1
|
Godthi A, Min S, Das S, Cruz-Corchado J, Deonarine A, Misel-Wuchter K, Issuree PD, Prahlad V. Neuronal IL-17 controls Caenorhabditis elegans developmental diapause through CEP-1/p53. Proc Natl Acad Sci U S A 2024; 121:e2315248121. [PMID: 38483995 PMCID: PMC10963014 DOI: 10.1073/pnas.2315248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
During metazoan development, how cell division and metabolic programs are coordinated with nutrient availability remains unclear. Here, we show that nutrient availability signaled by the neuronal cytokine, ILC-17.1, switches Caenorhabditis elegans development between reproductive growth and dormancy by controlling the activity of the tumor suppressor p53 ortholog, CEP-1. Specifically, upon food availability, ILC-17.1 signaling by amphid neurons promotes glucose utilization and suppresses CEP-1/p53 to allow growth. In the absence of ILC-17.1, CEP-1/p53 is activated, up-regulates cell-cycle inhibitors, decreases phosphofructokinase and cytochrome C expression, and causes larvae to arrest as stress-resistant, quiescent dauers. We propose a model whereby ILC-17.1 signaling links nutrient availability and energy metabolism to cell cycle progression through CEP-1/p53. These studies describe ancestral functions of IL-17 s and the p53 family of proteins and are relevant to our understanding of neuroimmune mechanisms in cancer. They also reveal a DNA damage-independent function of CEP-1/p53 in invertebrate development and support the existence of a previously undescribed C. elegans dauer pathway.
Collapse
Affiliation(s)
- Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Sehee Min
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Srijit Das
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Johnny Cruz-Corchado
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Andrew Deonarine
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Kara Misel-Wuchter
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Priya D. Issuree
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| |
Collapse
|
2
|
Rubio-Tomás T, Alegre-Cortés E, Lionaki E, Fuentes JM, Tavernarakis N. Heat shock and thermotolerance in Caenorhabditis elegans: An overview of laboratory techniques. Methods Cell Biol 2024; 185:1-17. [PMID: 38556443 DOI: 10.1016/bs.mcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The soil nematode worm Caenorhabditis elegans is a simple and well-established model for the study of many biological processes. Heat shock and thermotolerance assays have been developed for this nematode, and have been used to decipher the molecular relationships between thermal stress and aging, among others. Nevertheless, a systematic and methodological comparison of the different approaches and tools utilized is lacking in the literature. Here, we aim to provide a comprehensive summary of the most commonly used strategies for carrying out heat shock and thermotolerance assays that have been reported, highlighting specific readouts and scientific questions that can be addressed. Furthermore, we offer examples of thermotolerance assays performed with wild type nematodes, that can serve as a gauge of the animal survival under diverse conditions of stress.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Eva Alegre-Cortés
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - José M Fuentes
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
3
|
Keller A, Bai H, Budinger S, Eliazer S, Hansen M, Konopka AR, Morales-Nebreda L, Najt CP, Prahlad V, Victorelli S, Vorland CJ, Yuan R, Rhoads TW, Mihaylova MM. The Third Annual Symposium of the Midwest Aging Consortium. J Gerontol A Biol Sci Med Sci 2024; 79:glad239. [PMID: 37804247 PMCID: PMC10799755 DOI: 10.1093/gerona/glad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 10/09/2023] Open
Abstract
The geroscience hypothesis suggests that addressing the fundamental mechanisms driving aging biology will prevent or mitigate the onset of multiple chronic diseases, for which the largest risk factor is advanced age. Research that investigates the root causes of aging is therefore of critical importance given the rising healthcare burden attributable to age-related diseases. The third annual Midwest Aging Consortium symposium was convened as a showcase of such research performed by investigators from institutions across the Midwestern United States. This report summarizes the work presented during a virtual conference across topics in aging biology, including immune function in the lung-particularly timely given the Corona Virus Immune Disease-2019 pandemic-along with the role of metabolism and nutrient-regulated pathways in cellular function with age, the influence of senescence on stem cell function and inflammation, and our evolving understanding of the mechanisms underlying observation of sex dimorphism in aging-related outcomes. The symposium focused on early-stage and emerging investigators, while including keynote presentations from leaders in the biology of aging field, highlighting the diversity and strength of aging research in the Midwest.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Ohio State University, Columbus, Ohio, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan Eliazer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Malene Hansen
- Buck Institute for Research on Aging, Novato, California, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Colby J Vorland
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA
| | - Rong Yuan
- Geriatric Research Division, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
5
|
Elsana H, Bruck‐Haimson R, Zhu H, Siddiqui AA, Zaretsky A, Cohen I, Boocholez H, Roitenberg N, Moll L, Plaschkes I, Naor D, Cohen E. A short peptide protects from age-onset proteotoxicity. Aging Cell 2023; 22:e14013. [PMID: 37897137 PMCID: PMC10726816 DOI: 10.1111/acel.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Aberrant protein aggregation jeopardizes cellular functionality and underlies the development of a myriad of late-onset maladies including Alzheimer's disease (AD) and Huntington's disease (HD). Accordingly, molecules that mitigate the toxicity of hazardous protein aggregates are of great interest as potential future therapeutics. Here we asked whether a small peptide, composed of five amino acids (5MER peptide) that was derived from the human pro-inflammatory CD44 protein, could protect model nematodes from the toxicity of aggregative proteins that underlie the development of neurodegenerative disorders in humans. We found that the 5MER peptide mitigates the toxicity that stems from both; the AD-causing Aβ peptide and a stretch of poly-glutamine that is accountable for the development of several disorders including HD, while minimally affecting lifespan. This protection was dependent on the activity of aging-regulating transcription factors and associated with enhanced Aβ and polyQ35-YFP aggregation. A transcriptomic analysis unveiled that the peptide modifies signaling pathways, thereby modulating the expression of various genes, including these, which are known as protein homeostasis (proteostasis) regulators such as txt-13 and modifiers of proteasome activity. The knockdown of txt-13 protects worms from proteotoxicity to the same extent as the 5MER peptide, suggesting that the peptide activates the transcellular chaperone signaling to promote proteostasis. Together, our results propose that the 5MER peptide should be considered as a component of future therapeutic cocktails for the treatment of neurodegenerative maladies.
Collapse
Affiliation(s)
- Hassan Elsana
- The Lautenberg Center of Immunology and Cancer ResearchThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Reut Bruck‐Haimson
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Huadong Zhu
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Adam Zaretsky
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Irit Cohen
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Hana Boocholez
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Noa Roitenberg
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Lorna Moll
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Inbar Plaschkes
- Info‐COREBioinformatics Unit of the I‐CORE, The Hebrew UniversityJerusalemIsrael
| | - David Naor
- The Lautenberg Center of Immunology and Cancer ResearchThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Ehud Cohen
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| |
Collapse
|
6
|
Zhu H, Cohen E. Regulation of the proteostasis network by the neuronal system. Front Mol Biosci 2023; 10:1290118. [PMID: 38016061 PMCID: PMC10652886 DOI: 10.3389/fmolb.2023.1290118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023] Open
Abstract
The protein homeostasis (proteostasis) network is a nexus of molecular mechanisms that act in concert to maintain the integrity of the proteome and ensure proper cellular and organismal functionality. Early in life the proteostasis network efficiently preserves the functionality of the proteome, however, as the organism ages, or due to mutations or environmental insults, subsets of inherently unstable proteins misfold and form insoluble aggregates that accrue within the cell. These aberrant protein aggregates jeopardize cellular viability and, in some cases, underlie the development of devastating illnesses. Hence, the accumulation of protein aggregates activates different nodes of the proteostasis network that refold aberrantly folded polypeptides, or direct them for degradation. The proteostasis network apparently functions within the cell, however, a myriad of studies indicate that this nexus of mechanisms is regulated at the organismal level by signaling pathways. It was also discovered that the proteostasis network differentially responds to dissimilar proteotoxic insults by tailoring its response according to the specific challenge that cells encounter. In this mini-review, we delineate the proteostasis-regulating neuronal mechanisms, describe the indications that the proteostasis network differentially responds to distinct proteotoxic challenges, and highlight possible future clinical prospects of these insights.
Collapse
Affiliation(s)
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel—Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
7
|
van Oosten-Hawle P. Exploiting inter-tissue stress signaling mechanisms to preserve organismal proteostasis during aging. Front Physiol 2023; 14:1228490. [PMID: 37469564 PMCID: PMC10352849 DOI: 10.3389/fphys.2023.1228490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Aging results in a decline of cellular proteostasis capacity which culminates in the accumulation of phototoxic material, causing the onset of age-related maladies and ultimately cell death. Mechanisms that regulate proteostasis such as cellular stress response pathways sense disturbances in the proteome. They are activated to increase the expression of protein quality control components that counteract cellular damage. Utilizing invertebrate model organisms such as Caenorhabditis elegans, it has become increasingly evident that the regulation of proteostasis and the activation of cellular stress responses is not a cell autonomous process. In animals, stress responses are orchestrated by signals coming from other tissues, including the nervous system, the intestine and the germline that have a profound impact on determining the aging process. Genetic pathways discovered in C. elegans that facilitate cell nonautonomous regulation of stress responses are providing an exciting feeding ground for new interventions. In this review I will discuss cell nonautonomous proteostasis mechanisms and their impact on aging as well as ongoing research and clinical trials that can increase organismal proteostasis to lengthen health- and lifespan.
Collapse
|
8
|
Wu K, Zhao X, Xiao X, Chen M, Wu L, Jiang C, Jin J, Li L, Ruan Q, Guo J. BuShen HuoXue decoction improves fertility through intestinal hsp-16.2-mediated heat-shock signaling pathway in Caenorhabditis elegans. Front Pharmacol 2023; 14:1210701. [PMID: 37332356 PMCID: PMC10272376 DOI: 10.3389/fphar.2023.1210701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: BuShen HuoXue (BSHX) decoction is commonly used in the clinical treatment of premature ovarian failure because it can increase estradiol level and decrease follicle-stimulating hormone level. In this study, we determined the potential therapeutic effects of BSHX decoction via anti-stress pathway and the underlying mechanism by using the nematode Caenorhabditis elegans as an assay system. Methods: Bisphenol A (BPA, 175 μg/mL) was used to establish a fertility-defective C. elegans model. Nematodes were cultivated according to standard methods. Brood size, DTC, the number of apoptotic cells and oocytes were used to evaluate the fertility of nematodes. Nematodes were cultivated at 35°C as heat stress. RNA isolation and RT-qPCR were used to detect the mRNA expression level of genes. Intestinal ROS and intestinal permeability were used to evaluate the function of intestinal barrier. BSHX decoction was extracted with water and analyzed by LC/Q-TOF. Results and Discussion: In BPA-treated N2 nematodes, 62.5 mg/mL BSHX decoction significantly improved the brood size and the oocytes quality at different developmental stages. BSHX decoction improved resistance to heat stress through the hsf-1-mediated heat-shock signaling pathway. Further analysis showed that the decoction significantly improved the transcriptional levels of hsf-1 downstream target genes, such as hsp-16.1, hsp-16.2, hsp-16.41, and hsp-16.48. Other than hsp-16.2 expression in the gonad, the decoction also affected intestinal hsp-16.2 expression and significantly reversed the adverse effects induced by BPA. Moreover, the decoction ameliorated intestinal ROS and permeability. Thus, BSHX decoction can improve fertility by increasing intestinal barrier function via hsp-16.2-mediated heat-shock signaling pathway in C. elegans. These findings reveal the underlying regulatory mechanisms of hsp-16.2-mediated heat resistance against fertility defect.
Collapse
Affiliation(s)
- Kanglu Wu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xian Xiao
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Chen
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Jiang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Jin
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinli Ruan
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Wong SQ, Ryan CJ, Bonal DM, Mills J, Lapierre LR. Neuronal HLH-30/TFEB modulates peripheral mitochondrial fragmentation to improve thermoresistance in Caenorhabditis elegans. Aging Cell 2023; 22:e13741. [PMID: 36419219 PMCID: PMC10014052 DOI: 10.1111/acel.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Transcription factor EB (TFEB) is a conserved master transcriptional activator of autophagy and lysosomal genes that modulates organismal lifespan regulation and stress resistance. As neurons can coordinate organism-wide processes, we investigated the role of neuronal TFEB in stress resistance and longevity. To this end, the Caenorhabditis elegans TFEB ortholog, hlh-30, was rescued panneuronally in hlh-30 loss of function mutants. While important in the long lifespan of daf-2 animals, neuronal HLH-30/TFEB was not sufficient to restore normal lifespan in short-lived hlh-30 mutants. However, neuronal HLH-30/TFEB rescue mediated robust improvements in the heat stress resistance of wildtype but not daf-2 animals. Notably, these mechanisms can be uncoupled, as neuronal HLH-30/TFEB requires DAF-16/FOXO to regulate longevity but not thermoresistance. Through further transcriptomics profiling and functional analysis, we discovered that neuronal HLH-30/TFEB modulates neurotransmission through the hitherto uncharacterized protein W06A11.1 by inducing peripheral mitochondrial fragmentation and organismal heat stress resistance in a non-cell autonomous manner. Taken together, this study uncovers a novel mechanism of heat stress protection mediated by neuronal HLH-30/TFEB.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Catherine J. Ryan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Dennis M. Bonal
- Pathobiology Graduate Program, Division of Biology & MedicineBrown UniversityProvidenceRhode IslandUSA
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
- Department of BiologyWheaton CollegeNortonMassachusettsUSA
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
- Département de Chimie et BiochimieUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
10
|
Miles J, Townend S, Milonaitytė D, Smith W, Hodge F, Westhead DR, van Oosten-Hawle P. Transcellular chaperone signaling is an intercellular stress-response distinct from the HSF-1-mediated heat shock response. PLoS Biol 2023; 21:e3001605. [PMID: 36780563 PMCID: PMC9956597 DOI: 10.1371/journal.pbio.3001605] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah Townend
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dovilė Milonaitytė
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - William Smith
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Francesca Hodge
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
van Oosten-Hawle P. Organismal Roles of Hsp90. Biomolecules 2023; 13:biom13020251. [PMID: 36830620 PMCID: PMC9952938 DOI: 10.3390/biom13020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone that assists in the maturation of many client proteins involved in cellular signal transduction. As a regulator of cellular signaling processes, it is vital for the maintenance of cellular proteostasis and adaptation to environmental stresses. Emerging research shows that Hsp90 function in an organism goes well beyond intracellular proteostasis. In metazoans, Hsp90, as an environmentally responsive chaperone, is involved in inter-tissue stress signaling responses that coordinate and safeguard cell nonautonomous proteostasis and organismal health. In this way, Hsp90 has the capacity to influence evolution and aging, and effect behavioral responses to facilitate tissue-defense systems that ensure organismal survival. In this review, I summarize the literature on the organismal roles of Hsp90 uncovered in multicellular organisms, from plants to invertebrates and mammals.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
12
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
13
|
Gildea HK, Frankino PA, Tronnes SU, Pender CL, Durieux J, Dishart JG, Choi HO, Hunter TD, Cheung SS, Frakes AE, Sukarto E, Wickham K, Dillin A. Glia of C. elegans coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit. SCIENCE ADVANCES 2022; 8:eabq3970. [PMID: 36490338 PMCID: PMC9733925 DOI: 10.1126/sciadv.abq3970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/03/2022] [Indexed: 06/01/2023]
Abstract
Aging organisms lose the ability to induce stress responses, becoming vulnerable to protein toxicity and tissue damage. Neurons can signal to peripheral tissues to induce protective organelle-specific stress responses. Recent work shows that glia can independently induce such responses. Here, we show that overexpression of heat shock factor 1 (hsf-1) in the four astrocyte-like cephalic sheath cells of Caenorhabditis elegans induces a non-cell-autonomous cytosolic unfolded protein response, also known as the heat shock response (HSR). These animals have increased lifespan and heat stress resistance and decreased protein aggregation. Glial HSR regulation is independent of canonical thermosensory circuitry and known neurotransmitters but requires the small clear vesicle release protein UNC-13. HSF-1 and the FOXO transcription factor DAF-16 are partially required in peripheral tissues for non-cell-autonomous HSR, longevity, and thermotolerance. Cephalic sheath glial hsf-1 overexpression also leads to pathogen resistance, suggesting a role for this signaling pathway in immune function.
Collapse
Affiliation(s)
- Holly K. Gildea
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Phillip A. Frankino
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah U. Tronnes
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Corinne L. Pender
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jenni Durieux
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian G. Dishart
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hyun Ok Choi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tayla D. Hunter
- Department of Biology, Howard University, Washington, DC, USA
| | - Shannon S. Cheung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley E. Frakes
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward Sukarto
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
15
|
Lessons Learned from Two Decades of Modeling the Heat-Shock Response. Biomolecules 2022; 12:biom12111645. [DOI: 10.3390/biom12111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Heat Shock Response (HSR) is a highly conserved genetic system charged with protecting the proteome in a wide range of organisms and species. Experiments since the early 1980s have elucidated key elements in these pathways and revealed a canonical mode of regulation, which relies on a titration feedback. This system has been subject to substantial modeling work, addressing questions about resilience, design and control. The compact core regulatory circuit, as well as its apparent conservation, make this system an ideal ‘hydrogen atom’ model for the regulation of stress response. Here we take a broad view of the models of the HSR, focusing on the different questions asked and the approaches taken. After 20 years of modeling work, we ask what lessons had been learned that would have been hard to discover without mathematical models. We find that while existing models lay strong foundations, many important questions that can benefit from quantitative modeling are still awaiting investigation.
Collapse
|
16
|
Servello FA, Fernandes R, Eder M, Harris N, Martin OMF, Oswal N, Lindberg A, Derosiers N, Sengupta P, Stroustrup N, Apfeld J. Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature. eLife 2022; 11:e78941. [PMID: 36226814 PMCID: PMC9635881 DOI: 10.7554/elife.78941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Collapse
Affiliation(s)
| | - Rute Fernandes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Anders Lindberg
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
- Bioengineering Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
17
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
18
|
Ferreira JV, da Rosa Soares A, Pereira P. Cell Non-autonomous Proteostasis Regulation in Aging and Disease. Front Neurosci 2022; 16:878296. [PMID: 35757551 PMCID: PMC9220288 DOI: 10.3389/fnins.2022.878296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a risk factor for a number of diseases, being the more notorious ones perhaps neurodegenerative diseases such as Alzheimer's and Parkinson's. These and other age-related pathologies are often associated with accumulation of proteotoxic material inside cells, as well as with the accumulation of protein deposits extracellularly. It is widely accepted that this accumulation of toxic proteins trails a progressive decline in the mechanisms that regulate protein homeostasis, or proteostasis, during aging. However, despite significant efforts, the progress in terms of novel or improved therapies targeting accumulation of proteotoxic material has been rather limited. For example, clinical trials for new drugs aimed at treating Alzheimer's disease, by preventing accumulation of toxic proteins, have notoriously failed. On the other hand, it is becoming increasingly apparent that regulation of proteostasis is not a cell autonomous process. In fact, cells rely on complex transcellular networks to maintain tissue and organ homeostasis involving endocrine and paracrine signaling pathways. In this review we will discuss the impact of cell non-autonomous proteostasis mechanisms and their impact in aging and disease. We will focus on how transcellular proteostasis networks can shed new light into stablished paradigms about the aging of organisms.
Collapse
Affiliation(s)
- Joao Vasco Ferreira
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana da Rosa Soares
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo Pereira
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Serotonin and dopamine modulate aging in response to food odor and availability. Nat Commun 2022; 13:3271. [PMID: 35672307 PMCID: PMC9174215 DOI: 10.1038/s41467-022-30869-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
An organism's ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction, acts in-part through a cell non-autonomous signaling pathway that is inhibited by the presence of attractive smells. Using an intestinal reporter for a key gene induced by dietary restriction but suppressed by attractive smells, we identify three compounds that block food odor effects in C. elegans, thereby increasing longevity as dietary restriction mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food odor. We further identify a chemosensory neuron that likely perceives food odor, an enteric neuron that signals through the serotonin receptor 5-HT1A/SER-4, and a dopaminergic neuron that signals through the dopamine receptor DRD2/DOP-3. Aspects of this pathway are conserved in D. melanogaster. Thus, blocking food odor signaling through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.
Collapse
|
20
|
Hodge F, Bajuszova V, van Oosten-Hawle P. The Intestine as a Lifespan- and Proteostasis-Promoting Signaling Tissue. FRONTIERS IN AGING 2022; 3:897741. [PMID: 35821863 PMCID: PMC9261303 DOI: 10.3389/fragi.2022.897741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
In multicellular organisms such as Caenorhabditis elegans, cellular stress stimuli and responses are communicated between tissues to promote organismal health- and lifespan. The nervous system is the predominant regulator of cell nonautonomous proteostasis that orchestrates systemic stress responses to integrate both internal and external stimuli. This review highlights the role of the intestine in mediating cell nonautonomous stress responses and explores recent findings that suggest a central role for the intestine to regulate organismal proteostasis. As a tissue that receives and further transduces signals from the nervous system in response to dietary restriction, heat- and oxidative stress, and hypoxia, we explore evidence suggesting the intestine is a key regulatory organ itself. From the perspective of naturally occurring stressors such as dietary restriction and pathogen infection we highlight how the intestine can function as a key regulator of organismal proteostasis by integrating insulin/IGF-like signaling, miRNA-, neuropeptide- and metabolic signaling to alter distal tissue functions in promoting survival, health- and lifespan.
Collapse
Affiliation(s)
| | | | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Cheng L, Yang B, Du H, Zhou T, Li Y, Wu J, Cao Z, Xu A. Moderate intensity of static magnetic fields can alter the avoidance behavior and fat storage of Caenorhabditis elegans via serotonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43102-43113. [PMID: 35092591 DOI: 10.1007/s11356-022-18898-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Man-made static magnetic fields (SMFs) widely exist in human life as a physical environmental factor. However, the biological responses to moderate SMFs exposure and their underlying mechanisms are largely unknown. The present study was focused on exploring the nervous responses to moderate-intensity SMFs at 0.5 T and 1 T in Caenorhabditis elegans (C. elegans). We found that SMFs at either 0.5 T or 1 T had no statistically significant effects on the locomotor behaviors, while the 1 T magnetic field increased pharyngeal pumping. The avoidance behavior of the pathogenic Pseudomonas aeruginosa was greatly decreased in either 0.5 T or 1 T SMFs exposed nematodes, and the learning index was reducede from 0.52 ± 0.11 to 0.23 ± 0.17 and 0.16 ± 0.11, respectively. The total serotonin level was increased by 17.08% and 16.45% with the treatment of 0.5 T and 1 T SMF, compared to the control group; however, there were minimal effects of SMFs on other three neurotransmitters including choline, γ-aminobutyric acid (GABA), dopamine. RT-qPCR was used to further investigate the expression of serotonin-related genes, including rate-limiting enzymes, transcription factors and transport receptors. The expression levels of tph-1 and unc-86 genes were increased by SMF exposure, while those of ocr-2, osm-9, ser-1 and mod-1 genes were decreased. With the staining of lipid in either wild-type N2 or tph-1 mutants, we found that 0.5 T and 1 T SMFs decreased fat storage in C. elegans via serotonin pathway. Our study demonstrated that moderate-intensity SMFs induced neurobehavioral disorder and the reduction of fat storage by disturbing the secretion of serotonin in C. elegans, which provided new insights into elucidating nervous responses of C. elegans to moderate-intensity SMFs.
Collapse
Affiliation(s)
- Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Tong Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiajie Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
22
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
23
|
Vakkayil KL, Hoppe T. Temperature-Dependent Regulation of Proteostasis and Longevity. FRONTIERS IN AGING 2022; 3:853588. [PMID: 35821840 PMCID: PMC9261408 DOI: 10.3389/fragi.2022.853588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022]
Abstract
Temperature is an important environmental condition that determines the physiology and behavior of all organisms. Animals use different response strategies to adapt and survive fluctuations in ambient temperature. The hermaphrodite Caenorhabditis elegans has a well-studied neuronal network consisting of 302 neurons. The bilateral AFD neurons are the primary thermosensory neurons in the nematode. In addition to regulating thermosensitivity, AFD neurons also coordinate cellular stress responses through systemic mechanisms involving neuroendocrine signaling. Recent studies have examined the effects of temperature on altering various signaling pathways through specific gene expression programs that promote stress resistance and longevity. These studies challenge the proposed theories of temperature-dependent regulation of aging as a passive thermodynamic process. Instead, they provide evidence that aging is a well-defined genetic program. Loss of protein homeostasis (proteostasis) is one of the key hallmarks of aging. Indeed, proteostasis pathways, such as the heat shock response and aggregation of metastable proteins, are also controlled by thermosensory neurons in C. elegans. Prolonged heat stress is thought to play a critical role in the development of neurodegenerative protein misfolding diseases in humans. This review presents the latest evidence on how temperature coordinates proteostasis and aging. It also discusses how studies of poikilothermic organisms can be applied to vertebrates and provides new therapeutic strategies for human disease.
Collapse
Affiliation(s)
- Kavya Leo Vakkayil
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- *Correspondence: Thorsten Hoppe,
| |
Collapse
|
24
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
25
|
Field SL, Ouellet V, Sheftel CM, Hernandez LL, Laporta J. In vitro effects of 5-Hydroxy-L-tryptophan supplementation on primary bovine mammary epithelial cell gene expression under thermoneutral or heat shock conditions. Sci Rep 2022; 12:3820. [PMID: 35264606 PMCID: PMC8907223 DOI: 10.1038/s41598-022-07682-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT) is an autocrine-paracrine molecule within the mammary gland regulating homeostasis during lactation and triggering involution after milk stasis. Exposure of dairy cows to hyperthermia during the dry period alters mammary gland involution processes leading to reduced subsequent yields. Herein, primary bovine mammary epithelial cells (pBMEC) under thermoneutral (TN, 37 °C) or heat shock (HS, 41.5 °C) conditions were cultured with either 0, 50, 200, or 500 μM 5-Hydroxy-L-tryptophan (5-HTP; 5-HT precursor) for 8-, 12- or 24-h. Expression of 95 genes involved in 5-HT signaling, involution and tight junction regulation were evaluated using a Multiplex RT-qPCR BioMark Dynamic Array Circuit. Different sets of genes were impacted by 5-HTP or temperature, or by their interaction. All 5-HT signaling genes were downregulated after 8-h of HS and then upregulated after 12-h, relative to TN. After 24-h, apoptosis related gene, FASLG, was upregulated by all doses except TN-200 μM 5-HTP, and cell survival gene, FOXO3, was upregulated by HS-50, 200 and 500 μM 5-HTP, suggesting 5-HTP involvement in cell turnover under HS. Supplementing 5-HTP at various concentrations in vitro to pBMEC modulates the expression of genes that might aid in promoting epithelial cell turn-over during involution in dairy cattle under hyperthermia.
Collapse
Affiliation(s)
- Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Véronique Ouellet
- Department of Animal Sciences, Université Laval, Québec City, QC, Canada
| | - Celeste M Sheftel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
26
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
27
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Joshi P, Perni M, Limbocker R, Mannini B, Casford S, Chia S, Habchi J, Labbadia J, Dobson CM, Vendruscolo M. Two human metabolites rescue a C. elegans model of Alzheimer's disease via a cytosolic unfolded protein response. Commun Biol 2021; 4:843. [PMID: 34234268 PMCID: PMC8263720 DOI: 10.1038/s42003-021-02218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer's disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.
Collapse
Affiliation(s)
- Priyanka Joshi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.47840.3f0000 0001 2181 7878Present Address: The California Institute for Quantitative Biosciences (QB3-Berkeley), University of California, Berkeley, CA USA
| | - Michele Perni
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Ryan Limbocker
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.419884.80000 0001 2287 2270Present Address: Department of Chemistry and Life Science, United States Military Academy, West Point, NY USA
| | - Benedetta Mannini
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sam Casford
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sean Chia
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnny Habchi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnathan Labbadia
- grid.83440.3b0000000121901201Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
The regulation of animal behavior by cellular stress responses. Exp Cell Res 2021; 405:112720. [PMID: 34217715 PMCID: PMC8363813 DOI: 10.1016/j.yexcr.2021.112720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023]
Abstract
Cellular stress responses exist to detect the effects of stress on cells, and to activate protective mechanisms that promote resilience. As well as acting at the cellular level, stress response pathways can also regulate whole organism responses to stress. One way in which animals facilitate their survival in stressful environments is through behavioral adaptation; this review considers the evidence that activation of cellular stress responses plays an important role in mediating the changes to behavior that promote organismal survival upon stress.
Collapse
|
30
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
31
|
Marrero MG, Dado-Senn B, Field SL, Yang G, Driver JP, Laporta J. Chronic heat stress delays immune system development and alters serotonin signaling in pre-weaned dairy calves. PLoS One 2021; 16:e0252474. [PMID: 34086766 PMCID: PMC8177632 DOI: 10.1371/journal.pone.0252474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/16/2021] [Indexed: 12/27/2022] Open
Abstract
Exposure to heat stress can alter the development and immune system function in dairy calves. Serotonin is an immunomodulatory biogenic amine that functions as a neurotransmitter and as a stress-response mediator. Our objectives were to characterize the patterns of serum serotonin concentrations and the pattern of serotonin-related genes expressed by immune cells of calves exposed to chronic heat stress or heat stress abatement during early life, and to explore whether these might relate to immune system development. Dairy calves were exposed to chronic heat stress (HS; n = 6) or heat stress abatement (cooling, CL; n = 6) across the prenatal (late gestation, last 46 d) and postnatal (from birth to weaning, 56 d) developmental windows. Blood samples were collected to harvest serum (weekly, from d 1 to 49), to isolate of circulating leukocyte mRNA (at 1, 21 and 42 d of age) and characterize immune cell populations by flow cytometry (at 21 and 47 d of age). Calves exposed to chronic heat stress pre- and postnatally had lower red blood cell counts and lower circulating serotonin, immunoglobulin G, and B-lymphocytes compared to CL calves. Circulating blood leukocyte mRNA expression of serotonin receptors -1A, -1F, -4 and -5 was greater, while heat shock protein 70 and immune-related genes (i.e., TBX21, TLR4, and TGFβ) were lower in HS relative to CL calves. Peripheral blood leukocytes from all calves secreted serotonin and interleukin-6 after in-vitro lipopolysaccharide stimulation. However, the HS calves produced more serotonin and less interleukin-6 than CL calves when activated in-vitro. Together, our data suggest that providing heat stress abatement to dairy calves across prenatal and postnatal developmental windows might modulate the serotonin synthesis pathway in ways that may benefit humoral immunity against microbial pathogens.
Collapse
Affiliation(s)
- Marcela G. Marrero
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sena L. Field
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chen LT, Lin CT, Lin LY, Hsu JM, Wu YC, Pan CL. Neuronal mitochondrial dynamics coordinate systemic mitochondrial morphology and stress response to confer pathogen resistance in C. elegans. Dev Cell 2021; 56:1770-1785.e12. [PMID: 33984269 DOI: 10.1016/j.devcel.2021.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/09/2020] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Mitochondrial functions across different tissues are regulated in a coordinated fashion to optimize the fitness of an organism. Mitochondrial unfolded protein response (UPRmt) can be nonautonomously elicited by mitochondrial perturbation in neurons, but neuronal signals that propagate such response and its physiological significance remain incompletely understood. Here, we show that in C. elegans, loss of neuronal fzo-1/mitofusin induces nonautonomous UPRmt through multiple neurotransmitters and neurohormones, including acetylcholine, serotonin, glutamate, tyramine, and insulin-like peptides. Neuronal fzo-1 depletion also triggers nonautonomous mitochondrial fragmentation, which requires autophagy and mitophagy genes. Systemic activation of UPRmt and mitochondrial fragmentation in C. elegans via perturbing neuronal mitochondrial dynamics improves resistance to pathogenic Pseudomonas infection, which is supported by transcriptomic signatures of immunity and stress-response genes. We propose that C. elegans surveils neuronal mitochondrial dynamics to coordinate systemic UPRmt and mitochondrial connectivity for pathogen defense and optimized survival under bacterial infection.
Collapse
Affiliation(s)
- Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Jiun-Min Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
33
|
Naß J, Efferth T. Withanone Ameliorates Stress Symptoms in Caenorhabditis Elegans by Acting through Serotonin Receptors. PHARMACOPSYCHIATRY 2021; 54:215-223. [PMID: 33957677 DOI: 10.1055/a-1349-3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Depression is responsible for 800 000 deaths worldwide, a number that will rise significantly due to the COVID-19 pandemic. Affordable novel drugs with less severe side effects are urgently required. We investigated the effect of withanone (WN) from Withania somnifera on the serotonin system of wild-type and knockout Caenorhabditis elegans strains using in silico, in vitro, and in vivo methods. METHODS WN or fluoxetine (as positive control drug) was administered to wild-type (N2) and knockout C. elegans strains (AQ866, DA1814, DA2100, DA2109, and MT9772) to determine their effect on oxidative stress (Trolox, H2DCFDA, and juglone assays) on osmotic stress and heat stress and lifespan. Quantitative real-time RT-PCR was applied to investigate the effect of WN or fluoxetine on the expression of serotonin receptors (ser-1, ser-4, ser-7) and serotonin transporter (mod-5). The binding affinity of WN to serotonin receptors and transporter was analyzed in silico using AutoDock 4.2.6. RESULTS WN scavenged ROS in wild-type and knockout C. elegans and prolonged their lifespan. WN upregulated the expression of serotonin receptor and transporter genes. In silico analyses revealed high binding affinities of WN to Ser-1, Ser-4, Ser-7, and Mod-5. LIMITATIONS Further studies are needed to prove whether the results from C. elegans are transferrable to mammals and human beings. CONCLUSION WN ameliorated depressive-associated stress symptoms by activating the serotonin system. WN may serve as potential candidate in developing new drugs to treat depression.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
34
|
Nono M, Kishimoto S, Sato-Carlton A, Carlton PM, Nishida E, Uno M. Intestine-to-Germline Transmission of Epigenetic Information Intergenerationally Ensures Systemic Stress Resistance in C. elegans. Cell Rep 2021; 30:3207-3217.e4. [PMID: 32160530 DOI: 10.1016/j.celrep.2020.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 01/29/2023] Open
Abstract
Changes in epigenetic states affect organismal homeostasis, including stress resistance. However, the mechanisms coordinating epigenetic states and systemic stress resistance remain largely unknown. Here, we identify the intestine-to-germline communication of epigenetic states, which intergenerationally enhances stress resistance in C. elegans. The alterations in epigenetic states by deficiency of the histone H3K4me3 modifier ASH-2 in the intestine or germline increase organismal stress resistance, which is abrogated by knockdown of the H3K4 demethylase RBR-2. Remarkably, the increase in stress resistance induced by ASH-2 deficiency in the intestine is abrogated by RBR-2 knockdown in the germline, suggesting the intestine-to-germline transmission of epigenetic information. This communication from intestine to germline in the parental generation increases stress resistance in the next generation. Moreover, the intertissue communication is mediated partly by transcriptional regulation of F08F1.3. These results reveal that intertissue communication of epigenetic information provides mechanisms for intergenerational regulation of systemic stress resistance.
Collapse
Affiliation(s)
- Masanori Nono
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Saya Kishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Aya Sato-Carlton
- Laboratory of Chromosome Function and Inheritance, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Peter Mark Carlton
- Laboratory of Chromosome Function and Inheritance, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Laboratory of Chromosome Function and Inheritance, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Masaharu Uno
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| |
Collapse
|
35
|
Hetz C. Adapting the proteostasis capacity to sustain brain healthspan. Cell 2021; 184:1545-1560. [PMID: 33691137 DOI: 10.1016/j.cell.2021.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Sustaining neuronal proteostasis during the course of our life is a central aspect required for brain function. The dynamic nature of synaptic composition and abundance is a requisite to drive cognitive and motor processes involving a tight control of many aspects of protein biosynthesis and degradation. Through the concerted action of specialized stress sensors, the proteostasis network monitors and limits the accumulation of damaged, misfolded, or aggregated proteins. These stress pathways signal to the cytosol and nucleus to reprogram gene expression, enabling adaptive programs to recover cell function. During aging, the activity of the proteostasis network declines, which may increase the risk of accumulating abnormal protein aggregates, a hallmark of most neurodegenerative diseases. Here, I discuss emerging concepts illustrating the functional significance of adaptive signaling pathways to normal brain physiology and their contribution to age-related disorders. Pharmacological and gene therapy strategies to intervene and boost proteostasis are expected to extend brain healthspan and ameliorate disease states.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
36
|
Naß J, Abdelfatah S, Efferth T. Ursolic acid enhances stress resistance, reduces ROS accumulation and prolongs life span in C. elegans serotonin-deficient mutants. Food Funct 2021; 12:2242-2256. [PMID: 33596295 DOI: 10.1039/d0fo02208j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Depression and anxiety disorders contribute to the global disease burden. Ursolic acid (UA), a natural compound present in many vegetables, fruits and medicinal plants, was tested in vivo for its effect on (1) enhancing resistance to stress and (2) its effect on life span. METHODS The compound was tested for its antioxidant activity in C. elegans. Stress resistance was tested in the heat and osmotic stress assay. Additionally, the influence on normal life span was examined. RT-PCR was used to assess possible serotonin targets. RESULTS UA prolonged the life span of C. elegans. Additionally, UA significantly lowered reactive oxygen species (ROS). Molecular docking studies, PCR analysis and microscale thermophoresis (MST) supported the results that UA acts through serotonin receptors to enhance stress resistance. DISCUSSION Considering the urgent need for new and safe medications in the treatment of depression and anxiety disorders, our results indicate that UA may be a promising new drug candidate.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | | | | |
Collapse
|
37
|
Joshi KK, Matlack TL, Pyonteck S, Vora M, Menzel R, Rongo C. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis. EMBO Rep 2021; 22:e51063. [PMID: 33470040 PMCID: PMC7926251 DOI: 10.15252/embr.202051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.
Collapse
Affiliation(s)
- Kishore K Joshi
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Tarmie L Matlack
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Stephanie Pyonteck
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Mehul Vora
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Ralph Menzel
- Institute of Biology and EcologyHumboldt University BerlinBerlinGermany
| | - Christopher Rongo
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
38
|
Deonarine A, Walker MWG, Westerheide SD. HSF-1 displays nuclear stress body formation in multiple tissues in Caenorhabditis elegans upon stress and following the transition to adulthood. Cell Stress Chaperones 2021; 26:417-431. [PMID: 33392968 PMCID: PMC7925714 DOI: 10.1007/s12192-020-01188-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 01/09/2023] Open
Abstract
The transcription factor heat shock factor-1 (HSF-1) regulates the heat shock response (HSR), a cytoprotective response induced by proteotoxic stresses. Data from model organisms has shown that HSF-1 also has non-stress biological roles, including roles in the regulation of development and longevity. To better study HSF-1 function, we created a C. elegans strain containing HSF-1 tagged with GFP at its endogenous locus utilizing CRISPR/Cas9-guided transgenesis. We show that the HSF-1::GFP CRISPR worm strain behaves similarly to wildtype worms in response to heat and other stresses, and in other physiological processes. HSF-1 was expressed in all tissues assayed. Immediately following the initiation of reproduction, HSF-1 formed nuclear stress bodies, a hallmark of activation, throughout the germline. Upon the transition to adulthood, of HSF-1 nuclear stress bodies appeared in most somatic cells. Genetic loss of the germline suppressed nuclear stress body formation with age, suggesting that the germline influences HSF-1 activity. Interestingly, we found that various neurons did not form nuclear stress bodies after transitioning to adulthood. Therefore, the formation of HSF-1 nuclear stress bodies upon the transition to adulthood does not occur in a synchronous manner in all cell types. In sum, these studies enhance our knowledge of the expression and activity of the aging and proteostasis factor HSF-1 in a tissue-specific manner with age.
Collapse
Affiliation(s)
- Andrew Deonarine
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620 USA
| | - Matt W. G. Walker
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Sandy D. Westerheide
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620 USA
| |
Collapse
|
39
|
Pereira-Sousa J, Ferreira-Lomba B, Bellver-Sanchis A, Vilasboas-Campos D, Fernandes JH, Costa MD, Varney MA, Newman-Tancredi A, Maciel P, Teixeira-Castro A. Identification of the 5-HT 1A serotonin receptor as a novel therapeutic target in a C. elegans model of Machado-Joseph disease. Neurobiol Dis 2021; 152:105278. [PMID: 33516872 DOI: 10.1016/j.nbd.2021.105278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder that affects movement coordination leading to a premature death. Despite several efforts, no disease-modifying treatment is yet available for this disease. Previous studies pinpointed the modulation of serotonergic signaling, through pharmacological inhibition of the serotonin transporter SERT, as a promising therapeutic approach for MJD/SCA3. Here, we describe the 5-HT1A receptor as a novel therapeutic target in MJD, using a C. elegans model of ATXN3 proteotoxicity. Chronic and acute administration of befiradol (also known as NLX-112), a highly specific 5-HT1A agonist, rescued motor function and suppressed mutant ATXN3 aggregation. This action required the 5-HT1A receptor orthologue in the nematode, SER-4. Tandospirone, a clinically tested 5-HT1A receptor partial agonist, showed a limited impact on animals' motor dysfunction on acute administration and a broader receptor activation profile upon chronic treatment, its effect depending on 5-HT1A but also on the 5-HT6/SER-5 and 5-HT7/SER-7 receptors. Our results support high potency and specificity of befiradol for activation of 5-HT1A/SER-4 receptors and highlight the contribution of the auto- and hetero-receptor function to the therapeutic outcome in this MJD model. Our study deepens the understanding of serotonergic signaling modulation in the suppression of ATXN3 proteotoxicity and suggests that a potent and selective 5-HT1A receptor agonist such as befiradol could constitute a promising therapeutic agent for MJD.
Collapse
Affiliation(s)
- Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal; Behavioral & Molecular Lab (Bn'ML), University of Minho, Braga, Portugal
| | - Bruna Ferreira-Lomba
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Aina Bellver-Sanchis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Jorge H Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Marta D Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| |
Collapse
|
40
|
Wu YC, Chiang YC, Chou SH, Pan CL. Wnt signalling and endocytosis: Mechanisms, controversies and implications for stress responses. Biol Cell 2020; 113:95-106. [PMID: 33253438 DOI: 10.1111/boc.202000099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Wnt signalling is one of a few conserved pathways that control diverse aspects of development and morphogenesis in all metazoan species. Endocytosis is a key mechanism that regulates the secretion and graded extracellular distribution of Wnt glycoproteins from the source cells, as well as Wnt signal transduction in the receiving cells. However, controversies exist regarding the requirement of clathrin-dependent endocytosis in Wnt signalling. Various lines of evidence from recent studies suggest that Wnt-β-catenin signalling is also involved in the regulation of cellular stress responses in adulthood, a role that is beyond its canonical functions in animal development. In this review, we summarise recent advances in the molecular and cellular mechanisms by which endocytosis modulates Wnt signalling. We also discuss how Wnt signalling could be repurposed to regulate mitochondrial stress response in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Hua Chou
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Miller HA, Dean ES, Pletcher SD, Leiser SF. Cell non-autonomous regulation of health and longevity. eLife 2020; 9:62659. [PMID: 33300870 PMCID: PMC7728442 DOI: 10.7554/elife.62659] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
As the demographics of the modern world skew older, understanding and mitigating the effects of aging is increasingly important within biomedical research. Recent studies in model organisms demonstrate that the aging process is frequently modified by an organism’s ability to perceive and respond to changes in its environment. Many well-studied pathways that influence aging involve sensory cells, frequently neurons, that signal to peripheral tissues and promote survival during the presence of stress. Importantly, this activation of stress response pathways is often sufficient to improve health and longevity even in the absence of stress. Here, we review the current landscape of research highlighting the importance of cell non-autonomous signaling in modulating aging from C. elegans to mammals. We also discuss emerging concepts including retrograde signaling, approaches to mapping these networks, and development of potential therapeutics.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, United States
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
42
|
Higuchi-Sanabria R, Durieux J, Kelet N, Homentcovschi S, de Los Rios Rogers M, Monshietehadi S, Garcia G, Dallarda S, Daniele JR, Ramachandran V, Sahay A, Tronnes SU, Joe L, Dillin A. Divergent Nodes of Non-autonomous UPR ER Signaling through Serotonergic and Dopaminergic Neurons. Cell Rep 2020; 33:108489. [PMID: 33296657 DOI: 10.1016/j.celrep.2020.108489] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Naame Kelet
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mattias de Los Rios Rogers
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samira Monshietehadi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sofia Dallarda
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph R Daniele
- TRACTION, The University of Texas MD Anderson Cancer Center, South Campus Research, Houston, TX 77054, USA
| | - Vidhya Ramachandran
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arushi Sahay
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah U Tronnes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Chen CH, Patel R, Bortolami A, Sesti F. A novel assay for drug screening that utilizes the heat shock response of Caenorhabditis elegans nematodes. PLoS One 2020; 15:e0240255. [PMID: 33035268 PMCID: PMC7546469 DOI: 10.1371/journal.pone.0240255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
Biological organisms respond to environmental stressors by recruiting multiple cellular cascades that act to mitigate damage and ultimately enhance survival. This implies that compounds that interact with any of those pathways might improve organism's survival. Here, we report on an initial attempt to develop a drug screening assay based on the heat shock (HS) response of Caenorhabditis elegans nematodes. The protocol works by subjecting the worms to two HS conditions in the absence/presence of the test compounds. Post-heat shock survival is quantified manually or in semi-automatic manner by analyzing z-stack pictures. We blindly screened a cassette of 72 compounds in different developmental stages provided by Eli Lilly through their Open Innovation Drug Discovery program. The analysis indicated that, on average, therapeutically useful drugs increase survival to HS compared to compounds used in non-clinical settings. We developed a formalism that estimates the probability of a compound to enhance survival based on a comparison with a set of parameters calculated from a pool of 35 FDA-approved drugs. The method correctly identified the developmental stages of the Lilly compounds based on their relative abilities to enhance survival to the HS. Taken together these data provide proof of principle that an assay that measures the HS response of C. elegans can offer physiological and pharmacological insight in a cost- and time-efficient manner.
Collapse
Affiliation(s)
- Chih-Hsiung Chen
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| | - Rahul Patel
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States of America
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
- * E-mail:
| |
Collapse
|
44
|
Prahlad V. The discovery and consequences of the central role of the nervous system in the control of protein homeostasis. J Neurogenet 2020; 34:489-499. [PMID: 32527175 PMCID: PMC7736053 DOI: 10.1080/01677063.2020.1771333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Organisms function despite wide fluctuations in their environment through the maintenance of homeostasis. At the cellular level, the maintenance of proteins as functional entities at target expression levels is called protein homeostasis (or proteostasis). Cells implement proteostasis through universal and conserved quality control mechanisms that surveil and monitor protein conformation. Recent studies that exploit the powerful ability to genetically manipulate specific neurons in C. elegans have shown that cells within this metazoan lose their autonomy over this fundamental survival mechanism. These studies have uncovered novel roles for the nervous system in controlling how and when cells activate their protein quality control mechanisms. Here we discuss the conceptual underpinnings, experimental evidence and the possible consequences of such a control mechanism. PRELUDE: Whether the detailed examination of parts of the nervous system and their selective perturbation is sufficient to reconstruct how the brain generates behavior, mental disease, music and religion remains an open question. Yet, Sydney Brenner's development of C. elegans as an experimental organism and his faith in the bold reductionist approach that 'the understanding of wild-type behavior comes best after the discovery and analysis of mutations that alter it', has led to discoveries of unexpected roles for neurons in the biology of organisms.
Collapse
Affiliation(s)
- Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Jones LM, Chen Y, van Oosten-Hawle P. Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health. Biol Chem 2020; 401:1005-1018. [DOI: 10.1515/hsz-2019-0385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
AbstractEukaryotic organisms have evolved complex and robust cellular stress response pathways to ensure maintenance of proteostasis and survival during fluctuating environmental conditions. Highly conserved stress response pathways can be triggered and coordinated at the cell-autonomous and cell-nonautonomous level by proteostasis transcription factors, including HSF1, SKN-1/NRF2, HIF1, and DAF-16/FOXO that combat proteotoxic stress caused by environmental challenges. While these transcription factors are often associated with a specific stress condition, they also direct “noncanonical” transcriptional programs that serve to integrate a multitude of physiological responses required for development, metabolism, and defense responses to pathogen infections. In this review, we outline the established function of these key proteostasis transcription factors at the cell-autonomous and cell-nonautonomous level and discuss a newly emerging stress responsive transcription factor, PQM-1, within the proteostasis network. We look beyond the canonical stress response roles of proteostasis transcription factors and highlight their function in integrating different physiological stimuli to maintain cytosolic organismal proteostasis.
Collapse
Affiliation(s)
- Laura M. Jones
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yannic Chen
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
46
|
Xie YF, Wang XD, Zhong WH, Zhu DH, He Z. Transcriptome Profile Changes Associated With Heat Shock Reaction in the Entomopathogenic Nematode, Steinernema carpocapsae. Front Physiol 2020; 11:721. [PMID: 32754045 PMCID: PMC7365922 DOI: 10.3389/fphys.2020.00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
The entomopathogenic nematode Steinernema carpocapsae has been used for control of soil insects. However, S. carpocapse is sensitive to environmental factors, particularly temperature. We studied an S. carpocapse group that was shocked with high temperature. We also studied the transcriptome-level responses associated with temperature stress using a BGIseq sequencing platform. We de novo assembled the reads from the treatment and control groups into one transcriptome consisting of 43.9 and 42.9 million clean reads, respectively. Based on the genome database, we aligned the clean reads to the Nr, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases and analyzed the differentially expressed genes (DEGs). Compared with the control, the heat-shocked group had significant differential expression of the heat shock protein (HSP) family, antioxidase [glutathione S-transferases (GSTs) and superoxide dismutase (SOD)], monooxygenase (P450), and transcription factor genes (DAF-16 and DAF-2). These DEGs were demonstrated to be part of the Longevity pathway and insulin/insulin-like signaling pathway. The results revealed the potential mechanisms, at the transcriptional level, of S. carpocapsae under thermal stress.
Collapse
Affiliation(s)
- Yi-Fei Xie
- Hunan Academy of Forestry, Changsha, China.,College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | - Xiu-Dan Wang
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | | | - Dao-Hong Zhu
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | - Zhen He
- Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
47
|
Abstract
Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.
Collapse
Affiliation(s)
- Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany and
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC), the Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
48
|
Kim B, Lee J, Kim Y, Lee SJV. Regulatory systems that mediate the effects of temperature on the lifespan of Caenorhabditis elegans. J Neurogenet 2020; 34:518-526. [PMID: 32633588 DOI: 10.1080/01677063.2020.1781849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Temperature affects animal physiology, including aging and lifespan. How temperature and biological systems interact to influence aging and lifespan has been investigated using model organisms, including the nematode Caenorhabditis elegans. In this review, we discuss mechanisms by which diverse cellular factors modulate the effects of ambient temperatures on aging and lifespan in C. elegans. C. elegans thermosensory neurons alleviate lifespan-shortening effects of high temperatures via sterol endocrine signaling and probably through systemic regulation of cytosolic proteostasis. At low temperatures, C. elegans displays a long lifespan by upregulating the cold-sensing TRPA channel, lipid homeostasis, germline-mediated prostaglandin signaling, and autophagy. In addition, co-chaperone p23 amplifies lifespan changes affected by high and low temperatures. Our review summarizes how external temperatures modulate C. elegans lifespan and provides information regarding responses of biological processes to temperature changes, which may affect health and aging at an organism level.
Collapse
Affiliation(s)
- Byounghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongsun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Younghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
49
|
Abstract
This review article highlights our efforts to decode the role of the nervous system in regulating intestinal lipid metabolism in Caenorhabditis elegans. Capitalizing on the prescient and pioneering work of Sydney Brenner and John Sulston in establishing C. elegans as an immensely valuable model system, we have uncovered critical roles for oxygen sensing, population density sensing and food sensing in orchestrating the balance between storing lipids and utilizing them for energy in the intestine, the major organ for lipid metabolism in this model system. Our long-term goal is to reveal the integrative mechanisms and regulatory logic that underlies the complex relationship between genes, environment and internal state in the regulation of energy and whole-body physiology.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
50
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|