL. Insect visual perception and pest control: opportunities and challenges. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101331. [PMID: 39827991 DOI: 10.1016/j.cois.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Humans and insects inhabit very different perceptual worlds, so human experimenters need to be aware of their perceptual biases when investigating insect behaviour. In applied entomology, human perceptual biases have been a barrier to the rational design, manufacture, and improvement of pest control devices that effectively exploit insect visual behaviour. This review describes how the influence of human perceptual bias on this area of applied entomology is being reduced by our expanding understanding of insect visual perception and use of visual modelling methods and highlights several important challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Roger D Santer
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK.
| | | |
Collapse
|
2
|
Wang CWJ, Marshall NJ. Behavioural evidence of spectral opponent processing in the visual system of stomatopod crustaceans. J Exp Biol 2025; 228:jeb247952. [PMID: 39670570 PMCID: PMC11744319 DOI: 10.1242/jeb.247952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Stomatopods, commonly known as mantis shrimps, possess intricate colour vision with up to 12 photoreceptor classes arranged in four specialised ommatidia rows (rows 1-4 in the midband region of the eye) for colour perception. Whereas 2-4 spectral sensitivities suffice for most visual systems, the function and mechanism behind stomatopods' 12-channel colour vision remains unclear. Previous anatomical and behavioural studies have suggested that binning and opponent processing mechanisms may coexist in stomatopod colour vision. However, direct evidence of colour opponency has been lacking. We hypothesised that if colour opponency exists in stomatopod vision, they would be able to distinguish colour from grey under coloured illumination. Conversely, if only the binning system is used, they would not. By examining the colour vision of the stomatopod Haptosquilla trispinosa with modified von Frisch grey card experiments, we found that they can differentiate between colour and grey under various coloured illuminations. Our results provide the first direct behavioural evidence of spectral opponency in stomatopods, suggesting that they use a hybrid colour processing system combining opponent and binning mechanisms for colour vision. This study advances our understanding of the complex visual system in stomatopods and highlights the importance of further research into the processing mechanisms, function and evolution of their unique visual system.
Collapse
Affiliation(s)
- Ching-Wen Judy Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Brebner JS, Loconsole M, Hanley D, Vasas V. Through an animal's eye: the implications of diverse sensory systems in scientific experimentation. Proc Biol Sci 2024; 291:20240022. [PMID: 39016597 PMCID: PMC11253838 DOI: 10.1098/rspb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/01/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
'Accounting for the sensory abilities of animals is critical in experimental design.' No researcher would disagree with this statement, yet it is often the case that we inadvertently fall for anthropocentric biases and use ourselves as the reference point. This paper discusses the risks of adopting an anthropocentric view when working with non-human animals, and the unintended consequences this has on our experimental designs and results. To this aim, we provide general examples of anthropocentric bias from different fields of animal research, with a particular focus on animal cognition and behaviour, and lay out the potential consequences of adopting a human-based perspective. Knowledge of the sensory abilities, both in terms of similarities to humans and peculiarities of the investigated species, is crucial to ensure solid conclusions. A more careful consideration of the diverse sensory systems of animals would improve many scientific fields and enhance animal welfare in the laboratory.
Collapse
Affiliation(s)
- Joanna S. Brebner
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Maria Loconsole
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vera Vasas
- School of Life Sciences, University of Sussex, BrightonBN1 9RH, UK
| |
Collapse
|
4
|
Cronin TW, Porter ML, Bok MJ, Caldwell RL, Marshall J. Colour vision in stomatopod crustaceans. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210278. [PMID: 36058241 PMCID: PMC9441230 DOI: 10.1098/rstb.2021.0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The stomatopod crustaceans, or mantis shrimps, are colourful marine invertebrate predators. Their unusual compound eyes have dorsal and ventral regions resembling typical crustacean apposition designs separated by a unique region called the midband that consists of from two to six parallel rows of ommatidia. In species with six-row midbands, the dorsal four rows are themselves uniquely specialized for colour analysis. Rhabdoms of ommatidia in these rows are longitudinally divided into three distinct regions: an apical ultraviolet (UV) receptor, a shorter-wavelength middle tier receptor and a longer-wavelength proximal tier receptor. Each of the total of 12 photoreceptors has a different spectral sensitivity, potentially contributing to a colour-vision system with 12 channels. Mantis shrimps can discriminate both human-visible and UV colours, but with limited precision compared to other colour-vision systems. Here, we review the structure and function of stomatopod colour vision, examining the types of receptors present in a species, the spectral tuning of photoreceptors both within and across species, the neural analysis of colour and the genetics underlying the multiple visual pigments used for colour vision. Even today, after many decades of research into the colour vision of stomatopods, much of its operation and its use in nature remain a mystery. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Thomas W. Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 20250, USA
| | - Megan L. Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Michael J. Bok
- Department of Biology, Lund Vision Group, Lund University, Lund 22362, Sweden
| | - Roy L. Caldwell
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Yilmaz A, El Jundi B, Belušič G, Byrne M, Baird E, Dacke M. Mechanisms of spectral orientation in a diurnal dung beetle. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210287. [PMID: 36058237 PMCID: PMC9441229 DOI: 10.1098/rstb.2021.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Ball rolling dung beetles use a wide range of cues to steer themselves along a fixed bearing, including the spectral gradient of scattered skylight that spans the sky. Here, we define the spectral sensitivity of the diurnal dung beetle Kheper lamarcki and use the information to explore the orientation performance under a range of spectral light combinations. We find that, when presented with spectrally diverse stimuli, the beetles primarily orient to the apparent brightness differences as perceived by their green photoreceptors. Under certain wavelength combinations, they also rely on spectral information to guide their movements, but the brightness and spectral directional information is never fully disentangled. Overall, our results suggest the use of a dichromatic, primitive colour vision system for the extraction of directional information from the celestial spectral gradient to support straight-line orientation. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| | - Basil El Jundi
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Department of Zoology, Division of Functional Morphology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
6
|
Felin T, Koenderink J. A Generative View of Rationality and Growing Awareness †. Front Psychol 2022; 13:807261. [PMID: 35465538 PMCID: PMC9021390 DOI: 10.3389/fpsyg.2022.807261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper we contrast bounded and ecological rationality with a proposed alternative, generative rationality. Ecological approaches to rationality build on the idea of humans as "intuitive statisticians" while we argue for a more generative conception of humans as "probing organisms." We first highlight how ecological rationality's focus on cues and statistics is problematic for two reasons: (a) the problem of cue salience, and (b) the problem of cue uncertainty. We highlight these problems by revisiting the statistical and cue-based logic that underlies ecological rationality, which originate from the misapplication of concepts in psychophysics (e.g., signal detection, just-noticeable-differences). We then work through the most popular experimental task in the ecological rationality literature-the city size task-to illustrate how psychophysical assumptions have informally been linked to ecological rationality. After highlighting these problems, we contrast ecological rationality with a proposed alternative, generative rationality. Generative rationality builds on biology-in contrast to ecological rationality's focus on statistics. We argue that in uncertain environments cues are rarely given or available for statistical processing. Therefore we focus on the psychogenesis of awareness rather than psychophysics of cues. For any agent or organism, environments "teem" with indefinite cues, meanings and potential objects, the salience or relevance of which is scarcely obvious based on their statistical or physical properties. We focus on organism-specificity and the organism-directed probing that shapes awareness and perception. Cues in teeming environments are noticed when they serve as cues-for-something, requiring what might be called a "cue-to-clue" transformation. In this sense, awareness toward a cue or cues is actively "grown." We thus argue that perception might more productively be seen as the presentation of cues and objects rather than their representation. This generative approach not only applies to relatively mundane organism (including human) interactions with their environments-as well as organism-object relationships and their embodied nature-but also has significant implications for understanding the emergence of novelty in economic settings. We conclude with a discussion of how our arguments link with-but modify-Herbert Simon's popular "scissors" metaphor, as it applies to bounded rationality and its implications for decision making in uncertain, teeming environments.
Collapse
Affiliation(s)
- Teppo Felin
- Jon M. Huntsman School of Business, Utah State University, Logan, UT, United States
- Saïd Business School, University of Oxford, Oxford, United Kingdom
| | - Jan Koenderink
- Department of Experimental Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Connectome of the lamina reveals the circuit for early color processing in the visual pathway of a butterfly. Curr Biol 2022; 32:2291-2299.e3. [DOI: 10.1016/j.cub.2022.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023]
|
8
|
Remonato Franco B, Leis ML, Wong M, Shynkaruk T, Crowe T, Fancher B, French N, Gillingham S, Schwean-Lardner K. Light Color and the Commercial Broiler: Effect on Ocular Health and Visual Acuity. Front Physiol 2022; 13:855266. [PMID: 35360232 PMCID: PMC8960735 DOI: 10.3389/fphys.2022.855266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Light is a critical management factor for broiler production, and the wavelength spectrum, one of its components, can affect bird physiology, behavior and production. Among all the senses, sight is important to birds, and their visual system possess several adaptations that allow them to perceive light differently from humans. Therefore, it is critical to consider whether the exposure to monochromatic light colors influences broiler visual ability, which could affect behavioral expression. The present study examined the effects of various light colors on the visual systems of broiler chickens. Ross 708 males were raised from 0 to 35 days under three wavelength programs [blue (dominant wavelengths near 455 nm), green (dominant wavelengths near 510 nm) or white]. Broilers were given a complete ophthalmic examination, including chromatic pupillary light reflex testing, rebound tonometry, anterior segment biomicroscopy and indirect ophthalmoscopy (n = 36, day 21). To assess ocular anatomy, broilers were euthanized, eyes were weighed, and dimensions were taken (n = 108, day 16 and day 24). An autorefractor was used to assess the refractive index and the corneal curvature (n = 18, day 26). To evaluate spatial vision, broilers underwent a grating acuity test at one of three distances–50, 75, or 100 cm (n = 24, day 29). Data were analyzed as a one-way ANOVA using the MIXED procedure or Proc Par1way for non-normally distributed data. Significant differences were observed for refractive index and spatial vision. Birds raised under blue light were slightly more hyperopic, or far-sighted, than birds raised under white light (P = 0.01). As for spatial vision, birds raised under blue light took less time to approach the stimulus at distances of 50 cm (P = 0.03) and 75 cm (P = 0.0006) and had a higher success rate (choosing the right feeder, P = 0.03) at 100 cm than birds raised under white light. Improvements in spatial vision for birds exposed to blue light can partially explain the behavioral differences resulting from rearing broilers under different wavelengths.
Collapse
Affiliation(s)
- Bruna Remonato Franco
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Marina L. Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melody Wong
- Department of Ophthalmology, Saskatoon City Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tory Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Trever Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryan Fancher
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Nick French
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Scot Gillingham
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Karen Schwean-Lardner,
| |
Collapse
|
9
|
Streets A, England H, Marshall J. Colour vision in stomatopod crustaceans: more questions than answers. J Exp Biol 2022; 225:274564. [PMID: 35224643 PMCID: PMC9001920 DOI: 10.1242/jeb.243699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Stomatopod crustaceans, or mantis shrimps, are known for their extensive range of spectral sensitivities but relatively poor spectral discrimination. Instead of the colour-opponent mechanism of other colour vision systems, the 12 narrow-band colour channels they possess may underlie a different method of colour processing. We investigated one hypothesis, in which the photoreceptors are proposed to act as individual wave-band detectors, interpreting colour as a parallel pattern of photoreceptor activation, rather than a ratiometric comparison of individual signals. This different form of colour detection has been used to explain previous behavioural tests in which low saturation blue was not discriminated from grey, potentially because of similar activation patterns. Results here, however, indicate that the stomatopod, Haptosquilla trispinosa was able to easily distinguish several colours, including blue of both high and low saturation, from greys. The animals did show a decrease in performance over time in an artificially lit environment, indicating plasticity in colour discrimination ability. This rapid plasticity, most likely the result of a change in opsin (visual pigment) expression, has now been noted in several animal lineages (both invertebrate and vertebrate) and is a factor we suggest needing care and potential re-examination in any colour-based behavioural tests. As for stomatopods, it remains unclear why they achieve poor colour discrimination using the most comprehensive set of spectral sensitivities in the animal kingdom and also what form of colour processing they may utilise.
Collapse
Affiliation(s)
- Amy Streets
- Queensland Brain Institute, University of Queensland, Australia
| | - Hayley England
- Queensland Brain Institute, University of Queensland, Australia
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Australia
| |
Collapse
|
10
|
Muñoz-Galicia D, Castillo-Guevara C, Lara C. Innate and learnt color preferences in the common green-eyed white butterfly ( Leptophobia aripa): experimental evidence. PeerJ 2021; 9:e12567. [PMID: 34909282 PMCID: PMC8638565 DOI: 10.7717/peerj.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Learning abilities help animals modify their behaviors based on experience and innate sensory biases to confront environmental unpredictability. In a food acquisition context, the ability to detect, learn, and switch is fundamental in a wide range of insect species facing the ever-changing availability of their floral rewards. Here, we used an experimental approach to address the innate color preferences and learning abilities of the common green-eyed white butterfly (Leptophobia aripa). Methods In Experiment 1, we conducted innate preference choice-tests to determine whether butterflies had a strong innate color preference and to evaluate whether color preferences differed depending on the array of colors offered. We faced naïve butterflies to artificial flowers of four colors (quadruple choice-test): yellow, pink, white, and red; their choices were assessed. In Experiment 2, we examined the ability of this butterfly species to associate colors with rewards while exploring if the spectral reflectance value of a flower color can slow or accelerate this behavioral response. Butterflies were first trained to be fed from artificial yellow flowers inserted in a feeder. These were later replaced by artificial flowers with a similar (blue) or very different (white) spectral reflectance range. Each preference test comprised a dual-choice test (yellow vs blue, yellow vs white). Results Butterflies showed an innate strong preference for red flowers. Both the number of visits and the time spent probing these flowers were much greater than the pink, white, and yellow color flowers. Butterflies learn to associate colors with sugar rewards. They then learned the newly rewarded colors as quickly and proficiently as if the previously rewarded color was similar in spectral reflectance value; the opposite occurs if the newly rewarded color is very different than the previously rewarded color. Conclusions Our findings suggest that common green-eyed white butterflies have good learning abilities. These capabilities may allow them to respond rapidly to different color stimulus.
Collapse
Affiliation(s)
- Deysi Muñoz-Galicia
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe, Ixtacuixtla, Tlaxcala, Mexico
| | - Citlalli Castillo-Guevara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe, Ixtacuixtla, Tlaxcala, Mexico
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe, Ixtacuixtla, Tlaxcala, Mexico
| |
Collapse
|
11
|
Douglas HD, Ermakov IV, Gellermann W. Brighter is better: bill fluorescence increases social attraction in a colonial seabird and reveals a potential link with foraging. Behav Ecol Sociobiol 2021; 75. [PMID: 34840402 DOI: 10.1007/s00265-021-03087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Crested auklets (Aethia cristatella) are colonial seabirds with brilliant orange bills during the breeding season. We characterized the bill pigment with spectroscopy methods (resonance Raman, fluorescence, absorbance). We excluded carotenoids as a possible chromophore and showed that the pigment most closely resembles pterins. Like pterins the bill pigment fluoresces, and it occurred in two phenotypes that may differ geographically, perhaps due to environmental heterogeneity. The pigment is unique in the Genus Aethia, and its spectra did not match any known molecule. The UV-Vis absorbance spectrum of the bill pigment overlaps with the extracted pigment of euphausiids, a favored food of crested auklets. A color preference associated with prey may have favored characteristics of the crested auklet's accessory bill plates. Crest size, a signal of dominance, tended to correlate positively with highest fluorescence in the single-band phenotype. Brighter bills may function in self-advertisement and verify the status signal of the crest ornament. We tested for a behavioral preference using identical decoys that differed only in bill fluorescence. Crested auklets approached models with fluorescent bills at a higher frequency. In cases where sex of crested auklets was known, males responded at a higher frequency to fluorescent bills, but females did not. In an evolutionary context, bill fluorescence could have conferred an advantage in social interactions, e.g., in dimly lit rock crevices. Bill brightness and color may communicate success in foraging and may function as an honest signal of mate quality.
Collapse
Affiliation(s)
- H D Douglas
- Science Department, College of Community and Rural Development, University of Alaska Fairbanks, Fairbanks, AK 99775.,Current address: Dept. Biological Sciences, Grambling State University, Grambling, LA 71245
| | - I V Ermakov
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112.,Current address: Longevity Link Corporation, Salt Lake City, UT 84108
| | - W Gellermann
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112.,Current address: Longevity Link Corporation, Salt Lake City, UT 84108
| |
Collapse
|
12
|
Dyer AG, Greentree AD, Garcia JE, Dyer EL, Howard SR, Barth FG. Einstein, von Frisch and the honeybee: a historical letter comes to light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:449-456. [PMID: 33970340 PMCID: PMC8222030 DOI: 10.1007/s00359-021-01490-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022]
Abstract
The work of the Nobel Laureate Karl von Frisch, the founder of this journal, was seminal in many ways. He established the honeybee as a key animal model for experimental behavioural studies on sensory perception, learning and memory, and first correctly interpreted its famous dance communication. Here, we report on a previously unknown letter by the Physicist and Nobel Laureate Albert Einstein that was written in October 1949. It briefly addresses the work of von Frisch and also queries how understanding animal perception and navigation may lead to innovations in physics. We discuss records proving that Einstein and von Frisch met in April 1949 when von Frisch visited the USA to present a lecture on bees at Princeton University. In the historical context of Einstein’s theories and thought experiments, we discuss some more recent discoveries of animal sensory capabilities alien to us humans and potentially valuable for bio-inspired design improvements. We also address the orientation of animals like migratory birds mentioned by Einstein 70 years ago, which pushes the boundaries of our understanding nature, both its biology and physics.
Collapse
Affiliation(s)
- Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew D Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Elinya L Dyer
- Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3217, Australia
| | - Friedrich G Barth
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Sondhi Y, Ellis EA, Bybee SM, Theobald JC, Kawahara AY. Light environment drives evolution of color vision genes in butterflies and moths. Commun Biol 2021; 4:177. [PMID: 33564115 PMCID: PMC7873203 DOI: 10.1038/s42003-021-01688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster-at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera.
Collapse
Affiliation(s)
- Yash Sondhi
- Department of Biology, Florida International University, Miami, FL, USA.
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University, Miami, FL, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Stoddard MC, Eyster HN, Hogan BG, Morris DH, Soucy ER, Inouye DW. Wild hummingbirds discriminate nonspectral colors. Proc Natl Acad Sci U S A 2020; 117:15112-15122. [PMID: 32541035 PMCID: PMC7334476 DOI: 10.1073/pnas.1919377117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds' extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.
Collapse
Affiliation(s)
- Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Harold N Eyster
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Benedict G Hogan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Edward R Soucy
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - David W Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
15
|
Complexity and plasticity in honey bee phototactic behaviour. Sci Rep 2020; 10:7872. [PMID: 32398687 PMCID: PMC7217928 DOI: 10.1038/s41598-020-64782-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/21/2020] [Indexed: 11/28/2022] Open
Abstract
The ability to move towards or away from a light source, namely phototaxis, is essential for a number of species to find the right environmental niche and may have driven the appearance of simple visual systems. In this study we ask if the later evolution of more complex visual systems was accompanied by a sophistication of phototactic behaviour. The honey bee is an ideal model organism to tackle this question, as it has an elaborate visual system, demonstrates exquisite abilities for visual learning and performs phototaxis. Our data suggest that in this insect, phototaxis has wavelength specific properties and is a highly dynamical response including multiple decision steps. In addition, we show that previous experience with a light (through exposure or classical aversive conditioning) modulates the phototactic response. This plasticity is dependent on the wavelength used, with blue being more labile than green or ultraviolet. Wavelength, intensity and past experience are integrated into an overall valence for each light that determines phototactic behaviour in honey bees. Thus, our results support the idea that complex visual systems allow sophisticated phototaxis. Future studies could take advantage of these findings to better understand the neuronal circuits underlying this processing of the visual information.
Collapse
|
16
|
Nagloo N, Kinoshita M, Arikawa K. Spectral organization of the compound eye of a migrating nymphalid, the chestnut tiger butterfly Parantica sita. J Exp Biol 2020; 223:jeb217703. [PMID: 31900350 DOI: 10.1242/jeb.217703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
Several butterflies of family Nymphalidae perform long-distance migration. Extensive studies of migration in the iconic monarch butterfly Danaus plexippus have revealed that vision plays a crucial role in migratory orientation. Differences in the migratory patterns of butterflies suggest that not all species are exposed to the same visual conditions and yet, little is known about how the visual system varies across migratory species. Here, we used intracellular electrophysiology, dye injection and electron microscopy to assess the spectral and polarization properties of the photoreceptors of a migrating nymphalid, Parantica sita Our findings reveal three spectral classes of photoreceptors including ultraviolet, blue and green receptors. The green receptor class contains three subclasses, which are broad, narrow and double-peaking green receptors. Ultraviolet and blue receptors are sensitive to polarized light parallel to the dorso-ventral axis of the animal, while the variety of green receptors are sensitive to light polarized at 45 deg, 90 deg and 135 deg away from the dorso-ventral axis. The polarization sensitivity ratio is constant across spectral receptor classes at around 1.8. Although P. sita has a typical nymphalid eye with three classes of spectral receptors, subtle differences exist among the eyes of migratory nymphalids, which may be genus specific.
Collapse
Affiliation(s)
- Nicolas Nagloo
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| |
Collapse
|
17
|
Franklin AM, Marshall J, Feinstein AD, Bok MJ, Byrd AD, Lewis SM. Differences in signal contrast and camouflage among different colour variations of a stomatopod crustacean, Neogonodactylus oerstedii. Sci Rep 2020; 10:1236. [PMID: 31988305 PMCID: PMC6985165 DOI: 10.1038/s41598-020-57990-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
Animal colouration is often a trade-off between background matching for camouflage from predators, and conspicuousness for communication with con- or heterospecifics. Stomatopods are marine crustaceans known to use colour signals during courtship and contests, while their overall body colouration may provide camouflage. However, we have little understanding of how stomatopods perceive these signals in their environment or whether overall body coloration does provide camouflage from predators. Neogonodactylus oerstedii assess meral spot colour during contests, and meral spot colour varies depending on local habitat. By calculating quantum catch for N. oerstedii's 12 photoreceptors associated with chromatic vision, we found that variation in meral spot total reflectance does not function to increase signal contrast in the local habitat. Neogonodactylus oerstedii also show between-habitat variation in dorsal body colouration. We used visual models to predict a trichromatic fish predator's perception of these colour variations. Our results suggest that sandy and green stomatopods are camouflaged from a typical fish predator in rubble fields and seagrass beds, respectively. To our knowledge, this is the first study to investigate signal contrast and camouflage in a stomatopod. These results provide new insight into the function and evolution of colouration in a species with a complex visual system.
Collapse
Affiliation(s)
- Amanda M Franklin
- Biology Department, Tufts University, Medford, MA, 02155, USA. .,School of Biosciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | - Michael J Bok
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| | - Anya D Byrd
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Sara M Lewis
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
18
|
Franke K, Maia Chagas A, Zhao Z, Zimmermann MJY, Bartel P, Qiu Y, Szatko KP, Baden T, Euler T. An arbitrary-spectrum spatial visual stimulator for vision research. eLife 2019; 8:e48779. [PMID: 31545172 PMCID: PMC6783264 DOI: 10.7554/elife.48779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Visual neuroscientists require accurate control of visual stimulation. However, few stimulator solutions simultaneously offer high spatio-temporal resolution and free control over the spectra of the light sources, because they rely on off-the-shelf technology developed for human trichromatic vision. Importantly, consumer displays fail to drive UV-shifted short wavelength-sensitive photoreceptors, which strongly contribute to visual behaviour in many animals, including mice, zebrafish and fruit flies. Moreover, many non-mammalian species feature more than three spectral photoreceptor types. Here, we present a flexible, spatial visual stimulator with up to six arbitrary spectrum chromatic channels. It combines a standard digital light processing engine with open source hard- and software that can be easily adapted to the experimentalist's needs. We demonstrate the capability of this general visual stimulator experimentally in the in vitro mouse retinal whole-mount and the in vivo zebrafish. With this work, we intend to start a community effort of sharing and developing a common stimulator design for vision research.
Collapse
Affiliation(s)
- Katrin Franke
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
| | - André Maia Chagas
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Zhijian Zhao
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
| | - Maxime JY Zimmermann
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Philipp Bartel
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Yongrong Qiu
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
| | - Klaudia P Szatko
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
| | - Tom Baden
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUnited Kingdom
| | - Thomas Euler
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
- Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
| |
Collapse
|
19
|
Daly IM, How MJ, Partridge JC, Roberts NW. Gaze stabilization in mantis shrimp in response to angled stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:515-527. [PMID: 31093738 PMCID: PMC6647723 DOI: 10.1007/s00359-019-01341-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/24/2022]
Abstract
Gaze stabilization is a fundamental aspect of vision and almost all animals shift their eyes to compensate for any self-movement relative to the external environment. When it comes to mantis shrimp, however, the situation becomes complicated due to the complexity of their visual system and their range of eye movements. The stalked eyes of mantis shrimp can independently move left and right, and up and down, whilst simultaneously rotating about the axis of the eye stalks. Despite the large range of rotational freedom, mantis shrimp nevertheless show a stereotypical gaze stabilization response to horizontal motion of a wide-field, high-contrast stimulus. This response is often accompanied by pitch (up-down) and torsion (about the eye stalk) rotations which, surprisingly, have no effect on the performance of yaw (side-to-side) gaze stabilization. This unusual feature of mantis shrimp vision suggests that their neural circuitry for detecting motion is radially symmetric and immune to the confounding effects of torsional self-motion. In this work, we reinforce this finding, demonstrating that the yaw gaze stabilization response of the mantis shrimp is robust to the ambiguous motion cues arising from the motion of striped visual gratings in which the angle of a grating is offset from its direction of travel.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Julian C Partridge
- Oceans Institute, University of Western Australia, 35 Stirling Highway, (M470), Crawley, WA, 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
20
|
Sarkar R, Sau S, Bhadra A. Scavengers can be choosers: A study on food preference in free-ranging dogs. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
23
|
Abstract
As land-locked animals, when we visualise the ocean our mind's eye may see crashing waves or a vast blue expanse stretching to the horizon, a raft of torpedoing penguins, a glimpse of colourful coral reef fish from the shark-free safety of a sandy beach. Underwater, the crystal-clear, and in fact not at all silent, world of Jacques Cousteau, or more recently David Attenborough, is a wonderland that some cannot wait to witness first hand as divers, while others are content to see it on a screen. Spend a bit of time underwater, in the English Channel for example, and a few facts emerge. Most obviously, much of this underwater realm is visually very different to land and indeed to the cherry-picked clear waters of documentaries. It may be disappointingly murky and monochromatic. Perhaps surprisingly, therefore, on close inspection the diversity of eye designs and light sensing mechanisms that evolved in the ocean are more varied than on land, reflecting the greater range of light environments and lifestyles of the marine world. Particularly in the last ten years, the destructive influence we are having on the oceans has become visibly obvious, not just to fisheries biologists and ecologists, but to anyone returning to a favourite dive spot or reef resort. Climate change, as a result of burning fossil fuels, human greed and carelessness with plastic disposal, are rapidly degrading entire oceanic ecosystems.
Collapse
Affiliation(s)
- Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
24
|
Pirih P, Ilić M, Rudolf J, Arikawa K, Stavenga DG, Belušič G. The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:639-651. [PMID: 29869100 PMCID: PMC6028894 DOI: 10.1007/s00359-018-1267-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
Abstract
The palm borer moth Paysandisia archon (Burmeister, 1880) (fam. Castniidae) is a large, diurnally active palm pest. Its compound eyes consist of ~ 20,000 ommatidia and have apposition optics with interommatidial angles below 1°. The ommatidia contain nine photoreceptor cells and appear structurally similar to those in nymphalid butterflies. Two morphological ommatidial types were identified. Using the butterfly numbering scheme, in type I ommatidia, the distal rhabdom consists exclusively of the rhabdomeres of photoreceptors R1–2; the medial rhabdom has contributions from R1–8. The rhabdom in type II ommatidia is distally split into two sub-rhabdoms, with contributions from photoreceptors R2, R3, R5, R6 and R1, R4, R7, R8, respectively; medially, only R3–8 and not R1–2 contribute to the fused rhabdom. In both types, the pigmented bilobed photoreceptors R9 contribute to the rhabdom basally. Their nuclei reside in one of the lobes. Upon light adaptation, in both ommatidial types, the rhabdoms secede from the crystalline cones and pigment granules invade the gap. Intracellular recordings identified four photoreceptor classes with peak sensitivities in the ultraviolet, blue, green and orange wavelength regions (at 360, 465, 550, 580 nm, respectively). We discuss the eye morphology and optics, the photoreceptor spectral sensitivities, and the adaptation to daytime activity from a phylogenetic perspective.
Collapse
Affiliation(s)
- Primož Pirih
- Department of Evolutionary Studies of Biosystems, SOKENDAI The Graduate University for Advanced Studies, Shonan International Village, Hayama, 240-0115, Kanagawa, Japan. .,Department of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands.
| | - Marko Ilić
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Jerneja Rudolf
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006, Bergen, Norway
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI The Graduate University for Advanced Studies, Shonan International Village, Hayama, 240-0115, Kanagawa, Japan
| | - Doekele G Stavenga
- Department of Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL, 9747AG, Groningen, The Netherlands
| | - Gregor Belušič
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
25
|
Lessios N, Rutowski RL, Cohen JH, Sayre ME, Strausfeld NJ. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates. ACTA ACUST UNITED AC 2018; 221:jeb.165860. [PMID: 29622664 DOI: 10.1242/jeb.165860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/31/2018] [Indexed: 11/20/2022]
Abstract
Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats.
Collapse
Affiliation(s)
- Nicolas Lessios
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA .,Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| | - Ronald L Rutowski
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jonathan H Cohen
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Marcel E Sayre
- Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| |
Collapse
|
26
|
Daly IM, How MJ, Partridge JC, Roberts NW. Complex gaze stabilization in mantis shrimp. Proc Biol Sci 2018; 285:20180594. [PMID: 29720419 PMCID: PMC5966611 DOI: 10.1098/rspb.2018.0594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 11/12/2022] Open
Abstract
Almost all animals, regardless of the anatomy of the eyes, require some level of gaze stabilization in order to see the world clearly and without blur. For the mantis shrimp, achieving gaze stabilization is unusually challenging as their eyes have an unprecedented scope for movement in all three rotational degrees of freedom: yaw, pitch and torsion. We demonstrate that the species Odontodactylus scyllarus performs stereotypical gaze stabilization in the yaw degree of rotational freedom, which is accompanied by simultaneous changes in the pitch and torsion rotation of the eye. Surprisingly, yaw gaze stabilization performance is unaffected by both the torsional pose and the rate of torsional rotation of the eye. Further to this, we show, for the first time, a lack of a torsional gaze stabilization response in the stomatopod visual system. In the light of these findings, we suggest that the neural wide-field motion detection network in the stomatopod visual system may follow a radially symmetric organization to compensate for the potentially disorientating effects of torsional eye movements, a system likely to be unique to stomatopods.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julian C Partridge
- School of Biological Sciences and the Oceans Institute, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
27
|
Tcheslavski GV, Vasefi M, Gonen FF. Response of a human visual system to continuous color variation: An EEG-based approach. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Song BM, Lee CH. Toward a Mechanistic Understanding of Color Vision in Insects. Front Neural Circuits 2018; 12:16. [PMID: 29527156 PMCID: PMC5829095 DOI: 10.3389/fncir.2018.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
Many visual animals exploit spectral information for seeking food and mates, for identifying preys and predators, and for navigation. Animals use chromatic information in two ways. "True color vision," the ability to discriminate visual stimuli on the basis of their spectral content independent of brightness, is thought to play an important role in object identification. In contrast, "wavelength-specific behavior," which is strongly dependent on brightness, often associates with foraging, navigation, and other species-specific needs. Among animals capable of chromatic vision, insects, with their diverse habitats, stereotyped behaviors, well-characterized anatomy and powerful genetic tools, are attractive systems for studying chromatic information processing. In this review, we first discuss insect photoreceptors and the relationship between their spectral sensitivity and animals' color vision and ecology. Second, we review recent studies that dissect chromatic circuits and explore neural mechanisms of chromatic information processing. Finally, we review insect behaviors involving "true color vision" and "wavelength-specific behaviors," especially in bees, butterflies, and flies. We include examples of high-order color vision, such as color contrast and constancy, which are shared by vertebrates. We focus on Drosophila studies that identified neuronal correlates of color vision and innate spectral preferences. We also discuss the electrophysiological studies in bees that reveal color encoding. Despite structural differences between insects' and vertebrates' visual systems, their chromatic vision appears to employ the same processing principles, such as color opponency, suggesting convergent solutions of neural computation to common problems.
Collapse
|
29
|
Cronin TW, Garcia M, Gruev V. Multichannel spectrometers in animals. BIOINSPIRATION & BIOMIMETICS 2018; 13:021001. [PMID: 29313524 DOI: 10.1088/1748-3190/aaa61b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multispectral, hyperspectral, polarimetric, and other types of multichannel imaging spectrometers are coming into common use for a variety of applications, including remote sensing, material identification, forensics, and medical diagnosis. These instruments are often bulky and intolerant of field abuse, so designing compact, reliable, portable, and robust devices is a priority. In contrast to most engineering designs, animals have been building compact and robust multichannel imaging systems for millennia-their eyes. Biological sensors arise by evolution, of course, and are not designed 'for' a particular use; they exist because the creatures that were blessed with useful mutations were better able to survive and reproduce than their competitors. While this is an inefficient process for perfecting a sensor, it brings unexpected innovations and novel concepts into visual system design-concepts that may be useful in the inspiration of new engineered solutions to problematic challenges, like the ones mentioned above. Here, we review a diversity of multichannel visual systems from both vertebrate and invertebrate animals, considering the receptor molecules and cells, spectral sensitivity and its tuning, and some aspects of the higher-level processing systems used to shape spectral (and polarizational) channels in vision. The eyes of mantis shrimps are presented as potential models for biomimetic multichannel imaging systems. We end with a description of a bioinspired, newly developed multichannel spectral/polarimetric imaging system based on mantis shrimp vision that is highly adaptable to field application.
Collapse
Affiliation(s)
- Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States of America
| | | | | |
Collapse
|
30
|
QUINA FRANKH, BASTOS ERICKL. Chemistry Inspired by the Colors of Fruits, Flowers and Wine. ACTA ACUST UNITED AC 2018; 90:681-695. [DOI: 10.1590/0001-3765201820170492] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022]
|
31
|
Jacobs GH. Photopigments and the dimensionality of animal color vision. Neurosci Biobehav Rev 2017; 86:108-130. [PMID: 29224775 DOI: 10.1016/j.neubiorev.2017.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022]
Abstract
Early color-matching studies established that normal human color vision is trichromatic. Subsequent research revealed a causal link between trichromacy and the presence in the retina of three classes of cone photopigments. Over the years, measurements of the photopigment complements of other species have expanded greatly and these are frequently used to predict the dimensionality of an animal's color vision. This review provides an account of how the linkage between the number of active photopigments and the dimensions of human color vision developed, summarizes the various mechanisms that can impact photopigment spectra and number, and provides an across-species survey to examine cases where the photopigment link to the dimensionality of color vision has been claimed. The literature reveals numerous instances where the human model fails to account for the ways in which the visual systems of other animals exploit information obtained from the presence of multiple photopigments in support of their behavior.
Collapse
Affiliation(s)
- Gerald H Jacobs
- Department of Psychological and Brain Science, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
32
|
Thoen HH, Chiou TH, Marshall NJ. Intracellular Recordings of Spectral Sensitivities in Stomatopods: a Comparison across Species. Integr Comp Biol 2017; 57:1117-1129. [PMID: 28992286 DOI: 10.1093/icb/icx111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stomatopods (mantis shrimps) possess one of the most complex eyes in the world with photoreceptors detecting up to 12 different colors. It is not yet understood why stomatopods have almost four times the number of spectral photoreceptors compared with most other animals. It has, however, been suggested that these seemingly redundant photoreceptors could encode color through a new mechanism. Here we compare the spectral sensitivities across five species of stomatopods within the superfamily Gonodactyloidea using intracellular electrophysiological recordings. The results show that the spectral sensitivities across species of stomatopods are remarkably similar apart from some variation in the long-wavelength receptors. We relate these results to spectral sensitivity estimates previously obtained using microspectrophotometry and discuss the variation in the spectral sensitivity maxima (λmax) of the long-wavelength receptors in regard to the previous findings that stomatopods are able to tune their spectral sensitivities according to their respective light environment. We further discuss the similarities of the spectral sensitivities across species of stomatopods in regard to how color information might be processed by their visual systems.
Collapse
Affiliation(s)
- Hanne H Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan City 70101, Taiwan, ROC
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
33
|
Nokelainen O, Hubbard N, Lown AE, Wood LE, Stevens M. Through predators’ eyes: phenotype–environment associations in shore crab coloration at different spatial scales. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
34
|
Franklin AM, Applegate MB, Lewis SM, Omenetto FG. Stomatopods detect and assess achromatic cues in contests. Behav Ecol 2017. [DOI: 10.1093/beheco/arx096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
35
|
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. The biology of color. Science 2017; 357:357/6350/eaan0221. [DOI: 10.1126/science.aan0221] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Arikawa K. The eyes and vision of butterflies. J Physiol 2017; 595:5457-5464. [PMID: 28332207 DOI: 10.1113/jp273917] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Butterflies use colour vision when searching for flowers. Unlike the trichromatic retinas of humans (blue, green and red cones; plus rods) and honeybees (ultraviolet, blue and green photoreceptors), butterfly retinas typically have six or more photoreceptor classes with distinct spectral sensitivities. The eyes of the Japanese yellow swallowtail (Papilio xuthus) contain ultraviolet, violet, blue, green, red and broad-band receptors, with each ommatidium housing nine photoreceptor cells in one of three fixed combinations. The Papilio eye is thus a random patchwork of three types of spectrally heterogeneous ommatidia. To determine whether Papilio use all of their receptors to see colours, we measured their ability to discriminate monochromatic lights of slightly different wavelengths. We found that Papilio can detect differences as small as 1-2 nm in three wavelength regions, rivalling human performance. We then used mathematical modelling to infer which photoreceptors are involved in wavelength discrimination. Our simulation indicated that the Papilio vision is tetrachromatic, employing the ultraviolet, blue, green and red receptors. The random array of three ommatidial types is a common feature in butterflies. To address the question of how the spectrally complex eyes of butterflies evolved, we studied their developmental process. We have found that the development of butterfly eyes shares its molecular logic with that of Drosophila: the three-way stochastic expression pattern of the transcription factor Spineless determines the fate of ommatidia, creating the random array in Papilio.
Collapse
|
37
|
Wee JLQ, Monteiro A. Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators. PLoS One 2017; 12:e0168243. [PMID: 28060944 PMCID: PMC5218396 DOI: 10.1371/journal.pone.0168243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
Butterflies of the South Asian and Australian genus Delias possess striking colours on the ventral wings that are presumed to serve as warning signals to predators. However, this has not been shown empirically. Here we experimentally tested whether the colours of one member of this diverse genus, Delias hyparete, function as aposematic signals. We constructed artificial paper models with either a faithful colour representation of D. hyparete, or with all of its colours converted to grey scale. We also produced models where single colours were left intact, while others were converted to grey-scale or removed entirely. We placed all model types simultaneously in the field, attached to a live mealworm, and measured relative attack rates at three separate field sites. Faithful models of D. hyparete, suffered the least amount of attacks, followed by grey-scale models with unaltered red patches, and by grey-scale models with unaltered yellow patches. We conclude that red and yellow colours function as warning signals. By mapping dorsal and ventral colouration onto a phylogeny of Delias, we observed that yellow and red colours appear almost exclusively on the ventral wing surfaces, and that basal lineages have mostly yellow, white, and black wings, whereas derived lineages contain red colour in addition to the other colours. Red appears to be, thus, a novel adaptive trait in this lineage of butterflies.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Yale-NUS College, Singapore, Singapore
| |
Collapse
|
38
|
Brandon CS, Greenwold MJ, Dudycha JL. Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins. J Mol Evol 2016; 84:12-28. [PMID: 28004131 DOI: 10.1007/s00239-016-9777-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/04/2016] [Indexed: 11/26/2022]
Abstract
Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.
Collapse
Affiliation(s)
- Christopher S Brandon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
39
|
Takeuchi T. Agonistic display or courtship behavior? A review of contests over mating opportunity in butterflies. J ETHOL 2016; 35:3-12. [PMID: 28127115 PMCID: PMC5215026 DOI: 10.1007/s10164-016-0487-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Male butterflies compete over mating opportunities. Two types of contest behavior are reported. Males of various butterfly species compete over a mating territory via aerial interactions until one of the two contestants retreats. Males of other butterfly species fly around larval food plants to find receptive females. Males of some species among the latter type can find a conspecific pupa, and they gather around it without expelling their rivals. Scramble competition over mating occurs when a female emerges from the pupa. Many studies have been performed on territorial species, and their contest resolution has often been understood from the point of view of contest models based on game theory. However, these models cannot explain why these butterflies perform contest displays despite the fact that they do not have the ability to attack their opponent. A recent study based on Lloyd Morgan’s Canon showed that territorial contests of male butterflies are better understood as erroneous courtship between sexually active males. In this paper, I review research on contests over mating opportunity in butterflies, and show that the erroneous courtship framework can explain not only territorial contests of butterflies but also why males do not determine the owner of a conspecific pupa.
Collapse
Affiliation(s)
- Tsuyoshi Takeuchi
- Entomological Laboratory, Graduate School of Life and Environmental Science, Osaka Prefecture University, Gakuencho1-1, Nakaku, Sakai, 5998531 Japan
| |
Collapse
|
40
|
Franklin AM, Marshall NJ, Lewis SM. Multimodal signals: ultraviolet reflectance and chemical cues in stomatopod agonistic encounters. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160329. [PMID: 27853613 PMCID: PMC5108963 DOI: 10.1098/rsos.160329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Complex signals are commonly used during intraspecific contests over resources to assess an opponent's fighting ability and/or aggressive state. Stomatopod crustaceans may use complex signals when competing aggressively for refuges. Before physical attacks, stomatopods assess their opponents using chemical cues and perform threat displays showing a coloured patch, the meral spot. In some species, this spot reflects UV. However, despite their complex visual system with up to 20 photoreceptor classes, we do not know if stomatopods use chromatic or achromatic signals in contests. In a field study, we found that Neogonodactylus oerstedii meral spot luminance varies with sex, habitat and, more weakly, body length. Next, we conducted an experimental manipulation which demonstrated that both chemical cues and chromatic signals are used during contests. In the absence of chemical cues, stomatopods approached an occupied refuge more quickly and performed offensive behaviours at a lower rate. When UV reflectance was absent, stomatopods performed offensive behaviours more frequently and contest duration trended towards shorter fights. These results provide new evidence that UV reflectance and/or visible spectrum luminance is used to amplify threat displays. Our results are the first to demonstrate that chemical and chromatic cues comprise a multimodal signal in stomatopod contests.
Collapse
Affiliation(s)
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sara M. Lewis
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
41
|
Chen PJ, Awata H, Matsushita A, Yang EC, Arikawa K. Extreme Spectral Richness in the Eye of the Common Bluebottle Butterfly, Graphium sarpedon. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Feuda R, Marlétaz F, Bentley MA, Holland PWH. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution. Genome Biol Evol 2016; 8:579-87. [PMID: 26865071 PMCID: PMC4824169 DOI: 10.1093/gbe/evw015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.
Collapse
Affiliation(s)
- Roberto Feuda
- Department of Zoology, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
43
|
Marshall J, Carleton KL, Cronin T. Colour vision in marine organisms. Curr Opin Neurobiol 2015; 34:86-94. [PMID: 25725325 DOI: 10.1016/j.conb.2015.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/18/2022]
Abstract
Colour vision in the marine environment is on average simpler than in terrestrial environments with simple or no colour vision through monochromacy or dichromacy. Monochromacy is found in marine mammals and elasmobranchs, including whales and sharks, but not some rays. Conversely, there is also a greater diversity of colour vision in the ocean than on land, examples being the polyspectral stomatopods and the many colour vision solutions found among reef fish. Recent advances in sequencing reveal more opsin (visual pigment) types than functionally useful at any one time. This diversity arises through opsin duplication and conversion. Such mechanisms allow pick-and-mix adaptation that tunes colour vision on a variety of very short non-evolutionary timescales. At least some of the diversity in marine colour vision is best explained as unconventional colour vision or as neutral drift.
Collapse
Affiliation(s)
- Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4070, Australia.
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Thomas Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|