1
|
Sharma H, Azouz R. Reliability and stability of tactile perception in the whisker somatosensory system. Front Neurosci 2024; 18:1344758. [PMID: 38872944 PMCID: PMC11169650 DOI: 10.3389/fnins.2024.1344758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Rodents rely on their whiskers as vital sensory tools for tactile perception, enabling them to distinguish textures and shapes. Ensuring the reliability and constancy of tactile perception under varying stimulus conditions remains a fascinating and fundamental inquiry. This study explores the impact of stimulus configurations, including whisker movement velocity and object spatial proximity, on texture discrimination and stability in rats. To address this issue, we employed three distinct approaches for our investigation. Stimulus configurations notably affected tactile inputs, altering whisker vibration's kinetic and kinematic aspects with consistent effects across various textures. Through a texture discrimination task, rats exhibited consistent discrimination performance irrespective of changes in stimulus configuration. However, alterations in stimulus configuration significantly affected the rats' ability to maintain stability in texture perception. Additionally, we investigated the influence of stimulus configurations on cortical neuronal responses by manipulating them experimentally. Notably, cortical neurons demonstrated substantial and intricate changes in firing rates without compromising the ability to discriminate between textures. Nevertheless, these changes resulted in a reduction in texture neuronal response stability. Stimulating multiple whiskers led to improved neuronal texture discrimination and maintained coding stability. These findings emphasize the importance of considering numerous factors and their interactions when studying the impact of stimulus configuration on neuronal responses and behavior.
Collapse
Affiliation(s)
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
2
|
Boboeva V, Pezzotta A, Clopath C, Akrami A. Unifying network model links recency and central tendency biases in working memory. eLife 2024; 12:RP86725. [PMID: 38656279 DOI: 10.7554/elife.86725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain's ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience - producing short-term sensory history biases - naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution's mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.
Collapse
Affiliation(s)
- Vezha Boboeva
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alberto Pezzotta
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
3
|
Reinartz S, Fassihi A, Ravera M, Paz L, Pulecchi F, Gigante M, Diamond ME. Direct contribution of the sensory cortex to the judgment of stimulus duration. Nat Commun 2024; 15:1712. [PMID: 38402290 PMCID: PMC10894222 DOI: 10.1038/s41467-024-45970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Decision making frequently depends on monitoring the duration of sensory events. To determine whether, and how, the perception of elapsed time derives from the neuronal representation of the stimulus itself, we recorded and optogenetically modulated vibrissal somatosensory cortical activity as male rats judged vibration duration. Perceived duration was dilated by optogenetic excitation. A second set of rats judged vibration intensity; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway both to time and to stimulus feature processing. A model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time successfully replicated rats' choices. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself, suggesting that the experience of time may be further investigated with the toolbox of sensory coding.
Collapse
Affiliation(s)
- Sebastian Reinartz
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Brain & Sound Lab, Department of Biomedicine, Basel University, 4056, Basel, Switzerland
| | - Arash Fassihi
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maria Ravera
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Luciano Paz
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Francesca Pulecchi
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Marco Gigante
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mathew E Diamond
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy.
| |
Collapse
|
4
|
Arican C, Schmitt FJ, Rössler W, Strube-Bloss MF, Nawrot MP. The mushroom body output encodes behavioral decision during sensory-motor transformation. Curr Biol 2023; 33:4217-4224.e4. [PMID: 37657449 DOI: 10.1016/j.cub.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Animals form a behavioral decision by evaluating sensory evidence on the background of past experiences and the momentary motivational state. In insects, we still lack understanding of how and at which stage of the recurrent sensory-motor pathway behavioral decisions are formed. The mushroom body (MB), a central brain structure in insects1 and crustaceans,2,3 integrates sensory input of different modalities4,5,6 with the internal state, the behavioral state, and external sensory context7,8,9,10 through a large number of recurrent, mostly neuromodulatory inputs,11,12 implicating a functional role for MBs in state-dependent sensory-motor transformation.13,14 A number of classical conditioning studies in honeybees15,16 and fruit flies17,18,19 have provided accumulated evidence that at its output, the MB encodes the valence of a sensory stimulus with respect to its behavioral relevance. Recent work has extended this notion of valence encoding to the context of innate behaviors.8,20,21,22 Here, we co-analyzed a defined feeding behavior and simultaneous extracellular single-unit recordings from MB output neurons (MBONs) in the cockroach in response to timed sensory stimulation with odors. We show that clear neuronal responses occurred almost exclusively during behaviorally responded trials. Early MBON responses to the sensory stimulus preceded the feeding behavior and predicted its occurrence or non-occurrence from the single-trial population activity. Our results therefore suggest that at its output, the MB does not merely encode sensory stimulus valence. We hypothesize instead that the MB output represents an integrated signal of internal state, momentary environmental conditions, and experience-dependent memory to encode a behavioral decision.
Collapse
Affiliation(s)
- Cansu Arican
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Felix Johannes Schmitt
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fritz Strube-Bloss
- Department of Biological Cybernetics and Theoretical Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
5
|
Benozzo D, Ferrucci L, Genovesio A. Effects of contraction bias on the decision process in the macaque prefrontal cortex. Cereb Cortex 2023; 33:2958-2968. [PMID: 35718538 DOI: 10.1093/cercor/bhac253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Our representation of magnitudes such as time, distance, and size is not always veridical because it is affected by multiple biases. From a Bayesian perspective, estimation errors are considered to be the result of an optimization mechanism for the behavior in a noisy environment by integrating previous experience with the incoming sensory information. One influence of the distribution of past stimuli on perceptual decisions is represented by the regression toward the mean, a type of contraction bias. Using a spatial discrimination task with 2 stimuli presented sequentially at different distances from the center, we show that this bias is also present in macaques when comparing the magnitude of 2 distances. We found that the contraction of the first stimulus magnitude toward the center of the distribution accounted for some of the changes in performance, even more so than the effect of difficulty related to the ratio between stimulus magnitudes. At the neural level in the dorsolateral prefrontal cortex, the coding of the decision after the presentation of the second stimulus reflected the effect of the contraction bias on the discriminability of the stimuli at the behavioral level.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Banerjee A, Wang BA, Teutsch J, Helmchen F, Pleger B. Analogous cognitive strategies for tactile learning in the rodent and human brain. Prog Neurobiol 2023; 222:102401. [PMID: 36608783 DOI: 10.1016/j.pneurobio.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Evolution has molded individual species' sensory capacities and abilities. In rodents, who mostly inhabit dark tunnels and burrows, the whisker-based somatosensory system has developed as the dominant sensory modality, essential for environmental exploration and spatial navigation. In contrast, humans rely more on visual and auditory inputs when collecting information from their surrounding sensory space in everyday life. As a result of such species-specific differences in sensory dominance, cognitive relevance and capacities, the evidence for analogous sensory-cognitive mechanisms across species remains sparse. However, recent research in rodents and humans yielded surprisingly comparable processing rules for detecting tactile stimuli, integrating touch information into percepts, and goal-directed rule learning. Here, we review how the brain, across species, harnesses such processing rules to establish decision-making during tactile learning, following canonical circuits from the thalamus and the primary somatosensory cortex up to the frontal cortex. We discuss concordances between empirical and computational evidence from micro- and mesoscopic circuit studies in rodents to findings from macroscopic imaging in humans. Furthermore, we discuss the relevance and challenges for future cross-species research in addressing mutual context-dependent evaluation processes underpinning perceptual learning.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom.
| | - Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany.
| | - Jasper Teutsch
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Switzerland
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany
| |
Collapse
|
7
|
Gellért L, Luhmann HJ, Kilb W. Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse. Front Neuroanat 2023; 17:1105998. [PMID: 36760662 PMCID: PMC9905141 DOI: 10.3389/fnana.2023.1105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.
Collapse
|
8
|
Buetfering C, Zhang Z, Pitsiani M, Smallridge J, Boven E, McElligott S, Häusser M. Behaviorally relevant decision coding in primary somatosensory cortex neurons. Nat Neurosci 2022; 25:1225-1236. [PMID: 36042310 PMCID: PMC7613627 DOI: 10.1038/s41593-022-01151-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Primary sensory cortex is thought to process incoming sensory information, while decision variables important for driving behavior are assumed to arise downstream in the processing hierarchy. Here, we used population two-photon calcium imaging and targeted two-photon optogenetic stimulation of neurons in layer 2/3 of mouse primary somatosensory cortex (S1) during a texture discrimination task to test for the presence of decision signals and probe their behavioral relevance. Small but distinct populations of neurons carried information about the stimulus irrespective of the behavioral outcome (stimulus neurons), or about the choice irrespective of the presented stimulus (decision neurons). Decision neurons show categorical coding that develops during learning, and lack a conclusive decision signal in Miss trials. All-optical photostimulation of decision neurons during behavior improves behavioral performance, establishing a causal role in driving behavior. The fact that stimulus and decision neurons are intermingled challenges the idea of S1 as a purely sensory area, and causal perturbation suggests a direct involvement of S1 decision neurons in the decision-making process.
Collapse
Affiliation(s)
- Christina Buetfering
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Zihui Zhang
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Margarita Pitsiani
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - John Smallridge
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Neurophenomenology of Consciousness Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ellen Boven
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sacha McElligott
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
9
|
Time coding in rat dorsolateral striatum. Neuron 2021; 109:3663-3673.e6. [PMID: 34508666 DOI: 10.1016/j.neuron.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
To assess the role of dorsolateral striatum (DLS) in time coding, we recorded neuronal activity in rats tasked with comparing the durations of two sequential vibrations. Bayesian decoding of population activity revealed a representation of the unfolding of the trial across time. However, further analyses demonstrated a distinction between the encoding of trial time and perceived time. First, DLS did not show a privileged representation of the stimulus durations compared with other time spans. Second, higher intensity vibrations were perceived as longer; however, time decoded from DLS was unaffected by vibration intensity. Third, DLS did not encode stimulus duration differently on correct versus incorrect trials. Finally, in rats trained to compare the intensities of two sequential vibrations, stimulus duration was encoded even though it was a perceptually irrelevant feature. These findings lead us to posit that temporal information is inherent to DLS activity irrespective of the rat's ongoing percept.
Collapse
|
10
|
Abstract
Identical physical inputs do not always evoke identical percepts. To investigate the role of stimulus history in tactile perception, we designed a task in which rats had to judge each vibrissal vibration, in a long series, as strong or weak depending on its mean speed. After a low-speed stimulus (trial n - 1), rats were more likely to report the next stimulus (trial n) as strong, and after a high-speed stimulus, they were more likely to report the next stimulus as weak, a repulsive effect that did not depend on choice or reward on trial n - 1. This effect could be tracked over several preceding trials (i.e., n - 2 and earlier) and was characterized by an exponential decay function, reflecting a trial-by-trial incorporation of sensory history. Surprisingly, the influence of trial n - 1 strengthened as the time interval between n - 1 and n grew. Human subjects receiving fingertip vibrations showed these same key findings. We are able to account for the repulsive stimulus history effect, and its detailed time scale, through a single-parameter model, wherein each new stimulus gradually updates the subject's decision criterion. This model points to mechanisms underlying how the past affects the ongoing subjective experience.
Collapse
|
11
|
Nikbakht N, Diamond ME. Conserved visual capacity of rats under red light. eLife 2021; 10:66429. [PMID: 34282724 PMCID: PMC8360654 DOI: 10.7554/elife.66429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Recent studies examine the behavioral capacities of rats and mice with and without visual input, and the neuronal mechanisms underlying such capacities. These animals are assumed to be functionally blind under red light, an assumption that might originate in the fact that they are dichromats who possess ultraviolet and green cones, but not red cones. But the inability to see red as a color does not necessarily rule out form vision based on red light absorption. We measured Long-Evans rats’ capacity for visual form discrimination under red light of various wavelength bands. Upon viewing a black and white grating, they had to distinguish between two categories of orientation: horizontal and vertical. Psychometric curves plotting judged orientation versus angle demonstrate the conserved visual capacity of rats under red light. Investigations aiming to explore rodent physiological and behavioral functions in the absence of visual input should not assume red-light blindness.
Collapse
Affiliation(s)
- Nader Nikbakht
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
12
|
Esmaeili V, Tamura K, Muscinelli SP, Modirshanechi A, Boscaglia M, Lee AB, Oryshchuk A, Foustoukos G, Liu Y, Crochet S, Gerstner W, Petersen CCH. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 2021; 109:2183-2201.e9. [PMID: 34077741 PMCID: PMC8285666 DOI: 10.1016/j.neuron.2021.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 01/16/2023]
Abstract
The neuronal mechanisms generating a delayed motor response initiated by a sensory cue remain elusive. Here, we tracked the precise sequence of cortical activity in mice transforming a brief whisker stimulus into delayed licking using wide-field calcium imaging, multiregion high-density electrophysiology, and time-resolved optogenetic manipulation. Rapid activity evoked by whisker deflection acquired two prominent features for task performance: (1) an enhanced excitation of secondary whisker motor cortex, suggesting its important role connecting whisker sensory processing to lick motor planning; and (2) a transient reduction of activity in orofacial sensorimotor cortex, which contributed to suppressing premature licking. Subsequent widespread cortical activity during the delay period largely correlated with anticipatory movements, but when these were accounted for, a focal sustained activity remained in frontal cortex, which was causally essential for licking in the response period. Our results demonstrate key cortical nodes for motor plan generation and timely execution in delayed goal-directed licking.
Collapse
Affiliation(s)
- Vahid Esmaeili
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Keita Tamura
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Samuel P Muscinelli
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alireza Modirshanechi
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Boscaglia
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ashley B Lee
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anastasiia Oryshchuk
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yanqi Liu
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wulfram Gerstner
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior. Proc Natl Acad Sci U S A 2021; 118:2015292118. [PMID: 33443203 PMCID: PMC7812746 DOI: 10.1073/pnas.2015292118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activity of sensory and motor cortices is essential for sensorimotor integration. In particular, coherence between these areas may indicate binding of critical functions like perception, motor planning, action, or sleep. Evidence is accumulating that cerebellar output modulates cortical activity and coherence, but how, when, and where it does so is unclear. We studied activity in and coherence between S1 and M1 cortices during whisker stimulation in the absence and presence of optogenetic Purkinje cell stimulation in crus 1 and 2 of awake mice, eliciting strong simple spike rate modulation. Without Purkinje cell stimulation, whisker stimulation triggers fast responses in S1 and M1 involving transient coherence in a broad spectrum. Simultaneous stimulation of Purkinje cells and whiskers affects amplitude and kinetics of sensory responses in S1 and M1 and alters the estimated S1-M1 coherence in theta and gamma bands, allowing bidirectional control dependent on behavioral context. These effects are absent when Purkinje cell activation is delayed by 20 ms. Focal stimulation of Purkinje cells revealed site specificity, with cells in medial crus 2 showing the most prominent and selective impact on estimated coherence, i.e., a strong suppression in the gamma but not the theta band. Granger causality analyses and computational modeling of the involved networks suggest that Purkinje cells control S1-M1 phase consistency predominantly via ventrolateral thalamus and M1. Our results indicate that activity of sensorimotor cortices can be dynamically and functionally modulated by specific cerebellar inputs, highlighting a widespread role of the cerebellum in coordinating sensorimotor behavior.
Collapse
|
14
|
Yao JD, Sanes DH. Temporal Encoding is Required for Categorization, But Not Discrimination. Cereb Cortex 2021; 31:2886-2897. [PMID: 33429423 DOI: 10.1093/cercor/bhaa396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022] Open
Abstract
Core auditory cortex (AC) neurons encode slow fluctuations of acoustic stimuli with temporally patterned activity. However, whether temporal encoding is necessary to explain auditory perceptual skills remains uncertain. Here, we recorded from gerbil AC neurons while they discriminated between a 4-Hz amplitude modulation (AM) broadband noise and AM rates >4 Hz. We found a proportion of neurons possessed neural thresholds based on spike pattern or spike count that were better than the recorded session's behavioral threshold, suggesting that spike count could provide sufficient information for this perceptual task. A population decoder that relied on temporal information outperformed a decoder that relied on spike count alone, but the spike count decoder still remained sufficient to explain average behavioral performance. This leaves open the possibility that more demanding perceptual judgments require temporal information. Thus, we asked whether accurate classification of different AM rates between 4 and 12 Hz required the information contained in AC temporal discharge patterns. Indeed, accurate classification of these AM stimuli depended on the inclusion of temporal information rather than spike count alone. Overall, our results compare two different representations of time-varying acoustic features that can be accessed by downstream circuits required for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Psychology, New York University, New York, NY 10003, USA.,Department of Biology, New York University, New York, NY 10003, USA.,Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
15
|
Bandet MV, Dong B, Winship IR. Distinct patterns of activity in individual cortical neurons and local networks in primary somatosensory cortex of mice evoked by square-wave mechanical limb stimulation. PLoS One 2021; 16:e0236684. [PMID: 33914738 PMCID: PMC8084136 DOI: 10.1371/journal.pone.0236684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
Artificial forms of mechanical limb stimulation are used within multiple fields of study to determine the level of cortical excitability and to map the trajectory of neuronal recovery from cortical damage or disease. Square-wave mechanical or electrical stimuli are often used in these studies, but a characterization of sensory-evoked response properties to square-waves with distinct fundamental frequencies but overlapping harmonics has not been performed. To distinguish between somatic stimuli, the primary somatosensory cortex must be able to represent distinct stimuli with unique patterns of activity, even if they have overlapping features. Thus, mechanical square-wave stimulation was used in conjunction with regional and cellular imaging to examine regional and cellular response properties evoked by different frequencies of stimulation. Flavoprotein autofluorescence imaging was used to map the somatosensory cortex of anaesthetized C57BL/6 mice, and in vivo two-photon Ca2+ imaging was used to define patterns of neuronal activation during mechanical square-wave stimulation of the contralateral forelimb or hindlimb at various frequencies (3, 10, 100, 200, and 300 Hz). The data revealed that neurons within the limb associated somatosensory cortex responding to various frequencies of square-wave stimuli exhibit stimulus-specific patterns of activity. Subsets of neurons were found to have sensory-evoked activity that is either primarily responsive to single stimulus frequencies or broadly responsive to multiple frequencies of limb stimulation. High frequency stimuli were shown to elicit more population activity, with a greater percentage of the population responding and greater percentage of cells with high amplitude responses. Stimulus-evoked cell-cell correlations within these neuronal networks varied as a function of frequency of stimulation, such that each stimulus elicited a distinct pattern that was more consistent across multiple trials of the same stimulus compared to trials at different frequencies of stimulation. The variation in cortical response to different square-wave stimuli can thus be represented by the population pattern of supra-threshold Ca2+ transients, the magnitude and temporal properties of the evoked activity, and the structure of the stimulus-evoked correlation between neurons.
Collapse
Affiliation(s)
- Mischa V. Bandet
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Bin Dong
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Rossi-Pool R, Zainos A, Alvarez M, Diaz-deLeon G, Romo R. A continuum of invariant sensory and behavioral-context perceptual coding in secondary somatosensory cortex. Nat Commun 2021; 12:2000. [PMID: 33790301 PMCID: PMC8012659 DOI: 10.1038/s41467-021-22321-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
A crucial role of cortical networks is the conversion of sensory inputs into perception. In the cortical somatosensory network, neurons of the primary somatosensory cortex (S1) show invariant sensory responses, while frontal lobe neuronal activity correlates with the animal's perceptual behavior. Here, we report that in the secondary somatosensory cortex (S2), neurons with invariant sensory responses coexist with neurons whose responses correlate with perceptual behavior. Importantly, the vast majority of the neurons fall along a continuum of combined sensory and categorical dynamics. Furthermore, during a non-demanding control task, the sensory responses remain unaltered while the sensory information exhibits an increase. However, perceptual responses and the associated categorical information decrease, implicating a task context-dependent processing mechanism. Conclusively, S2 neurons exhibit intriguing dynamics that are intermediate between those of S1 and frontal lobe. Our results contribute relevant evidence about the role that S2 plays in the conversion of touch into perception.
Collapse
Affiliation(s)
- Román Rossi-Pool
- Instituto de Fisiología Celular─Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Antonio Zainos
- Instituto de Fisiología Celular─Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Alvarez
- Instituto de Fisiología Celular─Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Diaz-deLeon
- Instituto de Fisiología Celular─Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ranulfo Romo
- Instituto de Fisiología Celular─Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- El Colegio Nacional, Mexico City, Mexico.
| |
Collapse
|
17
|
Bale MR, Bitzidou M, Giusto E, Kinghorn P, Maravall M. Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatosensory Cortex. Curr Biol 2021; 31:473-485.e5. [PMID: 33186553 PMCID: PMC7883307 DOI: 10.1016/j.cub.2020.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
Sequential temporal ordering and patterning are key features of natural signals, used by the brain to decode stimuli and perceive them as sensory objects. To explore how cortical neuronal activity underpins sequence discrimination, we developed a task in which mice distinguished between tactile "word" sequences constructed from distinct vibrations delivered to the whiskers, assembled in different orders. Animals licked to report the presence of the target sequence. Mice could respond to the earliest possible cues allowing discrimination, effectively solving the task as a "detection of change" problem, but enhanced their performance when responding later. Optogenetic inactivation showed that the somatosensory cortex was necessary for sequence discrimination. Two-photon imaging in layer 2/3 of the primary somatosensory "barrel" cortex (S1bf) revealed that, in well-trained animals, neurons had heterogeneous selectivity to multiple task variables including not just sensory input but also the animal's action decision and the trial outcome (presence or absence of the predicted reward). Many neurons were activated preceding goal-directed licking, thus reflecting the animal's learned action in response to the target sequence; these neurons were found as soon as mice learned to associate the rewarded sequence with licking. In contrast, learning evoked smaller changes in sensory response tuning: neurons responding to stimulus features were found in naive mice, and training did not generate neurons with enhanced temporal integration or categorical responses. Therefore, in S1bf, sequence learning results in neurons whose activity reflects the learned association between target sequence and licking rather than a refined representation of sensory features.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Malamati Bitzidou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Elena Giusto
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Paul Kinghorn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
18
|
Cortical Localization of the Sensory-Motor Transformation in a Whisker Detection Task in Mice. eNeuro 2021; 8:ENEURO.0004-21.2021. [PMID: 33495240 PMCID: PMC7901152 DOI: 10.1523/eneuro.0004-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Responding to a stimulus requires transforming an internal sensory representation into an internal motor representation. Where and how this sensory-motor transformation occurs is a matter of vigorous debate. Here, we trained male and female mice in a whisker detection go/no-go task in which they learned to respond (lick) following a transient whisker deflection. Using single unit recordings, we quantified sensory-related, motor-related, and choice-related activities in whisker primary somatosensory cortex (S1), whisker region of primary motor cortex (wMC), and anterior lateral motor cortex (ALM), three regions that have been proposed to be critical for the sensory-motor transformation in whisker detection. We observed strong sensory encoding in S1 and wMC, with enhanced encoding in wMC, and a lack of sensory encoding in ALM. We observed strong motor encoding in all three regions, yet largest in wMC and ALM. We observed the earliest choice probability in wMC, despite earliest sensory responses in S1. Based on the criteria of having both strong sensory and motor representations and early choice probability, we identify whisker motor cortex as the cortical region most directly related to the sensory-motor transformation. Our data support a model of sensory encoding originating in S1, sensory amplification and sensory-motor transformation occurring within wMC, and motor signals emerging in ALM after the sensory-motor transformation.
Collapse
|
19
|
Dissecting the Roles of Supervised and Unsupervised Learning in Perceptual Discrimination Judgments. J Neurosci 2021; 41:757-765. [PMID: 33380471 PMCID: PMC7842757 DOI: 10.1523/jneurosci.0757-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Our ability to compare sensory stimuli is a fundamental cognitive function, which is known to be affected by two biases: choice bias, which reflects a preference for a given response, and contraction bias, which reflects a tendency to perceive stimuli as similar to previous ones. To test whether both reflect supervised processes, we designed feedback protocols aimed to modify them and tested them in human participants. Choice bias was readily modifiable. However, contraction bias was not. To compare these results to those predicted from an optimal supervised process, we studied a noise-matched optimal linear discriminator (Perceptron). In this model, both biases were substantially modified, indicating that the “resilience” of contraction bias to feedback does not maximize performance. These results suggest that perceptual discrimination is a hierarchical, two-stage process. In the first, stimulus statistics are learned and integrated with representations in an unsupervised process that is impenetrable to external feedback. In the second, a binary judgment, learned in a supervised way, is applied to the combined percept. SIGNIFICANCE STATEMENT The seemingly effortless process of inferring physical reality from the sensory input is highly influenced by previous knowledge, leading to perceptual biases. Two common ones are contraction bias (the tendency to perceive stimuli as similar to previous ones) and choice bias (the tendency to prefer a specific response). Combining human psychophysical experiments with computational modeling we show that they reflect two different learning processes. Contraction bias reflects unsupervised learning of stimuli statistics, whereas choice bias results from supervised or reinforcement learning. This dissociation reveals a hierarchical, two-stage process. The first, where stimuli statistics are learned and integrated with representations, is unsupervised. The second, where a binary judgment is applied to the combined percept, is learned in a supervised way.
Collapse
|
20
|
Toso A, Fassihi A, Paz L, Pulecchi F, Diamond ME. A sensory integration account for time perception. PLoS Comput Biol 2021; 17:e1008668. [PMID: 33513135 PMCID: PMC7875380 DOI: 10.1371/journal.pcbi.1008668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
The connection between stimulus perception and time perception remains unknown. The present study combines human and rat psychophysics with sensory cortical neuronal firing to construct a computational model for the percept of elapsed time embedded within sense of touch. When subjects judged the duration of a vibration applied to the fingertip (human) or whiskers (rat), increasing stimulus intensity led to increasing perceived duration. Symmetrically, increasing vibration duration led to increasing perceived intensity. We modeled real spike trains recorded from vibrissal somatosensory cortex as input to dual leaky integrators-an intensity integrator with short time constant and a duration integrator with long time constant-generating neurometric functions that replicated the actual psychophysical functions of rats. Returning to human psychophysics, we then confirmed specific predictions of the dual leaky integrator model. This study offers a framework, based on sensory coding and subsequent accumulation of sensory drive, to account for how a feeling of the passage of time accompanies the tactile sensory experience.
Collapse
Affiliation(s)
- Alessandro Toso
- Cognitive Neuroscience PhD program, International School for Advanced Studies, Trieste, Italy
| | - Arash Fassihi
- Cognitive Neuroscience PhD program, International School for Advanced Studies, Trieste, Italy
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Luciano Paz
- Cognitive Neuroscience PhD program, International School for Advanced Studies, Trieste, Italy
| | - Francesca Pulecchi
- Cognitive Neuroscience PhD program, International School for Advanced Studies, Trieste, Italy
| | - Mathew E. Diamond
- Cognitive Neuroscience PhD program, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
21
|
Yao JD, Gimoto J, Constantinople CM, Sanes DH. Parietal Cortex Is Required for the Integration of Acoustic Evidence. Curr Biol 2020; 30:3293-3303.e4. [PMID: 32619478 DOI: 10.1016/j.cub.2020.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 01/31/2023]
Abstract
Sensory-driven decisions are formed by accumulating information over time. Although parietal cortex activity is thought to represent accumulated evidence for sensory-based decisions, recent perturbation studies in rodents and non-human primates have challenged the hypothesis that these representations actually influence behavior. Here, we asked whether the parietal cortex integrates acoustic features from auditory cortical inputs during a perceptual decision-making task. If so, we predicted that selective inactivation of this projection should impair subjects' ability to accumulate sensory evidence. We trained gerbils to perform an auditory discrimination task and obtained measures of integration time as a readout of evidence accumulation capability. Minimum integration time was calculated behaviorally as the shortest stimulus duration for which subjects could discriminate the acoustic signals. Direct pharmacological inactivation of parietal cortex increased minimum integration times, suggesting its role in the behavior. To determine the specific impact of sensory evidence, we chemogenetically inactivated the excitatory projections from auditory cortex to parietal cortex and found this was sufficient to increase minimum behavioral integration times. Our signal-detection-theory-based model accurately replicated behavioral outcomes and indicated that the deficits in task performance were plausibly explained by elevated sensory noise. Together, our findings provide causal evidence that parietal cortex plays a role in the network that integrates auditory features for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Justin Gimoto
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christine M Constantinople
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA; Department of Biology, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
22
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Esmaeili V, Diamond ME. Neuronal Correlates of Tactile Working Memory in Prefrontal and Vibrissal Somatosensory Cortex. Cell Rep 2020; 27:3167-3181.e5. [PMID: 31189103 PMCID: PMC6581739 DOI: 10.1016/j.celrep.2019.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Tactile working memory engages a broad network of cortical regions in primates. To assess whether the conclusions drawn from primates apply to rodents, we examined the vibrissal primary somatosensory cortex (vS1) and the prelimbic cortex (PL) in a delayed comparison task. Rats compared the speeds of two vibrissal vibrations, stimulus1 and stimulus2, separated by a delay of 2 s. Neuronal firing rates in vS1 and PL encode both stimuli in real time. Across the delay, the stimulus1 representation declines more precipitously in vS1 than in PL. Theta-band local field potential (LFP) coherence between vS1 and PL peaks at trial onset and remains elevated during the interstimulus interval; simultaneously, vS1 spikes become phase locked to PL LFP. Phase locking is stronger on correct (versus error) trials. Tactile working memory in rats appears to be mediated by a posterior (vS1) to anterior (PL) flow of information, with performance facilitated through coherent LFP oscillation. Rats compared the speeds of two sequential vibrissal vibrations, separated by 2 s Neurons in the primary somatosensory (vS1) and prelimbic (PL) cortex coded the stimuli Theta local field potential coherence between vS1 and PL peaked at trial onset Intracortical coherent oscillations may play a role in rat tactile working memory
Collapse
Affiliation(s)
- Vahid Esmaeili
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
24
|
Bao X, Salloum A, Gordon SG, Lomber SG. The limited capacity of visual temporal integration in cats. J Vis 2020; 20:28. [PMID: 32852533 PMCID: PMC7453054 DOI: 10.1167/jov.20.8.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been long known that prolonging stimulus duration may increase the perceived brightness of a visual stimulus. The interaction between intensity and duration generally follows a rule, such as that described in Bloch's law. This visual temporal integration relationship has been identified in human subjects and in non-human primates. However, although auditory temporal integration has been extensively studied in the cat, visual temporal integration has not. Therefore, the goal of this study was to examine visual temporal integration in the cat. We trained five cats to respond when a brief luminance change was detected in a fixation dot. After training, we measured the success rate of detecting the luminance change with varying durations at threshold, subthreshold, and suprathreshold luminance levels. Psychometric functions showed that prolonging stimulus duration improved task performance, more noticeably for stimuli below 100 ms than beyond. Most psychometric functions were better fit to an exponential model than to a linear model. The gradually saturated performance observed here, as in previous studies, can be explained by the “leaky integrator” hypothesis, that is, temporal integration is only valid below a critical duration. Overall, we developed a task whereby visual temporal integration was successfully demonstrated in the cat. The effect of stimulus duration on detection success rate displayed a pattern generally consistent with previous human and non-human primate findings on visual temporal integration.
Collapse
Affiliation(s)
- Xiaohan Bao
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Anas Salloum
- Undergraduate Program in Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G Gordon
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Dufour A, Després O, Pebayle T, Lithfous S. Thermal sensitivity in humans at the depth of thermal receptor endings beneath the skin: validation of a heat transfer model of the skin using high-temporal resolution stimuli. Eur J Appl Physiol 2020; 120:1509-1518. [PMID: 32361772 DOI: 10.1007/s00421-020-04372-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The bioheat transfer equation predicts temperature distribution in living tissues such as the skin. This study aimed at psychophysically validating this model in humans. METHODS Three experiments were performed. In the first, participants were asked to judge the thermal intensity of stimuli with combinations of intensity and duration that yielded, according to the model, identical temperatures at the thermoreceptor's depth. In experiment 2, participants' thermal detection thresholds for stimuli of different durations were measured to verify whether these thresholds correspond, according to the model, to equivalent temperatures at the thermoreceptor's location. In experiment 3, an alternative forced choice method was used, in which subjects indicated which of the two consecutive thermal stimulations was more intense. RESULTS The model predicted results that agreed with subjects' perceptions. Participants judged stimuli of different combinations of intensities and durations yielding identical temperature at the receptor level as having equivalent intensity. Moreover, although cold detection thresholds for stimuli of different durations differed for temperatures of the stimulating probe, stimulations using the model's parameters showed equivalence at the depth of the thermal receptors. Furthermore, stimuli with temperature/duration combinations for which the model predicts temperature equivalence at the depth of the receptors corresponded to subjective equalization. CONCLUSION These findings indicate that heat transfer models provide good estimates of temperatures at the thermal receptors. Use of these models may facilitate comparisons among studies using different stimulation devices and may facilitate the establishment of standards involving all stimulation parameters.
Collapse
Affiliation(s)
- André Dufour
- Universite de Strasbourg, CNRS, LNCA UMR 7364, 67000, Strasbourg, France. .,Universite de Strasbourg, CNRS, CI2N UMS 3489, 67000, Strasbourg, France.
| | - Olivier Després
- Universite de Strasbourg, CNRS, LNCA UMR 7364, 67000, Strasbourg, France
| | - Thierry Pebayle
- Universite de Strasbourg, CNRS, CI2N UMS 3489, 67000, Strasbourg, France
| | - Ségolène Lithfous
- Universite de Strasbourg, CNRS, LNCA UMR 7364, 67000, Strasbourg, France
| |
Collapse
|
26
|
Fassihi A, Zuo Y, Diamond ME. Making sense of sensory evidence in the rat whisker system. Curr Opin Neurobiol 2019; 60:76-83. [PMID: 31816523 DOI: 10.1016/j.conb.2019.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022]
Abstract
In natural environments, choices frequently must be made on the basis of complex and ambiguous streams of sensory input. There are advantages inherent to rapid decision making. Choices are better grounded, however, if information is acquired and accumulated over time. In primate visual motion perception, sensory evidence is accumulated up to a limit, at which point the brain commits to a choice. Recalling the models evoked for primate visual perception, recent studies in the rat vibrissal sensorimotor system, using a number of behavioral paradigms, show that perceptual decision making is characterized by the integration of sensory evidence over time. In this integrative process, vibrissal primary somatosensory cortex (vS1 and vS2) act not as the integrator, but as the distributor of sensory information to downstream regions.
Collapse
Affiliation(s)
| | - Yangfang Zuo
- Institute of Nerosciences, Chinese Academy of Sciences, China
| | - Mathew E Diamond
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
27
|
Zahr NM, Pohl KM, Pfefferbaum A, Sullivan EV. Central Nervous System Correlates of "Objective" Neuropathy in Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2144-2152. [PMID: 31386216 PMCID: PMC6779503 DOI: 10.1111/acer.14162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Among the neurological consequences of alcoholism is peripheral neuropathy. Relative to human immunodeficiency virus (HIV) or diabetes-related neuropathies, neuropathy associated with alcohol use disorders (AUD) is understudied. In both the diabetes and HIV literature, emerging evidence supports a central nervous system (CNS) component to peripheral neuropathy. METHODS In seeking a central substrate for AUD-related neuropathy, the current study was conducted in 154 individuals with AUD (43 women, age 21 to 74 years) and 99 healthy controls (41 women, age 21 to 77 years) and explored subjective symptoms (self-report) and objective signs (perception of vibration, deep tendon ankle reflex, position sense, 2-point discrimination) of neuropathy separately. In addition to regional brain volumes, risk factors for AUD-related neuropathy, including age, sex, total lifetime ethanol consumed, nutritional indices (i.e., thiamine, folate), and measures of liver integrity (i.e., γ-glutamyltransferase), were evaluated. RESULTS The AUD group described more subjective symptoms of neuropathy and was more frequently impaired on bilateral perception of vibration. From 5 correlates, the number of AUD-related seizures was most significantly associated with subjective symptoms of neuropathy. There were 15 correlates of impaired perception of vibration among the AUD participants: Of these, age and volume of frontal precentral cortex were the most robust predictors. CONCLUSIONS This study supports CNS involvement in objective signs of neuropathy in AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Kilian M Pohl
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Adolf Pfefferbaum
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Keemink SW, Machens CK. Decoding and encoding (de)mixed population responses. Curr Opin Neurobiol 2019; 58:112-121. [PMID: 31563083 DOI: 10.1016/j.conb.2019.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 10/25/2022]
Abstract
A central tenet of neuroscience is that the brain works through large populations of interacting neurons. With recent advances in recording techniques, the inner working of these populations has come into full view. Analyzing the resulting large-scale data sets is challenging because of the often complex and 'mixed' dependency of neural activities on experimental parameters, such as stimuli, decisions, or motor responses. Here we review recent insights gained from analyzing these data with dimensionality reduction methods that 'demix' these dependencies. We demonstrate that the mappings from (carefully chosen) experimental parameters to population activities appear to be typical and stable across tasks, brain areas, and animals, and are often identifiable by linear methods. By considering when and why dimensionality reduction and demixing work well, we argue for a view of population coding in which populations represent (demixed) latent signals, corresponding to stimuli, decisions, motor responses, and so on. These latent signals are encoded into neural population activity via non-linear mappings and decoded via linear readouts. We explain how such a scheme can facilitate the propagation of information across cortical areas, and we review neural network architectures that can reproduce the encoding and decoding of latent signals in population activities. These architectures promise a link from the biophysics of single neurons to the activities of neural populations.
Collapse
|
29
|
Adibi M. Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Front Syst Neurosci 2019; 13:40. [PMID: 31496942 PMCID: PMC6712080 DOI: 10.3389/fnsys.2019.00040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.
Collapse
Affiliation(s)
- Mehdi Adibi
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
30
|
Abstract
The number of the distinct tactile percepts exceeds the number of receptor types in the skin, signifying that perception cannot be explained by a one-to-one mapping from a single receptor channel to a corresponding percept. The abundance of touch experiences results from multiplexing (the coexistence of multiple codes within a single channel, increasing the available information content of that channel) and from the mixture of receptor channels by divergence and convergence. When a neuronal representation emerges through the combination of receptor channels, perceptual uncertainty can occur-a perceptual judgment is affected by a stimulus feature that would be, ideally, excluded from the task. Though uncertainty seems at first glance to reflect nonoptimality in sensory processing, it is actually a consequence of efficient coding mechanisms that exploit prior knowledge about objects that are touched. Studies that analyze how perceptual judgments are "fooled" by variations in sensory input can reveal the neuronal mechanisms underlying the tactile experience.
Collapse
Affiliation(s)
- Mathew E. Diamond
- Cognitive Neuroscience, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
31
|
Maravall M. Sensory Decision-Making: Rats Sleuth Evidence through Active Sensing. Curr Biol 2019; 29:R317-R319. [DOI: 10.1016/j.cub.2019.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Texture Identification by Bounded Integration of Sensory Cortical Signals. Curr Biol 2019; 29:1425-1435.e5. [DOI: 10.1016/j.cub.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 11/17/2022]
|
33
|
Zuo Y, Diamond ME. Rats Generate Vibrissal Sensory Evidence until Boundary Crossing Triggers a Decision. Curr Biol 2019; 29:1415-1424.e5. [PMID: 31006570 DOI: 10.1016/j.cub.2019.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Behaviors in which primates collect externally generated streams of sensory evidence, such as judgment of random dot motion direction, are explained by a bounded integration decision model. Does this model extend to rodents, and does it account for behavior in which the motor system generates evidence through interactions with the environment? In this study, rats palpated surfaces to identify the texture before them, showing marked trial-to-trial variability in the number of touches prior to expressing their choice. By high-speed video, we tracked whisker kinematic features and characterized how they encoded the contacted texture. Next, we quantified the evidence for each candidate texture transmitted on each touch by the specified whisker kinematic features. The instant of choice was well fit by modeling the brain as an integrator that gives the greatest weight to vibrissal evidence on first touch and exponentially less weight to evidence on successive touches; according to this model, the rat makes a decision when the accumulated quantity of evidence for one texture reaches a boundary. In summary, evidence appears to be accumulated within the brain until sufficient to support a well-grounded choice. These findings extend the framework of bounded sensory integration from primates to rodents and from passively received evidence to evidence that is actively generated by the sensorimotor system.
Collapse
Affiliation(s)
- Yanfang Zuo
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
34
|
Gilad A, Gallero-Salas Y, Groos D, Helmchen F. Behavioral Strategy Determines Frontal or Posterior Location of Short-Term Memory in Neocortex. Neuron 2018; 99:814-828.e7. [PMID: 30100254 DOI: 10.1016/j.neuron.2018.07.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
The location of short-term memory in mammalian neocortex remains elusive. Here we show that distinct neocortical areas maintain short-term memory depending on behavioral strategy. Using wide-field and single-cell calcium imaging, we measured layer 2/3 neuronal activity in mice performing a whisker-based texture discrimination task with delayed response. Mice either deployed an active strategy-engaging their body toward the approaching texture-or passively awaited the touch. Independent of strategy, whisker-related posterior areas encoded choice early after touch. During the delay, in contrast, persistent cortical activity was located medio-frontally in active trials but in a lateral posterior area in passive trials. Perturbing these areas impaired performance for the associated strategy and also provoked strategy switches. Frontally maintained information related to future action, whereas activity in the posterior cortex reflected past stimulus identity. Thus, depending on behavioral strategy, cortical activity is routed differentially to hold information either frontally or posteriorly before converging to similar action.
Collapse
Affiliation(s)
- Ariel Gilad
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland.
| | - Yasir Gallero-Salas
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland
| | - Dominik Groos
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
35
|
Abbasi A, Goueytes D, Shulz DE, Ego-Stengel V, Estebanez L. A fast intracortical brain–machine interface with patterned optogenetic feedback. J Neural Eng 2018; 15:046011. [DOI: 10.1088/1741-2552/aabb80] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Rigosa J, Lucantonio A, Noselli G, Fassihi A, Zorzin E, Manzino F, Pulecchi F, Diamond ME. A Fluorescent Dye Method Suitable for Visualization of One or More Rat Whiskers. Bio Protoc 2018; 8:e2749. [PMID: 34179276 DOI: 10.21769/bioprotoc.2749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/02/2022] Open
Abstract
Visualization and tracking of the facial whiskers is critical to many studies of rodent behavior. High-speed videography is the most robust methodology for characterizing whisker kinematics, but whisker visualization is challenging due to the low contrast of the whisker against its background. Recently, we showed that fluorescent dye(s) can be applied to enhance visualization and tracking of whisker(s) ( Rigosa et al., 2017 ), and this protocol provides additional details on the technique.
Collapse
Affiliation(s)
- Jacopo Rigosa
- International School for Advanced Studies, Trieste, Italy
| | | | | | - Arash Fassihi
- International School for Advanced Studies, Trieste, Italy
| | - Erik Zorzin
- International School for Advanced Studies, Trieste, Italy
| | | | | | | |
Collapse
|
37
|
Juavinett AL, Erlich JC, Churchland AK. Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility. Curr Opin Neurobiol 2017; 49:42-50. [PMID: 29179005 DOI: 10.1016/j.conb.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/15/2023]
Abstract
Rodent decision-making research aims to uncover the neural circuitry underlying the ability to evaluate alternatives and select appropriate actions. Designing behavioral paradigms that provide a solid foundation to ask questions about decision-making computations and mechanisms is a difficult and often underestimated challenge. Here, we propose three dimensions on which we can consider rodent decision-making tasks: ethological validity, task complexity, and stimulus-response compatibility. We review recent research through this lens, and provide practical guidance for researchers in the decision-making field.
Collapse
Affiliation(s)
| | - Jeffrey C Erlich
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Anne K Churchland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| |
Collapse
|
38
|
Abstract
It has long been known that we subjectively experience longer stimuli as being more intense. A recent study sheds light on the neural mechanisms underlying this bias by tracking the formation of a percept of intensity in the rat brain.
Collapse
Affiliation(s)
- Gianluigi Mongillo
- Centre National de la Recherche Scientifique (CNRS), Paris, France and Centre de Neurophysique, Physiologie et Pathologie (CNPP), Universite Descartes, Paris, France
| | - Yonatan Loewenstein
- Departments of Neurobiology and Cognitive Sciences, The Edmond and Lily Safra Center for Brain Sciences and the Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
39
|
Bale MR, Maravall M. Organization of sensory feature selectivity in the whisker system. Neuroscience 2017; 368:70-80. [PMID: 28918260 PMCID: PMC5798594 DOI: 10.1016/j.neuroscience.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Neurons in the whisker system are selective to spatial and dynamical properties – features – of sensory stimuli. At each stage of the pathway, different neurons encode distinct features, generating a rich population representation. Whisker touch is robustly represented; neurons respond to touch-driven fast fluctuations in forces at the whisker base. Cortical neurons have more complex and context-dependent selectivity than subcortical, e.g., to collective whisker motion. Understanding how these signals are integrated to construct whisker-mediated percepts requires further research.
Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex (BC) are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
40
|
Bale MR, Bitzidou M, Pitas A, Brebner LS, Khazim L, Anagnou ST, Stevenson CD, Maravall M. Learning and recognition of tactile temporal sequences by mice and humans. eLife 2017; 6. [PMID: 28812976 PMCID: PMC5559268 DOI: 10.7554/elife.27333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI:http://dx.doi.org/10.7554/eLife.27333.001
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Alicante, Spain
| | - Malamati Bitzidou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anna Pitas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Alicante, Spain
| | - Leonie S Brebner
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Lina Khazim
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Stavros T Anagnou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Caitlin D Stevenson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|