1
|
Preston R, Chrisp R, Dudek M, Morais MRPT, Tian P, Williams E, Naylor RW, Davenport B, Pathiranage DRJ, Benson E, Spiller DG, Bagnall J, Zeef L, Lawless C, Baker SM, Meng QJ, Lennon R. The glomerular circadian clock temporally regulates basement membrane dynamics and the podocyte glucocorticoid response. Kidney Int 2025; 107:99-115. [PMID: 39515644 DOI: 10.1016/j.kint.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Kidney physiology shows diurnal variation, and a disrupted circadian rhythm is associated with kidney disease. However, it remains largely unknown whether glomeruli, the filtering units in the kidney, are under circadian control. Here, we investigated core circadian clock components in glomeruli, together with their rhythmic targets and modes of regulation. With clock gene reporter mice, cell-autonomous glomerular clocks which likely govern rhythmic fluctuations in glomerular physiology were identified. Using circadian time-series transcriptomic profiling, the first circadian glomerular transcriptome with 375 rhythmic transcripts, enriched for extracellular matrix and glucocorticoid receptor signaling ontologies, were identified. Subsets of rhythmic matrix-related genes required for basement membrane assembly and turnover, and circadian variation in matrix ultrastructure, coinciding with peak abundance of rhythmic basement membrane proteins, were uncovered. This provided multiomic evidence for interactions between glomerular matrix and intracellular time-keeping mechanisms. Furthermore, glucocorticoids, which are frequently used to treat glomerular disease, reset the podocyte clock and induce rhythmic expression of potential glomerular disease genes associated with nephrotic syndrome that included Nphs1 (nephrin) and Nphs2 (podocin). Disruption of the clock with pharmacological inhibition altered the expression of these disease genes, indicating an interplay between clock gene expression and key genes required for podocyte health. Thus, our results provide a strong basis for future investigations of the functional implications and therapeutic potential of chronotherapy in glomerular health and disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ruby Chrisp
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mychel R P T Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dharshika R J Pathiranage
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma Benson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David G Spiller
- Bioimaging Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - James Bagnall
- Bioimaging Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Leo Zeef
- Bioinformatics Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Syed Murtuza Baker
- Bioinformatics Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
2
|
Stangerup I, Georg B, Hannibal J. Prokineticin 2 protein is diurnally expressed in PER2-containing clock neurons in the mouse suprachiasmatic nucleus. Peptides 2025; 183:171339. [PMID: 39755259 DOI: 10.1016/j.peptides.2024.171339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also known as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent. Hence, data on PK2 protein expression in the SCN is lacking. In this study a thorough validation of a commercial PK2 antibody for immunohistochemistry (IHC) was performed followed by fluorescence IHC on SCN mouse brain sections at six consecutive ZTs over a 24-h cycle (12:12 light-dark, ZT0 =light ON whereas ZT12 =light OFF). Data were visualized and processed using confocal microscopy. Results showed that PK2 protein expression diurnally oscillates with calculated peak expression ZT5:40 ± 1:40 h. Opposite than described for PK2 mRNA, PK2 immunoreactivity was detectable at all times during the 24-h cycle. PK2 was primarily located in neurons of the shell compartment and > 80 % of these neurons co-expressed the core clock protein PER2. In conclusion, PK2 protein expression oscillates as the mRNA, supporting the suggested role of PK2 as a SCN molecule involved in circadian rhythm regulation.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Smyllie NJ, Hastings MH, Patton AP. Neuron-Astrocyte Interactions and Circadian Timekeeping in Mammals. Neuroscientist 2024:10738584241245307. [PMID: 38602223 DOI: 10.1177/10738584241245307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Almost every facet of our behavior and physiology varies predictably over the course of day and night, anticipating and adapting us to their associated opportunities and challenges. These rhythms are driven by endogenous biological clocks that, when deprived of environmental cues, can continue to oscillate within a period of approximately 1 day, hence circa-dian. Normally, retinal signals synchronize them to the cycle of light and darkness, but disruption of circadian organization, a common feature of modern lifestyles, carries considerable costs to health. Circadian timekeeping pivots around a cell-autonomous molecular clock, widely expressed across tissues. These cellular timers are in turn synchronized by the principal circadian clock of the brain: the hypothalamic suprachiasmatic nucleus (SCN). Intercellular signals make the SCN network a very powerful pacemaker. Previously, neurons were considered the sole SCN timekeepers, with glial cells playing supportive roles. New discoveries have revealed, however, that astrocytes are active partners in SCN network timekeeping, with their cell-autonomous clock regulating extracellular glutamate and GABA concentrations to control circadian cycles of SCN neuronal activity. Here, we introduce circadian timekeeping at the cellular and SCN network levels before focusing on the contributions of astrocytes and their mutual interaction with neurons in circadian control in the brain.
Collapse
Affiliation(s)
- Nicola J Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew P Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
Sharma D, Partch CL. PAS Dimerization at the Nexus of the Mammalian Circadian Clock. J Mol Biol 2024; 436:168341. [PMID: 37924861 PMCID: PMC11729053 DOI: 10.1016/j.jmb.2023.168341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Circadian rhythms are genetically encoded molecular clocks for internal biological timekeeping. Organisms from single-cell bacteria to humans use these clocks to adapt to the external environment and synchronize their physiology and behavior to solar light/dark cycles. Although the proteins that constitute the molecular 'cogs' and give rise to circadian rhythms are now known, we still lack a detailed understanding of how these proteins interact to generate and sustain the ∼24-hour circadian clock. Structural studies have helped to expand the architecture of clock proteins and have revealed the abundance of the only well-defined structured regions in the mammalian clock called Per-ARNT-Sim (PAS) domains. PAS domains are modular, evolutionarily conserved sensory and signaling domains that typically mediate protein-protein interactions. In the mammalian circadian clock, PAS domains modulate homo and heterodimerization of several core clock proteins that assemble into transcription factors or repressors. This review will focus on the functional importance of the PAS domains in the circadian clock from a biophysical and biochemical standpoint and describe their roles in clock protein interactions and circadian timekeeping.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States; Center for Circadian Biology, University of California San Diego, CA, United States.
| |
Collapse
|
6
|
Xie P, Xie X, Ye C, Dean KM, Laothamatas I, Taufique SKT, Takahashi J, Yamazaki S, Xu Y, Liu Y. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. Proc Natl Acad Sci U S A 2023; 120:e2318274120. [PMID: 38127982 PMCID: PMC10756265 DOI: 10.1073/pnas.2318274120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.
Collapse
Affiliation(s)
- Pancheng Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu215123, China
| | - Xiaowen Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Congrong Ye
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Isara Laothamatas
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - S. K. Tahajjul Taufique
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Joseph Takahashi
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Shin Yamazaki
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
7
|
Dudek M, Pathiranage DRJ, Bano-Otalora B, Paszek A, Rogers N, Gonçalves CF, Lawless C, Wang D, Luo Z, Yang L, Guilak F, Hoyland JA, Meng QJ. Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks. Nat Commun 2023; 14:7237. [PMID: 37963878 PMCID: PMC10646113 DOI: 10.1038/s41467-023-42056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Daily rhythms in mammalian behaviour and physiology are generated by a multi-oscillator circadian system entrained through environmental cues (e.g. light and feeding). The presence of tissue niche-dependent physiological time cues has been proposed, allowing tissues the ability of circadian phase adjustment based on local signals. However, to date, such stimuli have remained elusive. Here we show that daily patterns of mechanical loading and associated osmotic challenge within physiological ranges reset circadian clock phase and amplitude in cartilage and intervertebral disc tissues in vivo and in tissue explant cultures. Hyperosmolarity (but not hypo-osmolarity) resets clocks in young and ageing skeletal tissues and induce genome-wide expression of rhythmic genes in cells. Mechanistically, RNAseq and biochemical analysis revealed the PLD2-mTORC2-AKT-GSK3β axis as a convergent pathway for both in vivo loading and hyperosmolarity-induced clock changes. These results reveal diurnal patterns of mechanical loading and consequent daily oscillations in osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.
Collapse
Affiliation(s)
- Michal Dudek
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dharshika R J Pathiranage
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Anna Paszek
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Natalie Rogers
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Farshid Guilak
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
8
|
Xie P, Xie X, Ye C, Dean KM, Laothamatas I, Taufique SKT, Takahashi J, Yamazaki S, Xu Y, Liu Y. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563153. [PMID: 37961341 PMCID: PMC10634710 DOI: 10.1101/2023.10.19.563153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro or in cells that overexpress protein, the physiological relevance of LLPS is unclear. PERIOD proteins are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Here we show that when transgene was stably expressed, PER2 formed nuclear phosphorylation-dependent LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins is a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian studies.
Collapse
Affiliation(s)
- Pancheng Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cambridge-Su Genomic Resource Center, Soochow University; Suzhou, Jiangsu 215123, China
| | - Xiaowen Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Congrong Ye
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isara Laothamatas
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - S K Tahajjul Taufique
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Joseph Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University; Suzhou, Jiangsu 215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Endogenous circadian reporters reveal functional differences of PERIOD paralogs and the significance of PERIOD:CK1 stable interaction. Proc Natl Acad Sci U S A 2023; 120:e2212255120. [PMID: 36724252 PMCID: PMC9962996 DOI: 10.1073/pnas.2212255120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adverse consequences from having a faulty circadian clock include compromised sleep quality and poor performance in the short-term, and metabolic diseases and cancer in the long-term. However, our understanding of circadian disorders is limited by the incompleteness of our molecular models and our dearth of defined mutant models. Because it would be prohibitively expensive to develop live animal models to study the full range of complicated clock mechanisms, we developed PER1-luc and PER2-luc endogenous circadian reporters in a validated clock cell model, U-2 OS, where the genome can be easily manipulated, and functional consequences of mutations can be accurately studied. When major clock genes were knocked out in these cells, circadian rhythms were modulated similarly compared with corresponding mutant mice, validating the platform for genetics studies. Using these reporter cells, we uncovered critical differences between two paralogs of PER. Although PER1 and PER2 are considered redundant and either one can serve as a pacemaker alone, they were dramatically different in biochemical parameters such as stability and phosphorylation kinetics. Consistently, circadian phase was dramatically different between PER1 and PER2 knockout reporter cells. We further showed that the stable binding of casein kinase1δ/ε to PER is not required for PER phosphorylation itself, but is critical for delayed timing of phosphorylation. Our system can be used as an efficient platform to study circadian disorders associated with pathogenic mutations and their underlying molecular mechanisms.
Collapse
|
10
|
The role of spatiotemporal organization and dynamics of clock complexes in circadian regulation. Curr Opin Cell Biol 2022; 78:102129. [PMID: 36126370 DOI: 10.1016/j.ceb.2022.102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Circadian clocks are cell autonomous timekeepers that regulate ∼24-h oscillations in the expression of many genes and control rhythms in nearly all our behavior and physiology. Almost every cell in the human body has a molecular clock and networks of cells containing clock proteins orchestrate daily rhythms in many physiological processes, from sleep-wake cycles to metabolism to immunity. All eukaryotic circadian clocks are based on transcription-translation delayed negative feedback loops in which activation of core clock genes is negatively regulated by their cognate protein products. Our current understanding of circadian clocks has been accumulated from decades of genetic and biochemical experiments, however, what remains poorly understood is how clock proteins, genes, and mRNAs are spatiotemporally organized within live clock cells and how such subcellular organization affects circadian rhythms at the single cell level. Here, we review recent progress in understanding how clock proteins and genes are spatially organized within clock cells over the circadian cycle and the role of such organization in generating circadian rhythms and highlight open questions for future studies.
Collapse
|
11
|
Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. PRD-2 mediates clock-regulated perinuclear localization of clock gene RNAs within the circadian cycle of Neurospora. Proc Natl Acad Sci U S A 2022; 119:e2203078119. [PMID: 35881801 PMCID: PMC9351534 DOI: 10.1073/pnas.2203078119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/24/2022] [Indexed: 02/02/2023] Open
Abstract
The transcription-translation negative feedback loops underlying animal and fungal circadian clocks are remarkably similar in their molecular regulatory architecture and, although much is understood about their central mechanism, little is known about the spatiotemporal dynamics of the gene products involved. A common feature of these circadian oscillators is a significant temporal delay between rhythmic accumulation of clock messenger RNAs (mRNAs) encoding negative arm proteins, for example, frq in Neurospora and Per1-3 in mammals, and the appearance of the clock protein complexes assembled from the proteins they encode. Here, we report use of single-molecule RNA fluorescence in situ hybridization (smFISH) to show that the fraction of nuclei actively transcribing the clock gene frq changes in a circadian manner, and that these mRNAs cycle in abundance with fewer than five transcripts per nucleus at any time. Spatial point patterning statistics reveal that frq is spatially clustered near nuclei in a time of day-dependent manner and that clustering requires an RNA-binding protein, PRD-2 (PERIOD-2), recently shown also to bind to mRNA encoding another core clock component, casein kinase 1. An intrinsically disordered protein, PRD-2 displays behavior in vivo and in vitro consistent with participation in biomolecular condensates. These data are consistent with a role for phase-separating RNA-binding proteins in spatiotemporally organizing clock mRNAs to facilitate local translation and assembly of clock protein complexes.
Collapse
Affiliation(s)
- Bradley M. Bartholomai
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jennifer J. Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
12
|
Oyama Y, Shuff SR, Burns N, Vohwinkel CU, Eckle T. Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. Am J Physiol Lung Cell Mol Physiol 2022; 322:L647-L661. [PMID: 35272486 PMCID: PMC9037706 DOI: 10.1152/ajplung.00301.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian amplitude enhancement has the potential to be organ protective but has not been studied in acute lung injury (ALI). Consistent light and dark cycles are crucial for the amplitude regulation of the circadian rhythm protein Period2 (PER2). Housing mice under intense instead of ambient light for 1 wk (light: dark cycle:14h:10h), we demonstrated a robust increase of pulmonary PER2 trough and peak levels, which is consistent with circadian amplitude enhancement. A search for the affected lung cell type suggested alveolar type 2 (ATII) cells as strong candidates for light induction of PER2. A head-to-head comparison of mice with cell-type-specific deletion of Per2 in ATII, endothelial, or myeloid cells uncovered a dramatic phenotype in mice with an ATII-specific deletion of Per2. During Pseudomonas aeruginosa-induced ALI, mice with Per2 deletion in ATII cells showed 0% survival, whereas 85% of control mice survived. Subsequent studies demonstrated that intense light therapy dampened lung inflammation or improved the alveolar barrier function during P. aeruginosa-induced ALI, which was abolished in mice with an ATII-specific deletion of Per2. A genome-wide mRNA array uncovered bactericidal/permeability-increasing fold-containing family B member 1 (BPIFB1) as a downstream target of intense light-elicited ATII-PER2 mediated lung protection. Using the flavonoid and PER2 amplitude enhancer nobiletin, we recapitulated the lung-protective and anti-inflammatory effects of light and BPIFB1, respectively. Together, our studies demonstrate that light-elicited amplitude enhancement of ATII-specific PER2 is a critical control point of inflammatory pathways during bacterial ALI.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado,2Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Sydney R. Shuff
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Nana Burns
- 3Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pediatric Critical Care, Department of Medicine and Pediatrics, University of Colorado, Aurora, Colorado
| | - Christine U. Vohwinkel
- 3Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pediatric Critical Care, Department of Medicine and Pediatrics, University of Colorado, Aurora, Colorado
| | - Tobias Eckle
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado,4Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado
| |
Collapse
|
13
|
Koch AA, Bagnall JS, Smyllie NJ, Begley N, Adamson AD, Fribourgh JL, Spiller DG, Meng QJ, Partch CL, Strimmer K, House TA, Hastings MH, Loudon ASI. Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock. eLife 2022; 11:73976. [PMID: 35285799 PMCID: PMC8983044 DOI: 10.7554/elife.73976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian circadian clock exerts control of daily gene expression through cycles of DNA binding. Here, we develop a quantitative model of how a finite pool of BMAL1 protein can regulate thousands of target sites over daily time scales. We used quantitative imaging to track dynamic changes in endogenous labelled proteins across peripheral tissues and the SCN. We determine the contribution of multiple rhythmic processes coordinating BMAL1 DNA binding, including cycling molecular abundance, binding affinities, and repression. We find nuclear BMAL1 concentration determines corresponding CLOCK through heterodimerisation and define a DNA residence time of this complex. Repression of CLOCK:BMAL1 is achieved through rhythmic changes to BMAL1:CRY1 association and high-affinity interactions between PER2:CRY1 which mediates CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling reveals a dual role for PER:CRY complexes in which increasing concentrations of PER2:CRY1 promotes removal of BMAL1:CLOCK from genes consequently enhancing ability to move to new target sites.
Collapse
Affiliation(s)
- Alex Ashton Koch
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola J Smyllie
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
| | - David G Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Qing-Jun Meng
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
| | - Korbinian Strimmer
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Thomas A House
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Michael H Hastings
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Proc Natl Acad Sci U S A 2022; 119:2113845119. [PMID: 35046033 PMCID: PMC8795536 DOI: 10.1073/pnas.2113845119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinates cellular clocks across the organism to regulate daily rhythms of physiology and behavior. SCN timekeeping pivots around transcriptional/translational feedback loops whereby PERIOD (PER) and CRYPTOCHROME (CRY) proteins associate and enter the nucleus to inhibit their own expression. The individual and interactive behaviors of PER and CRY and the mechanisms that regulate them are poorly understood. We combined fluorescence imaging of endogenous PER2 and viral vector–expressed CRY in SCN slices and show how CRYs, acting via their C terminus, control nuclear localization and mobility of PER2 to dose-dependently initiate SCN timekeeping and control its period. Our results reveal PER and CRY interactions central to the SCN clockwork. The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN timekeeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism.
Collapse
|
15
|
Smith CB, van der Vinne V, McCartney E, Stowie AC, Leise TL, Martin-Burgos B, Molyneux PC, Garbutt LA, Brodsky MH, Davidson AJ, Harrington ME, Dallmann R, Weaver DR. Cell-Type-Specific Circadian Bioluminescence Rhythms in Dbp Reporter Mice. J Biol Rhythms 2022; 37:53-77. [PMID: 35023384 DOI: 10.1177/07487304211069452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.
Collapse
Affiliation(s)
- Ciearra B Smith
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Vincent van der Vinne
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Department of Biology, Williams College, Williamstown, Massachusetts
| | | | - Adam C Stowie
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Tanya L Leise
- Department of Mathematics & Statistics, Amherst College, Amherst, Massachusetts
| | | | | | - Lauren A Garbutt
- Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Michael H Brodsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alec J Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | | | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
16
|
Warrington SJ, Strutt H, Strutt D. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins. Methods Mol Biol 2022; 2438:1-30. [PMID: 35147932 DOI: 10.1007/978-1-0716-2035-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.
Collapse
Affiliation(s)
| | - Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
17
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Gabriel CH, Del Olmo M, Zehtabian A, Jäger M, Reischl S, van Dijk H, Ulbricht C, Rakhymzhan A, Korte T, Koller B, Grudziecki A, Maier B, Herrmann A, Niesner R, Zemojtel T, Ewers H, Granada AE, Herzel H, Kramer A. Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. Nat Commun 2021; 12:3796. [PMID: 34145278 PMCID: PMC8213786 DOI: 10.1038/s41467-021-24086-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.
Collapse
Affiliation(s)
- Christian H Gabriel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Amin Zehtabian
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marten Jäger
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Reischl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Hannah van Dijk
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Carolin Ulbricht
- Immune Dynamics, Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Korte
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Barbara Koller
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Astrid Grudziecki
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bert Maier
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Tomasz Zemojtel
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
19
|
Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell 2021; 81:1133-1146. [PMID: 33545069 DOI: 10.1016/j.molcel.2021.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.
Collapse
Affiliation(s)
- Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. Proc Natl Acad Sci U S A 2020; 117:28402-28411. [PMID: 33106420 PMCID: PMC7668169 DOI: 10.1073/pnas.2003524117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms including wake-sleep cycles are driven by molecular time cues generated by a self-sustaining transcriptional negative feedback loop. Among all clock proteins, PERIOD (PER) is considered the pacemaker protein because its rhythm of accumulation and nuclear entry generates the timing and duration of feedback inhibition. Here we provide a new understanding of how robust PER rhythms are generated: the collective action of interacting PER molecules, not a random mass action of individual molecules, allows compensation of spatial and temporal differences (or “noise”) of individual molecules. We also show that the collective PER rhythm requires healthy cytoplasmic trafficking, and that circadian sleep disorders can arise in such conditions as obesity, aging, and neurodegenerative disorders in which the cytoplasm becomes congested. The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER’s cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.
Collapse
|
21
|
Soto X, Biga V, Kursawe J, Lea R, Doostdar P, Thomas R, Papalopulu N. Dynamic properties of noise and Her6 levels are optimized by miR-9, allowing the decoding of the Her6 oscillator. EMBO J 2020; 39:e103558. [PMID: 32395844 PMCID: PMC7298297 DOI: 10.15252/embj.2019103558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.
Collapse
Affiliation(s)
- Ximena Soto
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Veronica Biga
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Jochen Kursawe
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Robert Lea
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Parnian Doostdar
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Riba Thomas
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
22
|
Fang DA, Yang XJ, Zhou YF, Xu DP, Yang Y, Qin C. Discovery of the indicator role of period 2 in yellow catfish ( Pelteobagrus fulvidraco) food intake during early life development stages. Chronobiol Int 2020; 37:629-640. [PMID: 32410469 DOI: 10.1080/07420528.2020.1752706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The early development stages of fish are a highly ordered and tightly regulated, involving many circadian rhythm-related gene and protein processes. Nonetheless, there are few reports on the effects of circadian clock genes on the early development stages of fish. We studied Pelteobagrus fulvidraco Period 2 (Pf-Per 2) gene structures and expression patterns during the early life stages of development, including the fertilized embryo, yolk absorption, preliminary food, rotifer breeding, and mixed food stages. cDNA of Pf-Per 2 is 4593 bp in length, with 357 bp 5'-untranslated region (5'UTR), 216 bp 3'UTR. The 4020 bp open reading frame consists of 1339 encoded amino acids. By multiple sequence alignment and phylogenetic analysis, the sequence was found to demonstrate high similarity to humans, rodents, microorganisms, and other fish species. Expression patterns of mRNA transcripts showed existence of rhythmic oscillations in the yellow catfish during the early development phase. The higher expression level of Per 2 is obviously present in the early embryonic development stage; the continuous downward trend of Per 2 was observed in the embryonic development and yolk nutrition absorption stages; additionally, the expression of Per 2 mRNA was significantly increased during individual development, rotifer breeding, and mixed food stages. Moreover, immunohistochemistry studies revealed strongest immune-labeled positive signals of Per 2 proteins mainly located in the cytoplasm of the olfactory bulb cell. Our findings reveal Pf-Per 2 serves important functions and may be useful as an indicator of P. fulvidraco early life development and initial food intake process stages.
Collapse
Affiliation(s)
- Di-An Fang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Centre , China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University , Shanghai, China
| | - Xue-Jun Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Centre , China
| | - Yan-Feng Zhou
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Centre , China
| | - Dong-Po Xu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Centre , China
| | - You Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Centre , China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University , Neijiang, China
| |
Collapse
|
23
|
Yang N, Smyllie NJ, Morris H, Gonçalves CF, Dudek M, Pathiranage DRJ, Chesham JE, Adamson A, Spiller DG, Zindy E, Bagnall J, Humphreys N, Hoyland J, Loudon ASI, Hastings MH, Meng QJ. Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator. PLoS Genet 2020; 16:e1008729. [PMID: 32352975 PMCID: PMC7217492 DOI: 10.1371/journal.pgen.1008729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Evolutionarily conserved circadian clocks generate 24-hour rhythms in physiology and behaviour that adapt organisms to their daily and seasonal environments. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the principal co-ordinator of the cell-autonomous clocks distributed across all major tissues. The importance of robust daily rhythms is highlighted by experimental and epidemiological associations between circadian disruption and human diseases. BMAL1 (a bHLH-PAS domain-containing transcription factor) is the master positive regulator within the transcriptional-translational feedback loops (TTFLs) that cell-autonomously define circadian time. It drives transcription of the negative regulators Period and Cryptochrome alongside numerous clock output genes, and thereby powers circadian time-keeping. Because deletion of Bmal1 alone is sufficient to eliminate circadian rhythms in cells and the whole animal it has been widely used as a model for molecular disruption of circadian rhythms, revealing essential, tissue-specific roles of BMAL1 in, for example, the brain, liver and the musculoskeletal system. Moreover, BMAL1 has clock-independent functions that influence ageing and protein translation. Despite the essential role of BMAL1 in circadian time-keeping, direct measures of its intra-cellular behaviour are still lacking. To fill this knowledge-gap, we used CRISPR Cas9 to generate a mouse expressing a knock-in fluorescent fusion of endogenous BMAL1 protein (Venus::BMAL1) for quantitative live imaging in physiological settings. The Bmal1Venus mouse model enabled us to visualise and quantify the daily behaviour of this core clock factor in central (SCN) and peripheral clocks, with single-cell resolution that revealed its circadian expression, anti-phasic to negative regulators, nuclear-cytoplasmic mobility and molecular abundance.
Collapse
Affiliation(s)
- Nan Yang
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola J. Smyllie
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Cátia F. Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dharshika R. J. Pathiranage
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Johanna E. Chesham
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Antony Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Egor Zindy
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Judith Hoyland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew S. I. Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael H. Hastings
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. J Mol Biol 2020; 432:3639-3660. [PMID: 31996314 DOI: 10.1016/j.jmb.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Circadian (approximately daily) rhythms of physiology and behaviour adapt organisms to the alternating environments of day and night. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian timekeeper of mammals. The mammalian cell-autonomous circadian clock is built around a self-sustaining transcriptional-translational negative feedback loop (TTFL) in which the negative regulators Per and Cry suppress their own expression, which is driven by the positive regulators Clock and Bmal1. Importantly, such TTFL-based clocks are present in all major tissues across the organism, and the SCN is their central co-ordinator. First, we analyse SCN timekeeping at the cell-autonomous and the circuit-based levels of organisation. We consider how molecular-genetic manipulations have been used to probe cell-autonomous timing in the SCN, identifying the integral components of the clock. Second, we consider new approaches that enable real-time monitoring of the activity of these clock components and clock-driven cellular outputs. Finally, we review how intersectional genetic manipulations of the cell-autonomous clockwork can be used to determine how SCN cells interact to generate an ensemble circadian signal. Critically, it is these network-level interactions that confer on the SCN its emergent properties of robustness, light-entrained phase and precision- properties that are essential for its role as the central co-ordinator. Remaining gaps in knowledge include an understanding of how the TTFL proteins behave individually and in complexes: whether particular SCN neuronal populations act as pacemakers, and if so, by which signalling mechanisms, and finally the nature of the recently discovered role of astrocytes within the SCN network.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
25
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
26
|
Fustin JM, Li M, Gao B, Chen Q, Cheng T, Stewart AG. Rhythm on a chip: circadian entrainment in vitro is the next frontier in body-on-a chip technology. Curr Opin Pharmacol 2019; 48:127-136. [PMID: 31600661 DOI: 10.1016/j.coph.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
Organoids, bioprinted mini-tissues and body-on-a-chip technologies are poised to transform the practice of preclinical pharmacology, with a view to achieving better predictive value. We review the need for further refinement in static and dynamic biomechanical aspects of such microenvironments. Further consideration of the developments required in perfusion systems to enable delivery of an appropriate soluble microenvironment are argued. We place particular emphasis on a major deficiency in these systems, being the absence or aberrant circadian behaviour of cells used in such settings, and consider the technical challenges that are needing to be met in order to achieve rhythm-on-a-chip.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Laboratory of Molecular Metabology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Meina Li
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bryan Gao
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qianyu Chen
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianhong Cheng
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
27
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is remarkable. Despite numbering only about 10,000 neurons on each side of the third ventricle, the SCN is our principal circadian clock, directing the daily cycles of behaviour and physiology that set the tempo of our lives. When this nucleus is isolated in organotypic culture, its autonomous timing mechanism can persist indefinitely, with precision and robustness. The discovery of the cell-autonomous transcriptional and post-translational feedback loops that drive circadian activity in the SCN provided a powerful exemplar of the genetic specification of complex mammalian behaviours. However, the analysis of circadian time-keeping is moving beyond single cells. Technical and conceptual advances, including intersectional genetics, multidimensional imaging and network theory, are beginning to uncover the circuit-level mechanisms and emergent properties that make the SCN a uniquely precise and robust clock. However, much remains unknown about the SCN, not least the intrinsic properties of SCN neurons, its circuit topology and the neuronal computations that these circuits support. Moreover, the convention that the SCN is a neuronal clock has been overturned by the discovery that astrocytes are an integral part of the timepiece. As a test bed for examining the relationships between genes, cells and circuits in sculpting complex behaviours, the SCN continues to offer powerful lessons and opportunities for contemporary neuroscience.
Collapse
|
28
|
Manning CS, Biga V, Boyd J, Kursawe J, Ymisson B, Spiller DG, Sanderson CM, Galla T, Rattray M, Papalopulu N. Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis. Nat Commun 2019; 10:2835. [PMID: 31249377 PMCID: PMC6597611 DOI: 10.1038/s41467-019-10734-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
During embryogenesis cells make fate decisions within complex tissue environments. The levels and dynamics of transcription factor expression regulate these decisions. Here, we use single cell live imaging of an endogenous HES5 reporter and absolute protein quantification to gain a dynamic view of neurogenesis in the embryonic mammalian spinal cord. We report that dividing neural progenitors show both aperiodic and periodic HES5 protein fluctuations. Mathematical modelling suggests that in progenitor cells the HES5 oscillator operates close to its bifurcation boundary where stochastic conversions between dynamics are possible. HES5 expression becomes more frequently periodic as cells transition to differentiation which, coupled with an overall decline in HES5 expression, creates a transient period of oscillations with higher fold expression change. This increases the decoding capacity of HES5 oscillations and correlates with interneuron versus motor neuron cell fate. Thus, HES5 undergoes complex changes in gene expression dynamics as cells differentiate.
Collapse
Affiliation(s)
- Cerys S. Manning
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Veronica Biga
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - James Boyd
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Jochen Kursawe
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Bodvar Ymisson
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - David G. Spiller
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Christopher M. Sanderson
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Tobias Galla
- Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Nancy Papalopulu
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
29
|
Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. New Insights Into the Circadian Rhythm and Its Related Diseases. Front Physiol 2019; 10:682. [PMID: 31293431 PMCID: PMC6603140 DOI: 10.3389/fphys.2019.00682] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms (CR) are a series of endogenous autonomous oscillators generated by the molecular circadian clock which acting on coordinating internal time with the external environment in a 24-h daily cycle. The circadian clock system is a major regulatory factor for nearly all physiological activities and its disorder has severe consequences on human health. CR disruption is a common issue in modern society, and researches about people with jet lag or shift works have revealed that CR disruption can cause cognitive impairment, psychiatric illness, metabolic syndrome, dysplasia, and cancer. In this review, we summarized the synchronizers and the synchronization methods used in experimental research, and introduced CR monitoring and detection methods. Moreover, we evaluated conventional CR databases, and analyzed experiments that characterized the underlying causes of CR disorder. Finally, we further discussed the latest developments in understanding of CR disruption, and how it may be relevant to health and disease. Briefly, this review aimed to synthesize previous studies to aid in future studies of CR and CR-related diseases.
Collapse
Affiliation(s)
- Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Maywood ES. Synchronization and maintenance of circadian timing in the mammalian clockwork. Eur J Neurosci 2018; 51:229-240. [DOI: 10.1111/ejn.14279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Elizabeth S. Maywood
- Neurobiology DivisionMedical Research Council Laboratory of Molecular Biology Cambridge UK
| |
Collapse
|
31
|
Fuchikawa T, Beer K, Linke-Winnebeck C, Ben-David R, Kotowoy A, Tsang VWK, Warman GR, Winnebeck EC, Helfrich-Förster C, Bloch G. Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open Biol 2018; 7:rsob.170047. [PMID: 28615472 PMCID: PMC5493776 DOI: 10.1098/rsob.170047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/11/2017] [Indexed: 11/12/2022] Open
Abstract
Internal clocks driving rhythms of about a day (circadian) are ubiquitous in animals, allowing them to anticipate environmental changes. Genetic or environmental disturbances to circadian clocks or the rhythms they produce are commonly associated with illness, compromised performance or reduced survival. Nevertheless, some animals including Arctic mammals, open sea fish and social insects such as honeybees are active around-the-clock with no apparent ill effects. The mechanisms allowing this remarkable natural plasticity are unknown. We generated and validated a new and specific antibody against the clock protein PERIOD of the honeybee Apis mellifera (amPER) and used it to characterize the circadian network in the honeybee brain. We found many similarities to Drosophila melanogaster and other insects, suggesting common anatomical organization principles in the insect clock that have not been appreciated before. Time course analyses revealed strong daily oscillations in amPER levels in foragers, which show circadian rhythms, and also in nurses that do not, although the latter have attenuated oscillations in brain mRNA clock gene levels. The oscillations in nurses show that activity can be uncoupled from the circadian network and support the hypothesis that a ticking circadian clock is essential even in around-the-clock active animals in a constant physical environment.
Collapse
Affiliation(s)
- T Fuchikawa
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - K Beer
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | | | - R Ben-David
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - A Kotowoy
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - V W K Tsang
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - G R Warman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - E C Winnebeck
- School of Biological Sciences, University of Auckland, New Zealand .,Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | | | - G Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proc Natl Acad Sci U S A 2018; 115:4276-4281. [PMID: 29610316 DOI: 10.1073/pnas.1717735115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endogenous circadian clocks control 24-h physiological and behavioral rhythms in mammals. Here, we report a real-time in vivo fluorescence recording system that enables long-term monitoring of circadian rhythms in the brains of freely moving mice. With a designed reporter of circadian clock gene expression, we tracked robust Cry1 transcription reporter rhythms in the suprachiasmatic nucleus (SCN) of WT, Cry1-/- , and Cry2-/- mice in LD (12 h light, 12 h dark) and DD (constant darkness) conditions and verified that signals remained stable for over 6 mo. Further, we recorded Cry1 transcriptional rhythms in the subparaventricular zone (SPZ) and hippocampal CA1/2 regions of WT mice housed under LD and DD conditions. By using a Cre-loxP system, we recorded Per2 and Cry1 transcription rhythms specifically in vasoactive intestinal peptide (VIP) neurons of the SCN. Finally, we demonstrated the dynamics of Per2 and Cry1 transcriptional rhythms in SCN VIP neurons following an 8-h phase advance in the light/dark cycle.
Collapse
|
33
|
Kay J, Menegazzi P, Mildner S, Roces F, Helfrich-Förster C. The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain. J Biol Rhythms 2018; 33:255-271. [PMID: 29589522 DOI: 10.1177/0748730418764738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.
Collapse
Affiliation(s)
- Janina Kay
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Stephanie Mildner
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
34
|
Putker M, Crosby P, Feeney KA, Hoyle NP, Costa ASH, Gaude E, Frezza C, O'Neill JS. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid Redox Signal 2018; 28:507-520. [PMID: 28506121 PMCID: PMC5806070 DOI: 10.1089/ars.2016.6911] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Circadian rhythms permeate all levels of biology to temporally regulate cell and whole-body physiology, although the cell-autonomous mechanism that confers ∼24-h periodicity is incompletely understood. Reports describing circadian oscillations of over-oxidized peroxiredoxin abundance have suggested that redox signaling plays an important role in the timekeeping mechanism. Here, we tested the functional contribution that redox state and primary metabolism make to mammalian cellular timekeeping. RESULTS We found a circadian rhythm in flux through primary glucose metabolic pathways, indicating rhythmic NAD(P)H production. Using pharmacological and genetic perturbations, however, we found that timekeeping was insensitive to changes in glycolytic flux, whereas oxidative pentose phosphate pathway (PPP) inhibition and other chronic redox stressors primarily affected circadian gene expression amplitude, not periodicity. Finally, acute changes in redox state decreased PER2 protein stability, phase dependently, to alter the subsequent phase of oscillation. INNOVATION Circadian rhythms in primary cellular metabolism and redox state have been proposed to play a role in the cellular timekeeping mechanism. We present experimental data testing that hypothesis. CONCLUSION Circadian flux through primary metabolism is cell autonomous, driving rhythmic NAD(P)+ redox cofactor turnover and maintaining a redox balance that is permissive for circadian gene expression cycles. Redox homeostasis and PPP flux, but not glycolysis, are necessary to maintain clock amplitude, but neither redox nor glucose metabolism determines circadian period. Furthermore, cellular rhythms are sensitive to acute changes in redox balance, at least partly through regulation of PER protein. Redox and metabolic state are, thus, both inputs and outputs, but not state variables, of cellular circadian timekeeping. Antioxid. Redox Signal. 28, 507-520.
Collapse
Affiliation(s)
- Marrit Putker
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Priya Crosby
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Kevin A Feeney
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | | - Ana S H Costa
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - Edoardo Gaude
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - Christian Frezza
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - John S O'Neill
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
35
|
The role of the circadian clock system in physiology. Pflugers Arch 2018; 470:227-239. [PMID: 29302752 DOI: 10.1007/s00424-017-2103-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022]
Abstract
Life on earth is shaped by the 24-h rotation of our planet around its axes. To adapt behavior and physiology to the concurring profound but highly predictable changes, endogenous circadian clocks have evolved that drive 24-h rhythms in invertebrate and vertebrate species. At the molecular level, circadian clocks comprised a set of clock genes organized in a system of interlocked transcriptional-translational feedback loops. A ubiquitous network of cellular central and peripheral tissue clocks coordinates physiological functions along the day through activation of tissue-specific transcriptional programs. Circadian rhythms impact on diverse physiological processes including the cardiovascular system, energy metabolism, immunity, hormone secretion, and reproduction. This review summarizes our current understanding of the mechanisms of circadian timekeeping in different species, its adaptation by external timing signals and the pathophysiological consequences of circadian disruption.
Collapse
|
36
|
Fustin JM, Karakawa S, Okamura H. Circadian Profiling of Amino Acids in the SCN and Cerebral Cortex by Laser Capture Microdissection-Mass Spectrometry. J Biol Rhythms 2017; 32:609-620. [PMID: 29088992 DOI: 10.1177/0748730417735922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The suprachiasmatic nucleus (SCN) is an extremely robust self-sustained oscillator, containing virtually the same molecular clock present in other tissues in the body but, in addition, endowed with tight intercellular coupling dependent on multiple neurotransmitter systems that allow the SCN to function as the "master clock." Several studies on the circadian SCN transcriptome have been published and compared with the transcriptome of other tissues, but the recent focus shift toward the circadian metabolome and the importance of small molecules for circadian timekeeping has so far been limited to macroscopic tissues such as the liver. Here, we report the successful use of laser capture microdissection coupled with liquid chromatography/tandem mass spectrometry for the circadian profiling of SCN amino acids. Among 18 amino acids detected, 10 (55.5%) showed significant variations, particularly marked for proline, lysine, and histidine, with higher levels during the subjective day. Moreover, we compared SCN and cortical amino acid levels between wild-type and Bmal1-deficient animals, either in the whole body or specifically in the liver. Interestingly, lack of Bmal1 in the whole body led to a significant increase in most amino acids in the SCN but not in the cerebral cortex. In contrast, deletion of Bmal1 in the liver mostly affected cortical amino acid levels during the subjective day. This study demonstrates that laser capture microdissection can be used for the isolation of microscopic brain structures for metabolomic purposes and reveals interactions between liver and SCN amino acid metabolism.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sachise Karakawa
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-shi, Kanagawa, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
37
|
Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ. Macromolecular Assemblies of the Mammalian Circadian Clock. Mol Cell 2017; 67:770-782.e6. [PMID: 28886335 PMCID: PMC5679067 DOI: 10.1016/j.molcel.2017.07.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 10/18/2022]
Abstract
The mammalian circadian clock is built on a feedback loop in which PER and CRY proteins repress their own transcription. We found that in mouse liver nuclei all three PERs, both CRYs, and Casein Kinase-1δ (CK1δ) are present together in an ∼1.9-MDa repressor assembly that quantitatively incorporates its CLOCK-BMAL1 transcription factor target. Prior to incorporation, CLOCK-BMAL1 exists in an ∼750-kDa complex. Single-particle electron microscopy (EM) revealed nuclear PER complexes purified from mouse liver to be quasi-spherical ∼40-nm structures. In the cytoplasm, PERs, CRYs, and CK1δ were distributed into several complexes of ∼0.9-1.1 MDa that appear to constitute an assembly pathway regulated by GAPVD1, a cytoplasmic trafficking factor. Single-particle EM of two purified cytoplasmic PER complexes revealed ∼20-nm and ∼25-nm structures, respectively, characterized by flexibly tethered globular domains. Our results define the macromolecular assemblies comprising the circadian feedback loop and provide an initial structural view of endogenous eukaryotic clock machinery.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pieter Bas Kwak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alfred G Tamayo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Gebert
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Po-Lin Chiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
39
|
Riddle M, Mezias E, Foley D, LeSauter J, Silver R. Differential localization of PER1 and PER2 in the brain master circadian clock. Eur J Neurosci 2016; 45:1357-1367. [PMID: 27740710 DOI: 10.1111/ejn.13441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 01/13/2023]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), locus of the master circadian clock, bears many neuronal types. At the cellular-molecular level, the clock is comprised of feedback loops involving 'clock' genes including Period1 and Period2, and their protein products, PERIOD1 and PERIOD2 (PER1/2). In the canonical model of circadian oscillation, the PER1/2 proteins oscillate together. While their rhythmic expression in the SCN as a whole has been described, the possibility of regional differences remains unknown. To explore these clock proteins in distinct SCN regions, we assessed their expression through the rostro-caudal extent of the SCN in sagittal sections. We developed an automated method for tracking three fluorophores in digital images of sections triply labeled for PER1, PER2, and gastrin-releasing peptide (used to locate the core). In the SCN as a whole, neurons expressing high levels of PER2 were concentrated in the rostral, rostrodorsal, and caudal portions of the nucleus, and those expressing high levels of PER1 lay in a broad central area. Within these overall patterns, adjacent cells differed in expression levels of the two proteins. The results demonstrate spatially distinct localization of high PER1 vs. PER2 expression, raising the possibility that their distribution is functionally significant in encoding and communicating temporal information. The findings provoke the question of whether there are fundamental differences in PER1/2 levels among SCN neurons and/or whether topographical differences in protein expression are a product of SCN network organization rather than intrinsic differences among neurons.
Collapse
Affiliation(s)
- Malini Riddle
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Erica Mezias
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Duncan Foley
- Department of Economics, New School for Social Research, New York, NY, USA
| | - Joseph LeSauter
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Rae Silver
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA.,Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, 406 Schermerhorn Hall, New York, NY, 10027, USA.,Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| |
Collapse
|