1
|
Wang T, Nonomura T, Lan TH, Zhou Y. Optogenetic engineering for ion channel modulation. Curr Opin Chem Biol 2025; 85:102569. [PMID: 39903997 DOI: 10.1016/j.cbpa.2025.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Optogenetics, which integrates photonics and genetic engineering to control protein activity and cellular processes, has transformed biomedical research. Its precise spatiotemporal control, minimal invasiveness, and tunable reversibility have spurred its widespread adoption in both basic and clinical research. Optogenetic techniques have been applied to partially restore vision in blind patients and are being actively explored as innovative treatments for neurological, psychiatric, cardiac, and immunological disorders. Microbial channelrhodopsins (ChRs) allow precise manipulation of neuronal and cardiac activities, while vertebrate rhodopsins offer unique opportunities for ion channel modulation through G-protein-coupled receptor (GPCR) pathways. Plant-derived photoswitchable domains can also be engineered into ion channels to confer photosensitivity. This review summarizes the latest progress in engineering genetically encoded light-sensitive ion channel actuators and modulators (GELICAMs) with diverse ion selectivity and spectral sensitivity. We further discuss the potential applications and challenges of these tools in advancing biomedical research and therapeutic interventions.
Collapse
Affiliation(s)
- Tianlu Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Tatsuki Nonomura
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Vogt A, Paulat R, Parthier D, Just V, Szczepek M, Scheerer P, Xu Q, Möglich A, Schmitz D, Rost BR, Wenger N. Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology. Biol Chem 2024; 405:751-763. [PMID: 39303162 DOI: 10.1515/hsz-2023-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
Collapse
Affiliation(s)
- Arend Vogt
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Raik Paulat
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Daniel Parthier
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Verena Just
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Michal Szczepek
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Benjamin R Rost
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| |
Collapse
|
3
|
Lapajne L, Lakk M, Rudzitis CN, Vemaraju S, Lang RA, Hawlina M, Križaj D. Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells. Ocul Surf 2024; 36:1-9. [PMID: 39681161 DOI: 10.1016/j.jtos.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling. METHODS Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5-/- and Trpv4-/- cells. RESULTS UVB stimuli and TRPV4 activity induced epithelial release of IL-1β, IL-17, matrix metalloproteinases MMP-3/MMP-9, and thymic stromal lymphopoietin (TSLP). UVB stimuli evoked [Ca2+]i elevations in dissociated mouse CECs that were partially reduced by inhibition of TRPV4 channels, Trpv4 knockdown and replacement of control saline with Ca2+-free saline. UVB-induced Ca2+ responses were significantly suppressed by OPN5 deletion and by inhibition of phospholipase C signaling, and responses were abrogated in cells with depleted intracellular Ca2+ stores. CONCLUSIONS Mammalian CECs are intrinsically and constitutively photosensitive. UVB photons are transduced by neuropsin, phospholipase C and CICR signaling, with mouse but not human CE transduction exhibiting a UVB-sensitive TRPV4 component. TRPV4 activity and UVB transduction are linked to cell-autonomous release of proinflammatory, matrix remodeling and nociceptive interleukins and MMPS. TRPV4-induced cytokine release may contribute to the pain induced by mechanical injury of the cornea and CEC photosensing may alert and protect the visual system from ultraviolet B (UVB) radiation -induced snow blindness, injury, vision loss and cancer.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Shruti Vemaraju
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Richard A Lang
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Marko Hawlina
- Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Shamsnajafabadi H, Soheili ZS, Sadeghi M, Samiee S, Ghasemi P, Zibaii MI, Gholami Pourbadie H, Ahmadieh H, Ranaei Pirmardan E, Salehi N, Samiee D, Kashanian A. Engineered red Opto-mGluR6 Opsins, a red-shifted optogenetic excitation tool, an in vitro study. PLoS One 2024; 19:e0311102. [PMID: 39446870 PMCID: PMC11500960 DOI: 10.1371/journal.pone.0311102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
Degenerative eye diseases cause partial or complete blindness due to photoreceptor degeneration. Optogenetic gene therapy is a revolutionary technique combining genetics and optical methods to control the function of neurons. Due to the inherent risk of photochemical damage, the light intensity necessary to activate Opto-mGluR6 surpasses the safe threshold for retinal illumination. Conversely, red-shifted lights pose a significantly lower risk of inducing such damage compared to blue lights. We designed red-shifted Opto-mGluR6 photopigments with a wide, red-shifted working spectrum compared to Opto-mGluR6 and examined their excitation capability in vitro. ROM19, ROM18 and ROM17, red-shifted variants of Opto-mGluR6, were designed by careful bioinformatics/computational studies. The predicted molecules with the best scores were selected, synthesised and cloned into the pAAV-CMV-IRES-EGFP vector. Expression of constructs was confirmed by functional assessment in engineered HEK-GIRK cells. Spectrophotometry and patch clamp experiments demonstrated that the candidate molecules were sensitive to the desired wavelengths of the light and directly coupled light stimuli to G-protein signalling. Herein, we introduce ROM17, ROM18 and ROM19 as newly generated, red-shifted variants with maximum excitation red-shifted of ~ 40nm, 70 nm and 126 nm compared to Opto-mGluR6.
Collapse
Affiliation(s)
- Hoda Shamsnajafabadi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Sadeghi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women’s Hospital, Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Dorsa Samiee
- Department of Computer Science, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ali Kashanian
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
5
|
Gangemi CG, Janovjak H. Optogenetics in Pancreatic Islets: Actuators and Effects. Diabetes 2024; 73:1566-1582. [PMID: 38976779 PMCID: PMC11417442 DOI: 10.2337/db23-1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
The islets of Langerhans reside within the endocrine pancreas as highly vascularized microorgans that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include Ca2+ waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbation of islet function with near physiological spatiotemporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on controlling hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways, are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christina G. Gangemi
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia, Monash University, Clayton, Victoria, Australia
| | - Harald Janovjak
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Barzan R, Bozkurt B, Nejad MM, Süß ST, Surdin T, Böke H, Spoida K, Azimi Z, Grömmke M, Eickelbeck D, Mark MD, Rohr L, Siveke I, Cheng S, Herlitze S, Jancke D. Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT 2A). Nat Commun 2024; 15:8078. [PMID: 39277631 PMCID: PMC11401874 DOI: 10.1038/s41467-024-51861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
Response gain is a crucial means by which modulatory systems control the impact of sensory input. In the visual cortex, the serotonergic 5-HT2A receptor is key in such modulation. However, due to its expression across different cell types and lack of methods that allow for specific activation, the underlying network mechanisms remain unsolved. Here we optogenetically activate endogenous G protein-coupled receptor (GPCR) signaling of a single receptor subtype in distinct mouse neocortical subpopulations in vivo. We show that photoactivation of the 5-HT2A receptor pathway in pyramidal neurons enhances firing of both excitatory neurons and interneurons, whereas 5-HT2A photoactivation in parvalbumin interneurons produces bidirectional effects. Combined photoactivation in both cell types and cortical network modelling demonstrates a conductance-driven polysynaptic mechanism that controls the gain of visual input without affecting ongoing baseline levels. Our study opens avenues to explore GPCRs neuromodulation and its impact on sensory-driven activity and ongoing neuronal dynamics.
Collapse
Affiliation(s)
- Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- MEDICE Arzneimittel Pütter GmbH & Co. KG, Iserlohn, Germany
| | - Beyza Bozkurt
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Mohammadreza M Nejad
- Computational Neuroscience, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Sandra T Süß
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Spoida
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dennis Eickelbeck
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Computational Neuroscience, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
7
|
Lu Q, Sun Y, Liang Z, Zhang Y, Wang Z, Mei Q. Nano-optogenetics for Disease Therapies. ACS NANO 2024; 18:14123-14144. [PMID: 38768091 DOI: 10.1021/acsnano.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
8
|
Zhou F, Tichy AM, Imambocus BN, Sakharwade S, Rodriguez Jimenez FJ, González Martínez M, Jahan I, Habib M, Wilhelmy N, Burre V, Lömker T, Sauter K, Helfrich-Förster C, Pielage J, Grunwald Kadow IC, Janovjak H, Soba P. Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors. Nat Commun 2023; 14:8434. [PMID: 38114457 PMCID: PMC10730509 DOI: 10.1038/s41467-023-43970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Neuromodulatory signaling via G protein-coupled receptors (GPCRs) plays a pivotal role in regulating neural network function and animal behavior. The recent development of optogenetic tools to induce G protein-mediated signaling provides the promise of acute and cell type-specific manipulation of neuromodulatory signals. However, designing and deploying optogenetically functionalized GPCRs (optoXRs) with accurate specificity and activity to mimic endogenous signaling in vivo remains challenging. Here we optimize the design of optoXRs by considering evolutionary conserved GPCR-G protein interactions and demonstrate the feasibility of this approach using two Drosophila Dopamine receptors (optoDopRs). These optoDopRs exhibit high signaling specificity and light sensitivity in vitro. In vivo, we show receptor and cell type-specific effects of dopaminergic signaling in various behaviors, including the ability of optoDopRs to rescue the loss of the endogenous receptors. This work demonstrates that optoXRs can enable optical control of neuromodulatory receptor-specific signaling in functional and behavioral studies.
Collapse
Affiliation(s)
- Fangmin Zhou
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alexandra-Madelaine Tichy
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 3800, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 3800, Clayton, Victoria, Australia
| | - Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Shreyas Sakharwade
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Francisco J Rodriguez Jimenez
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
- ZIEL-Institute of Life and Health, Technical University of Munich, School of Life Sciences, 85354, Freising, Germany
| | - Marco González Martínez
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
| | - Ishrat Jahan
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
| | - Margarita Habib
- Neurobiology and Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nina Wilhelmy
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Vanessa Burre
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tatjana Lömker
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | | | - Jan Pielage
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
- ZIEL-Institute of Life and Health, Technical University of Munich, School of Life Sciences, 85354, Freising, Germany
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 3800, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 3800, Clayton, Victoria, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 5042, Bedford Park, South Australia, Australia
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
9
|
Sato K, Yamashita T, Ohuchi H. Mammalian type opsin 5 preferentially activates G14 in Gq-type G proteins triggering intracellular calcium response. J Biol Chem 2023; 299:105020. [PMID: 37423300 PMCID: PMC10432815 DOI: 10.1016/j.jbc.2023.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Mammalian type opsin 5 (Opn5m), a UV-sensitive G protein-coupled receptor opsin highly conserved in vertebrates, would provide a common basis for UV sensing from lamprey to humans. However, G protein coupled with Opn5m remains controversial due to variations in assay conditions and the origin of Opn5m across different reports. Here, we examined Opn5m from diverse species using an aequorin luminescence assay and Gα-KO cell line. Beyond the commonly studied major Gα classes, Gαq, Gα11, Gα14, and Gα15 in the Gq class were individually investigated in this study, as they can drive distinct signaling pathways in addition to a canonical calcium response. UV light triggered a calcium response via all the tested Opn5m proteins in 293T cells, which was abolished by Gq-type Gα deletion and rescued by cotransfection with mouse and medaka Gq-type Gα proteins. Opn5m preferentially activated Gα14 and close relatives. Mutational analysis implicated specific regions, including α3-β5 and αG-α4 loops, αG and α4 helices, and the extreme C terminus, in the preferential activation of Gα14 by Opn5m. FISH revealed co-expression of genes encoding Opn5m and Gα14 in the scleral cartilage of medaka and chicken eyes, supporting their physiological coupling. This suggests that the preferential activation of Gα14 by Opn5m is relevant for UV sensing in specific cell types.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama City, Okayama, Japan.
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama City, Okayama, Japan.
| |
Collapse
|
10
|
Emanuel AJ, Do MTH. The Multistable Melanopsins of Mammals. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1174255. [PMID: 37994345 PMCID: PMC10664805 DOI: 10.3389/fopht.2023.1174255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 11/24/2023]
Abstract
Melanopsin is a light-activated G protein coupled receptor that is expressed widely across phylogeny. In mammals, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs), which are especially important for "non-image" visual functions that include the regulation of circadian rhythms, sleep, and mood. Photochemical and electrophysiological experiments have provided evidence that melanopsin has at least two stable conformations and is thus multistable, unlike the monostable photopigments of the classic rod and cone photoreceptors. Estimates of melanopsin's properties vary, challenging efforts to understand how the molecule influences vision. This article seeks to reconcile disparate views of melanopsin and offer a practical guide to melanopsin's complexities.
Collapse
Affiliation(s)
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Leemann S, Kleinlogel S. Functional optimization of light-activatable Opto-GPCRs: Illuminating the importance of the proximal C-terminus in G-protein specificity. Front Cell Dev Biol 2023; 11:1053022. [PMID: 36936685 PMCID: PMC10014536 DOI: 10.3389/fcell.2023.1053022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: G-protein coupled receptors (GPCRs) are the largest family of human receptors that transmit signals from natural ligands and pharmaceutical drugs into essentially every physiological process. One main characteristic of G-protein coupled receptors is their ability to specifically couple with different families of G-proteins, thereby triggering specific downstream signaling pathways. While an abundance of structural information is available on G-protein coupled receptorn interactions with G-proteins, little is known about the G-protein coupled receptor domains functionally mediating G-protein specificity, in particular the proximal C-terminus, the structure which cannot be predicted with high confidentiality due to its flexibility. Methods: In this study, we exploited OptoGPCR chimeras between lightgated G-protein coupled receptors (opsins) and ligand-gated G-protein coupled receptors to systematically investigate the involvement of the C-terminus steering G-protein specificity. We employed rhodopsin-beta2-adrenoceptor and melanopsin-mGluR6 chimeras in second messenger assays and developed structural models of the chimeras. Results: We discovered a dominant role of the proximal C-terminus, dictating G-protein selectivity in the melanopsin-mGluR6 chimera, whereas it is the intracellular loop 3, which steers G-protein tropism in the rhodopsin-beta2-adrenoceptor. From the functional results and structural predictions, melanopsin and mGluR6 use a different mechanism to bovine rhodopsin and b2AR to couple to a selective G-protein. Discussion: Collectively, this work adds knowledge to the G-protein coupled receptor domains mediating G-protein selectivity, ultimately paving the way to optogenetically elicited specific G-protein signaling on demand.
Collapse
|
12
|
Surdin T, Preissing B, Rohr L, Grömmke M, Böke H, Barcik M, Azimi Z, Jancke D, Herlitze S, Mark MD, Siveke I. Optogenetic activation of mGluR1 signaling in the cerebellum induces synaptic plasticity. iScience 2022; 26:105828. [PMID: 36632066 PMCID: PMC9826949 DOI: 10.1016/j.isci.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the Gq/11 pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the Gq/11 pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b). Activation of both OPN4-mGluR1 variants showed robust Ca2+ increase in HEK cells and PCs of cerebellar slices. We provide the prove-of-concept approach to modulate synaptic plasticity via optogenetic activation of OPN4-mGluR1a inducing LTD at the PF-PC synapse in vitro. Moreover, we demonstrate that light activation of mGluR1a signaling pathway by OPN4-mGluR1a in PCs leads to an increase in intrinsic activity of PCs in vivo and improved cerebellum driven learning behavior.
Collapse
Affiliation(s)
- Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Bianca Preissing
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Maike Barcik
- Cardiovascular Research Institute Düsseldorf, Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Corresponding author
| | - Melanie D. Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany,Corresponding author
| |
Collapse
|
13
|
Optogenetic interrogation of cell signalling: human neuropsin (hOPN5) represents a potent tool for controlling the Gq pathway with light. Pflugers Arch 2022; 474:1217-1219. [PMID: 36319864 PMCID: PMC9663387 DOI: 10.1007/s00424-022-02765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
|
14
|
Ren J, Xue T, Wang L. Shining more light on G protein signalling modules: a novel optogenetic tool for Gq activation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2567-2568. [PMID: 35831552 DOI: 10.1007/s11427-022-2150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Affiliation(s)
- Jing Ren
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, CB20QH, United Kingdom.
| | - Tian Xue
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Liping Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
15
|
Takahashi TM, Hirano A, Kanda T, Saito VM, Ashitomi H, Tanaka KZ, Yokoshiki Y, Masuda K, Yanagisawa M, Vogt KE, Tokuda T, Sakurai T. Optogenetic induction of hibernation-like state with modified human Opsin4 in mice. CELL REPORTS METHODS 2022; 2:100336. [PMID: 36452866 PMCID: PMC9701604 DOI: 10.1016/j.crmeth.2022.100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 μW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.
Collapse
Affiliation(s)
- Tohru M. Takahashi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Arisa Hirano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- JST PRESTO, Japan
| | - Takeshi Kanda
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Viviane M. Saito
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Hiroto Ashitomi
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Yasufumi Yokoshiki
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Kosaku Masuda
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kaspar E. Vogt
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takashi Tokuda
- JST PRESTO, Japan
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Dai R, Yu T, Weng D, Li H, Cui Y, Wu Z, Guo Q, Zou H, Wu W, Gao X, Qi Z, Ren Y, Wang S, Li Y, Luo M. A neuropsin-based optogenetic tool for precise control of G q signaling. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1271-1284. [PMID: 35579776 DOI: 10.1007/s11427-022-2122-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Gq-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca2+ signals. There is a strong need for an optogenetic tool that enables powerful experimental control over Gq signaling. Here, we present chicken opsin 5 (cOpn5) as the long sought-after, single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular Gq signaling with high temporal and spatial resolution. Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered, Gq-dependent Ca2+ release from intracellular stores and protein kinase C activation. Strong Ca2+ transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools. Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca2+ transition, thus demonstrating the high spatial precision of cOpn5 optogenetics. The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner. cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of Gq signaling in both non-excitable cells and excitable cells in all major organ systems.
Collapse
Affiliation(s)
- Ruicheng Dai
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- School of Life Sciences, Peking University, Beijing, 100871, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, NIBS, Beijing, 102206, China
| | - Tao Yu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, NIBS, Beijing, 102206, China
| | - Danwei Weng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Heng Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing, 102206, China
| | - Yuting Cui
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, 102206, China
- Capital Medical University, Beijing, 102206, China
| | - Haiyue Zou
- Chinese Institute for Brain Research, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenting Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, NIBS, Beijing, 102206, China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Zhongyang Qi
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yuqi Ren
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Shu Wang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
- Graduate School of Peking Union Medical College, Beijing, 100730, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing, 102206, China.
| |
Collapse
|
18
|
Gilhooley MJ, Lindner M, Palumaa T, Hughes S, Peirson SN, Hankins MW. A systematic comparison of optogenetic approaches to visual restoration. Mol Ther Methods Clin Dev 2022; 25:111-123. [PMID: 35402632 PMCID: PMC8956963 DOI: 10.1016/j.omtm.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
During inherited retinal degenerations (IRDs), vision is lost due to photoreceptor cell death; however, a range of optogenetic tools have been shown to restore light responses in animal models. Restored response characteristics vary between tools and the neuronal cell population to which they are delivered: the interplay between these is complex, but targeting upstream neurons (such as retinal bipolar cells) may provide functional benefit by retaining intraretinal signal processing. In this study, our aim was to compare two optogenetic tools: mammalian melanopsin (hOPN4) and microbial red-shifted channelrhodopsin (ReaChR) expressed within two subpopulations of surviving cells in a degenerate retina. Intravitreal adeno-associated viral vectors and mouse models utilising the Cre/lox system restricted expression to populations dominated by bipolar cells or retinal ganglion cells and was compared with non-targeted delivery using the chicken beta actin (CBA) promoter. In summary, we found bipolar-targeted optogenetic tools produced faster kinetics and flatter intensity-response relationships compared with non-targeted or retinal-ganglion-cell-targeted hOPN4. Hence, optogenetic tools of both mammalian and microbial origins show advantages when targeted to bipolar cells. This demonstrates the advantage of bipolar-cell-targeted optogenetics for vision restoration in IRDs. We therefore developed a bipolar-cell-specific gene delivery system employing a compressed promoter with the potential for clinical translation.
Collapse
Affiliation(s)
- Michael J. Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- The Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg 35037, Germany
| | - Teele Palumaa
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- East Tallinn Central Hospital Eye Clinic, Ravi 18, 10138 Tallinn, Estonia
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Corresponding author Mark W. Hankins, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
19
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
20
|
Engineered Allosteric Regulation of Protein Function. J Mol Biol 2022; 434:167620. [PMID: 35513109 DOI: 10.1016/j.jmb.2022.167620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.
Collapse
|
21
|
Wagdi A, Malan D, Sathyanarayanan U, Beauchamp JS, Vogt M, Zipf D, Beiert T, Mansuroglu B, Dusend V, Meininghaus M, Schneider L, Kalthof B, Wiegert JS, König GM, Kostenis E, Patejdl R, Sasse P, Bruegmann T. Selective optogenetic control of G q signaling using human Neuropsin. Nat Commun 2022; 13:1765. [PMID: 35365606 PMCID: PMC8975936 DOI: 10.1038/s41467-022-29265-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Gq proteins are universally important for signal transduction in mammalian cells. The underlying kinetics and transformation from extracellular stimuli into intracellular signaling, however could not be investigated in detail so far. Here we present the human Neuropsin (hOPN5) for specific and repetitive manipulation of Gq signaling in vitro and in vivo with high spatio-temporal resolution. Properties and G protein specificity of hOPN5 are characterized by UV light induced IP3 generation, Ca2+ transients and inhibition of GIRK channel activity in HEK cells. In adult hearts from a transgenic animal model, light increases the spontaneous beating rate. In addition, we demonstrate light induced contractions in the small intestine, which are not detectable after pharmacological Gq protein block. All-optical high-throughput screening for TRPC6 inhibitors is more specific and sensitive than conventional pharmacological screening. Thus, we demonstrate specific Gq signaling of hOPN5 and unveil its potential for optogenetic applications.
Collapse
Affiliation(s)
- Ahmed Wagdi
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Present Address: Department of Cardiology and Pulmonology, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Daniela Malan
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Udhayabhaskar Sathyanarayanan
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Janosch S. Beauchamp
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Vogt
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - David Zipf
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Beiert
- grid.15090.3d0000 0000 8786 803XDepartment of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Berivan Mansuroglu
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Vanessa Dusend
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Mark Meininghaus
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - Linn Schneider
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - Bernd Kalthof
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - J. Simon Wiegert
- grid.13648.380000 0001 2180 3484Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele M. König
- grid.10388.320000 0001 2240 3300Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- grid.10388.320000 0001 2240 3300Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Robert Patejdl
- grid.413108.f0000 0000 9737 0454Oscar-Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Sasse
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany ,grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Schwitalla JC, Pakusch J, Mücher B, Brückner A, Depke DA, Fenzl T, De Zeeuw CI, Kros L, Hoebeek FE, Mark MD. Controlling absence seizures from the cerebellar nuclei via activation of the G q signaling pathway. Cell Mol Life Sci 2022; 79:197. [PMID: 35305155 PMCID: PMC8934336 DOI: 10.1007/s00018-022-04221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.
Collapse
Affiliation(s)
| | - Johanna Pakusch
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alexander Brückner
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Dominic Alexej Depke
- European Institute of Molecular Imaging, University of Münster, 48149, Münster, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, 1105, BA, Amsterdam, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands
| | - Freek E Hoebeek
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
23
|
McDowell RJ, Rodgers J, Milosavljevic N, Lucas RJ. Divergent G-protein selectivity across melanopsins from mice and humans. J Cell Sci 2022; 135:274359. [PMID: 35274137 PMCID: PMC8977054 DOI: 10.1242/jcs.258474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Melanopsin is an opsin photopigment and light-activated G-protein-coupled receptor; it is expressed in photoreceptive retinal ganglion cells (mRGCs) and can be employed as an optogenetic tool. Mammalian melanopsins can signal via Gq/11 and Gi/o/t heterotrimeric G proteins, but aspects of the mRGC light response appear incompatible with either mode of signalling. We use live-cell reporter assays in HEK293T cells to show that melanopsins from mice and humans can also signal via Gs. We subsequently show that this mode of signalling is substantially divergent between species. The two established structural isoforms of mouse melanopsin (which differ in the length of their C-terminal tail) both signalled strongly through all three G-protein classes (Gq/11, Gi/o and Gs), whereas human melanopsin showed weaker signalling through Gs. Our data identify Gs as a new mode of signalling for mammalian melanopsins and reveal diversity in G-protein selectivity across mammalian melanopsins. Summary: The photopigment melanopsin (OPN4), which provides inner retinal photoreception in mammals, shows light-dependent activation of Gs G protein that is more pronounced for mouse than human photopigment.
Collapse
Affiliation(s)
- Richard J McDowell
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
25
|
Cokić M, Bruegmann T, Sasse P, Malan D. Optogenetic Stimulation of G i Signaling Enables Instantaneous Modulation of Cardiomyocyte Pacemaking. Front Physiol 2022; 12:768495. [PMID: 34987414 PMCID: PMC8721037 DOI: 10.3389/fphys.2021.768495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023] Open
Abstract
G-protein signaling pathways are central in the regulation of cardiac function in physiological and pathophysiological conditions. Their functional analysis through optogenetic techniques with selective expression of opsin proteins and activation by specific wavelengths allows high spatial and temporal precision. Here, we present the application of long wavelength-sensitive cone opsin (LWO) in cardiomyocytes for activation of the Gi signaling pathway by red light. Murine embryonic stem (ES) cells expressing LWO were generated and differentiated into beating cardiomyocytes in embryoid bodies (EBs). Illumination with red light (625 nm) led to an instantaneous decrease up to complete inhibition (84–99% effectivity) of spontaneous beating, but had no effect on control EBs. By using increasing light intensities with 10 s pulses, we determined a half maximal effective light intensity of 2.4 μW/mm2 and a maximum effect at 100 μW/mm2. Pre-incubation of LWO EBs with pertussis toxin completely inhibited the light effect proving the specificity for Gi signaling. Frequency reduction was mainly due to the activation of GIRK channels because the specific channel blocker tertiapin reduced the light effect by ~80%. Compared with pharmacological stimulation of M2 receptors with carbachol with slow kinetics (>30 s), illumination of LWO had an identical efficacy, but much faster kinetics (<1 s) in the activation and deactivation demonstrating the temporal advantage of optogenetic stimulation. Thus, LWO is an effective optogenetic tool for selective stimulation of the Gi signaling cascade in cardiomyocytes with red light, providing high temporal precision.
Collapse
Affiliation(s)
- Milan Cokić
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Malan
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Seeing and sensing temporal variations in natural daylight. PROGRESS IN BRAIN RESEARCH 2022; 273:275-301. [DOI: 10.1016/bs.pbr.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
28
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
29
|
[Intrinsically photosensitive retinal ganglion cells]. Ophthalmologe 2021; 119:358-366. [PMID: 34350494 PMCID: PMC9005408 DOI: 10.1007/s00347-021-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
Hintergrund Melanopsin exprimierende, intrinsisch-photosensitive retinale Ganglienzellen (ipRGCs) bilden neben Stäbchen und Zapfen die dritte Klasse von retinalen Photorezeptoren. Diese kleine, heterogene Zellfamilie vermittelt ein weites Spektrum an Aufgaben überwiegend des nicht-bildformenden Sehens. Fragestellung Diese Arbeit soll einen Einblick in das aktuelle Verständnis der Funktion und der funktionellen Diversität der ipRGCs geben sowie klinisch und translational relevante Aspekte beleuchten. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse ipRGCs machen etwa 1–2 % aller retinalen Ganglienzellen aus und bilden dabei 6 spezialisierte Subtypen. Mit ihrem Photopigment Melanopsin sind sie in der Lage, unabhängig von synaptischem Input Lichtinformationen an das Gehirn weiterzuleiten oder lichtabhängig zu modifizieren. Je nach Subtyp vermitteln sie so nichtvisuelle Aufgaben wie die Synchronisation der inneren Uhr oder den Pupillenreflex, greifen aber auch in das bildformende System ein. ipRGCs weisen eine differenzielle Widerstandskraft gegenüber Optikusschädigung auf, was sie zu einem attraktiven Studienobjekt für die Entwicklung neuroprotektiver Therapieansätze macht. Melanopsin rückt zudem als optogenetisches Werkzeug, etwa in der prosthetischen Gentherapie, in den Fokus. Schlussfolgerungen Häufige klinische Beobachtungen lassen sich nur mit Kenntnis des ipRGC-Systems verstehen. Ihre neuronale Vernetzung und die intrazelluläre Signalverarbeitung sind Gegenstand aktiver Forschung, die neue translationale Ansätze hervorbringt.
Collapse
|
30
|
Karapinar R, Schwitalla JC, Eickelbeck D, Pakusch J, Mücher B, Grömmke M, Surdin T, Knöpfel T, Mark MD, Siveke I, Herlitze S. Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks. Nat Commun 2021; 12:4488. [PMID: 34301944 PMCID: PMC8302595 DOI: 10.1038/s41467-021-24718-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023] Open
Abstract
Opn7b is a non-visual G protein-coupled receptor expressed in zebrafish. Here we find that Opn7b expressed in HEK cells constitutively activates the Gi/o pathway and illumination with blue/green light inactivates G protein-coupled inwardly rectifying potassium channels. This suggests that light acts as an inverse agonist for Opn7b and can be used as an optogenetic tool to inhibit neuronal networks in the dark and interrupt constitutive inhibition in the light. Consistent with this prediction, illumination of recombinant expressed Opn7b in cortical pyramidal cells results in increased neuronal activity. In awake mice, light stimulation of Opn7b expressed in pyramidal cells of somatosensory cortex reliably induces generalized epileptiform activity within a short (<10 s) delay after onset of stimulation. Our study demonstrates a reversed mechanism for G protein-coupled receptor control and Opn7b as a tool for controlling neural circuit properties.
Collapse
Affiliation(s)
- Raziye Karapinar
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | | | - Dennis Eickelbeck
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Johanna Pakusch
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Knöpfel
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany.
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- German Cancer Consortium (DKTK/DKFZ), West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
31
|
Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:187-219. [PMID: 34446246 DOI: 10.1016/bs.irn.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optogenetic tools allow for the selective activation, inhibition or modulation of genetically-defined neural circuits with incredible temporal precision. Over the past decade, application of these tools in preclinical models of psychiatric disease has advanced our understanding the neural circuit basis of maladaptive behaviors in these disorders. Despite their power as an investigational tool, optogenetics cannot yet be applied in the clinical for the treatment of neurological and psychiatric disorders. To date, deep brain stimulation (DBS) is the only clinical treatment that can be used to achieve circuit-specific neuromodulation in the context of psychiatric. Despite its increasing clinical indications, the mechanisms underlying the therapeutic effects of DBS for psychiatric disorders are poorly understood, which makes optimization difficult. We discuss the variety of optogenetic tools available for preclinical research, and how these tools have been leveraged to reverse-engineer the mechanisms underlying DBS for movement and compulsive disorders. We review studies that have used optogenetics to induce plasticity within defined basal ganglia circuits, to alter neural circuit function and evaluate the corresponding effects on motor and compulsive behaviors. While not immediately applicable to patient populations, the translational power of optogenetics is in inspiring novel DBS protocols by providing a rationale for targeting defined neural circuits to ameliorate specific behavioral symptoms, and by establishing optimal stimulation paradigms that could selectively compensate for pathological synaptic plasticity within these defined neural circuits.
Collapse
|
32
|
Jancke D, Herlitze S, Kringelbach ML, Deco G. Bridging the gap between single receptor type activity and whole-brain dynamics. FEBS J 2021; 289:2067-2084. [PMID: 33797854 DOI: 10.1111/febs.15855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023]
Abstract
What is the effect of activating a single modulatory neuronal receptor type on entire brain network dynamics? Can such effect be isolated at all? These are important questions because characterizing elementary neuronal processes that influence network activity across the given anatomical backbone is fundamental to guide theories of brain function. Here, we introduce the concept of the cortical 'receptome' taking into account the distribution and densities of expression of different modulatory receptor types across the brain's anatomical connectivity matrix. By modelling whole-brain dynamics in silico, we suggest a bidirectional coupling between modulatory neurotransmission and neuronal connectivity hardware exemplified by the impact of single serotonergic (5-HT) receptor types on cortical dynamics. As experimental support of this concept, we show how optogenetic tools enable specific activation of a single 5-HT receptor type across the cortex as well as in vivo measurement of its distinct effects on cortical processing. Altogether, we demonstrate how the structural neuronal connectivity backbone and its modulation by a single neurotransmitter system allow access to a rich repertoire of different brain states that are fundamental for flexible behaviour. We further propose that irregular receptor expression patterns-genetically predisposed or acquired during a lifetime-may predispose for neuropsychiatric disorders like addiction, depression and anxiety along with distinct changes in brain state. Our long-term vision is that such diseases could be treated through rationally targeted therapeutic interventions of high specificity to eventually recover natural transitions of brain states.
Collapse
Affiliation(s)
- Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Germany.,International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University, Bochum, Germany
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,Centre for Eudaimonia and Human Flourishing, University of Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
33
|
Guo K, Zhong J, Zhu L, Xie F, Du Y, Ji X. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol Open 2021; 10:bio.058503. [PMID: 33593793 PMCID: PMC8015239 DOI: 10.1242/bio.058503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the main functions of physiological color change is thermoregulation. This change occurs much more rapidly than morphological color change, but the underlying mechanism remains poorly understood. Here, we studied the thermal dependence and molecular basis of physiological color change in lizards using Takydromus septentrionalis (Lacertidae) as the model system. Body color was thermally sensitive, becoming increasingly light as body temperatures deviated from the level (∼30°C) preferred by this species. We identified 3389 differentially expressed genes (DEGs) between lizards at 24°C and 30°C, and 1,097 DEGs between lizards at 36°C and 30°C. Temperature affected the cAMP signal pathway, motor proteins, cytoskeleton, and the expression of genes related to melanocyte-stimulating hormone (MSH) and melanocyte-concentrating hormone (MCH). Our data suggest that the role of physiological color change in thermoregulation is achieved in T. septentrionalis by altering the arrangement of pigments and thus the amount of solar radiation absorbed and reflected. G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion. This mechanism differs from that reported for teleost fish where MCH activates the G proteins and thereby causes pigment aggregation. This article has an associated First Person interview with the first author of the paper. Summary: G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion.
Collapse
Affiliation(s)
- Kun Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jun Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Lin Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Fan Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China .,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
| |
Collapse
|
34
|
Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2021; 2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Optogenetic Modulation of Ion Channels by Photoreceptive Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:73-88. [PMID: 33398808 DOI: 10.1007/978-981-15-8763-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In these 15 years, researches to control cellular responses by light have flourished dramatically to establish "optogenetics" as a research field. In particular, light-dependent excitation/inhibition of neural cells using channelrhodopsins or other microbial rhodopsins is the most powerful and the most widely used optogenetic technique. New channelrhodopsin-based optogenetic tools having favorable characteristics have been identified from a wide variety of organisms or created through mutagenesis. Despite the great efforts, some neuronal activities are still hard to be manipulated by the channelrhodopsin-based tools, indicating that complementary approaches are needed to make optogenetics more comprehensive. One of the feasible and complementary approaches is optical control of ion channels using photoreceptive proteins other than channelrhodopsins. In particular, animal opsins can modulate various ion channels via light-dependent G protein activation. In this chapter, we summarize how such alternative optogenetic tools work and they will be improved.
Collapse
|
36
|
Simon CJ, Sahel JA, Duebel J, Herlitze S, Dalkara D. Opsins for vision restoration. Biochem Biophys Res Commun 2020; 527:325-330. [DOI: 10.1016/j.bbrc.2019.12.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
37
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
38
|
Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci 2020; 21:121-138. [DOI: 10.1038/s41583-020-0264-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
39
|
Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events. Curr Opin Cell Biol 2020; 63:114-124. [PMID: 32058267 DOI: 10.1016/j.ceb.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Cells rely on a complex network of spatiotemporally regulated signaling activities to effectively transduce information from extracellular cues to intracellular machinery. To probe this activity architecture, researchers have developed an extensive molecular tool kit of fluorescent biosensors and optogenetic actuators capable of monitoring and manipulating various signaling activities with high spatiotemporal precision. The goal of this review is to provide readers with an overview of basic concepts and recent advances in the development and application of genetically encodable biosensors and optogenetic tools for understanding signaling activity.
Collapse
|
40
|
Eickelbeck D, Rudack T, Tennigkeit SA, Surdin T, Karapinar R, Schwitalla JC, Mücher B, Shulman M, Scherlo M, Althoff P, Mark MD, Gerwert K, Herlitze S. Lamprey Parapinopsin ("UVLamP"): a Bistable UV-Sensitive Optogenetic Switch for Ultrafast Control of GPCR Pathways. Chembiochem 2019; 21:612-617. [PMID: 31468691 PMCID: PMC7079062 DOI: 10.1002/cbic.201900485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Optogenetics uses light‐sensitive proteins, so‐called optogenetic tools, for highly precise spatiotemporal control of cellular states and signals. The major limitations of such tools include the overlap of excitation spectra, phototoxicity, and lack of sensitivity. The protein characterized in this study, the Japanese lamprey parapinopsin, which we named UVLamP, is a promising optogenetic tool to overcome these limitations. Using a hybrid strategy combining molecular, cellular, electrophysiological, and computational methods we elucidated a structural model of the dark state and probed the optogenetic potential of UVLamP. Interestingly, it is the first described bistable vertebrate opsin that has a charged amino acid interacting with the Schiff base in the dark state, that has no relevance for its photoreaction. UVLamP is a bistable UV‐sensitive opsin that allows for precise and sustained optogenetic control of G protein‐coupled receptor (GPCR) pathways and can be switched on, but more importantly also off within milliseconds via lowintensity short light pulses. UVLamP exhibits an extremely narrow excitation spectrum in the UV range allowing for sustained activation of the Gi/o pathway with a millisecond UV light pulse. Its sustained pathway activation can be switched off, surprisingly also with a millisecond blue light pulse, minimizing phototoxicity. Thus, UVLamP serves as a minimally invasive, narrow‐bandwidth probe for controlling the Gi/o pathway, allowing for combinatorial use with multiple optogenetic tools or sensors. Because UVLamP activated Gi/o signals are generally inhibitory and decrease cellular activity, it has tremendous potential for health‐related applications such as relieving pain, blocking seizures, and delaying neurodegeneration.
Collapse
Affiliation(s)
- Dennis Eickelbeck
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.,Department of Biophysics, Ruhr University Bochum, ND04/596, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Stefan Alexander Tennigkeit
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.,Department of Biophysics, Ruhr University Bochum, ND04/596, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| | - Raziye Karapinar
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| | - Jan-Claudius Schwitalla
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| | - Brix Mücher
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| | - Maiia Shulman
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.,Department of Biophysics, Ruhr University Bochum, ND04/596, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Marvin Scherlo
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.,Department of Biophysics, Ruhr University Bochum, ND04/596, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Philipp Althoff
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.,Department of Biophysics, Ruhr University Bochum, ND04/596, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| | - Klaus Gerwert
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.,Department of Biophysics, Ruhr University Bochum, ND04/596, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, ND7/31, Universitätsstasse 150, 44780, Bochum, Germany
| |
Collapse
|
41
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Light-activated chimeric GPCRs: limitations and opportunities. Curr Opin Struct Biol 2019; 57:196-203. [PMID: 31207383 DOI: 10.1016/j.sbi.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
Light-activated chimeric GPCRs, termed OptoXRs, can elicit cell signalling responses with the high spatial and temporal precision of light. In recent years, an expanding OptoXR toolkit has been applied to, for example, dissect neural circuits in awake rodents, guide cell migration during vertebrate development and even restore visual responses in a rodent model of blindness. OptoXRs have been further developed through incorporation of highly sensitive photoreceptor domains and a plethora of signalling modules. The availability of new high-resolution structures of GPCRs and a deeper understanding of GPCR function allows critically revisitation of the design of OptoXRs. Next-generation OptoXRs will build on advances in structural biology, receptor function and photoreceptor diversity to manipulate GPCR signalling with unprecedented accuracy and precision.
Collapse
|
43
|
Eickelbeck D, Karapinar R, Jack A, Suess ST, Barzan R, Azimi Z, Surdin T, Grömmke M, Mark MD, Gerwert K, Jancke D, Wahle P, Spoida K, Herlitze S. CaMello-XR enables visualization and optogenetic control of G q/11 signals and receptor trafficking in GPCR-specific domains. Commun Biol 2019; 2:60. [PMID: 30793039 PMCID: PMC6376006 DOI: 10.1038/s42003-019-0292-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered CaMello (Ca2+-melanopsin-local-sensor) and CaMello-5HT2A for visualization of traffic-dependent Ca2+ signals in 5-HT2A-R domains. These constructs consist of the light-activated Gq/11 coupled melanopsin, mCherry and GCaMP6m for visualization of Ca2+ signals and receptor trafficking, and the 5-HT2A C-terminus for targeting into 5-HT2A-R domains. We show that the specific localization of the GPCR to its receptor domain drastically alters the dynamics and localization of the intracellular Ca2+ signals in different neuronal populations in vitro and in vivo. The CaMello method may be extended to every GPCR coupling to the Gq/11 pathway to help unravel new receptor-specific functions in respect to synaptic plasticity and GPCR localization. Dennis Eickelbeck et al. engineered light-activated constructs, CaMello and CaMello-5HT2A, which are targeted to the 5HT2A-R domains and enable visualization of calcium signals and receptor trafficking in response to activation. The reported CaMello tool could be applied to other GPCRs coupled to the Gq/11 signaling pathways which may shed light on mechanisms of GPCR localization and plasticity.
Collapse
Affiliation(s)
- Dennis Eickelbeck
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Raziye Karapinar
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, ND6/72, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Sandra T Suess
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, NB 2/27, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, NB 2/27, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Michelle Grömmke
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND04/596, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, NB 2/27, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, ND6/72, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
| |
Collapse
|
44
|
Benskey MJ, Sandoval IM, Miller K, Sellnow RL, Gezer A, Kuhn NC, Vashon R, Manfredsson FP. Basic Concepts in Viral Vector-Mediated Gene Therapy. Methods Mol Biol 2019; 1937:3-26. [PMID: 30706387 DOI: 10.1007/978-1-4939-9065-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Kathryn Miller
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Rhyomi L Sellnow
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Roslyn Vashon
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
- Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
45
|
Osorno T, Arenas O, Ramírez-Suarez NJ, Echeverry FA, Gomez MDP, Nasi E. Light control of G protein signaling pathways by a novel photopigment. PLoS One 2018; 13:e0205015. [PMID: 30273391 PMCID: PMC6166976 DOI: 10.1371/journal.pone.0205015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022] Open
Abstract
Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice—as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to Go; HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop—important to confer specificity of interaction between 7TMDRs and G-proteins—with that of a Gq-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways.
Collapse
Affiliation(s)
- Tomás Osorno
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Oscar Arenas
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Fabio A. Echeverry
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Enrico Nasi
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
46
|
Stachurska A, Sarna T. Regulation of Melanopsin Signaling: Key Interactions of the Nonvisual Photopigment. Photochem Photobiol 2018; 95:83-94. [DOI: 10.1111/php.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Stachurska
- Labolatory of Imaging and Force Spectroscopy; Malopolska Centre of Biotechnology; Jagiellonian University; Krakow Poland
| | - Tadeusz Sarna
- Department of Biophysics; Faculty of Biochemistry, Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| |
Collapse
|
47
|
Bertolesi GE, McFarlane S. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res 2018; 31:354-373. [PMID: 29239123 DOI: 10.1111/pcmr.12678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to "see the light" in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land-dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light-controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin-expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface-reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin-expressing eye cells in mammals, and by as yet unknown non-visual opsins in the pineal gland of non-mammals.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
48
|
Eickelbeck D, Karapinar R, Herlitze S, Spoida K. Optogenetic Approaches for Controlling Neuronal Activity and Plasticity. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis. Sci Rep 2017; 7:16332. [PMID: 29180820 PMCID: PMC5703708 DOI: 10.1038/s41598-017-16689-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words)
Collapse
|
50
|
Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017; 96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Collapse
|