1
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst AL, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. Nat Commun 2023; 14:8505. [PMID: 38129375 PMCID: PMC10739909 DOI: 10.1038/s41467-023-44011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - A Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
| | - Paul E Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Thornberry C, Caffrey M, Commins S. Theta oscillatory power decreases in humans are associated with spatial learning in a virtual water maze task. Eur J Neurosci 2023; 58:4341-4356. [PMID: 37957526 DOI: 10.1111/ejn.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Theta oscillations (4-8 Hz) in humans play a role in navigation processes, including spatial encoding, retrieval and sensorimotor integration. Increased theta power at frontal and parietal midline regions is known to contribute to successful navigation. However, the dynamics of cortical theta and its role in spatial learning are not fully understood. This study aimed to investigate theta oscillations via electroencephalogram (EEG) during spatial learning in a virtual water maze. Participants were separated into a learning group (n = 25) who learned the location of a hidden goal across 12 trials, or a time-matched non-learning group (n = 25) who were required to simply navigate the same arena, but without a goal. We compared all trials, at two phases of learning, the trial start and the goal approach. We also compared the first six trials with the last six trials within-groups. The learning group showed reduced low-frequency theta power at the frontal and parietal midline during the start phase and largely reduced theta combined with a short increase at both midlines during the goal-approach phase. These patterns were not found in the non-learning group, who instead displayed extensive increases in low-frequency oscillations at both regions during the trial start and at the parietal midline during goal approach. Our results support the theory that theta plays a crucial role in spatial encoding during exploration, as opposed to sensorimotor integration. We suggest our findings provide evidence for a link between learning and a reduction of theta oscillations in humans.
Collapse
Affiliation(s)
- Conor Thornberry
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Michelle Caffrey
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
3
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst L, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558688. [PMID: 37790541 PMCID: PMC10542525 DOI: 10.1101/2023.09.20.558688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
| | - Paul E. Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J. Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Wang Y, Sui X, Luo J, Yang G, Fan P, Lu B, Li M, Xu Z, Qu L, Song Y, Li Y, Cai X. A Microelectrode Array Modified by PtNPs/PB Nanocomposites Used for the Detection and Analysis of Glucose-Sensitive Neurons under Different Blood Glucose States. ACS APPLIED BIO MATERIALS 2023; 6:1260-1271. [PMID: 36884222 DOI: 10.1021/acsabm.3c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Hypoglycemia state damages the organism, and glucose-excited and glucose-inhibited neurons from the ventral medial hypothalamus can regulate this state. Therefore, it is crucial to understand the functional mechanism between blood glucose and electrophysiology of glucose-excited and glucose-inhibited neurons. To better detect and analyze this mechanism, a PtNPs/PB nanomaterials modified 32-channel microelectrode array with low impedance (21.91 ± 6.80 kΩ), slight phase delay (-12.7° ± 2.7°), high double layer capacitance (0.606 μF), and biocompatibility was developed to realize in vivo real-time detection of the electrophysiology activities of glucose-excited and glucose-inhibited neurons. The phase-locking level of some glucose-inhibited neurons elevated during fasting (low blood glucose state) and showed theta rhythms after glucose injection (high blood glucose state). With an independent oscillating ability, glucose-inhibited neurons can provide an essential indicator to prevent severe hypoglycemia. The results reveal a mechanism for glucose-sensitive neurons to respond to blood glucose. Some glucose-inhibited neurons can integrate glucose information input and convert it into theta oscillating or phase lock output. It helps in enhancing the interaction between neurons and glucose. Therefore, the research can provide a basis for further controlling blood glucose by modulating the characteristics of neuronal electrophysiology. This helps reduce the damage of organisms under energy-limiting conditions, such as prolonged manned spaceflight or metabolic disorders.
Collapse
Affiliation(s)
- Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Zapała D, Hossaini A, Kianpour M, Sahonero-Alvarez G, Ayesh A. A functional BCI model by the P2731 working group: psychology. BRAIN-COMPUTER INTERFACES 2021. [DOI: 10.1080/2326263x.2021.1935124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dariusz Zapała
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ali Hossaini
- Department of Engineering, King’s College London, London, UK
| | - Mazaher Kianpour
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Guillermo Sahonero-Alvarez
- Center for Research, Development and Innovation in Mechatronics Engineering,Department of Mechatronics Engineering, Universidad Catolica Boliviana San Pablo, La Paz, Bolivia
| | - Aladdin Ayesh
- Faculty of Computing,Engineering and Media,De Montfort University, Leicester, UK
| |
Collapse
|
6
|
Basso JC, Satyal MK, Rugh R. Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Front Hum Neurosci 2021; 14:584312. [PMID: 33505255 PMCID: PMC7832346 DOI: 10.3389/fnhum.2020.584312] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dance has traditionally been viewed from a Eurocentric perspective as a mode of self-expression that involves the human body moving through space, performed for the purposes of art, and viewed by an audience. In this Hypothesis and Theory article, we synthesize findings from anthropology, sociology, psychology, dance pedagogy, and neuroscience to propose The Synchronicity Hypothesis of Dance, which states that humans dance to enhance both intra- and inter-brain synchrony. We outline a neurocentric definition of dance, which suggests that dance involves neurobehavioral processes in seven distinct areas including sensory, motor, cognitive, social, emotional, rhythmic, and creative. We explore The Synchronicity Hypothesis of Dance through several avenues. First, we examine evolutionary theories of dance, which suggest that dance drives interpersonal coordination. Second, we examine fundamental movement patterns, which emerge throughout development and are omnipresent across cultures of the world. Third, we examine how each of the seven neurobehaviors increases intra- and inter-brain synchrony. Fourth, we examine the neuroimaging literature on dance to identify the brain regions most involved in and affected by dance. The findings presented here support our hypothesis that we engage in dance for the purpose of intrinsic reward, which as a result of dance-induced increases in neural synchrony, leads to enhanced interpersonal coordination. This hypothesis suggests that dance may be helpful to repattern oscillatory activity, leading to clinical improvements in autism spectrum disorder and other disorders with oscillatory activity impairments. Finally, we offer suggestions for future directions and discuss the idea that our consciousness can be redefined not just as an individual process but as a shared experience that we can positively influence by dancing together.
Collapse
Affiliation(s)
- Julia C Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States.,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Medha K Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rachel Rugh
- Center for Communicating Science, Virginia Tech, Blacksburg, VA, United States.,School of Performing Arts, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Goyal A, Miller J, Qasim SE, Watrous AJ, Zhang H, Stein JM, Inman CS, Gross RE, Willie JT, Lega B, Lin JJ, Sharan A, Wu C, Sperling MR, Sheth SA, McKhann GM, Smith EH, Schevon C, Jacobs J. Functionally distinct high and low theta oscillations in the human hippocampus. Nat Commun 2020; 11:2469. [PMID: 32424312 PMCID: PMC7235253 DOI: 10.1038/s41467-020-15670-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/23/2020] [Indexed: 11/08/2022] Open
Abstract
Based on rodent models, researchers have theorized that the hippocampus supports episodic memory and navigation via the theta oscillation, a ~4-10 Hz rhythm that coordinates brain-wide neural activity. However, recordings from humans have indicated that hippocampal theta oscillations are lower in frequency and less prevalent than in rodents, suggesting interspecies differences in theta's function. To characterize human hippocampal theta, we examine the properties of theta oscillations throughout the anterior-posterior length of the hippocampus as neurosurgical subjects performed a virtual spatial navigation task. During virtual movement, we observe hippocampal oscillations at multiple frequencies from 2 to 14 Hz. The posterior hippocampus prominently displays oscillations at ~8-Hz and the precise frequency of these oscillations correlates with the speed of movement, implicating these signals in spatial navigation. We also observe slower ~3 Hz oscillations, but these signals are more prevalent in the anterior hippocampus and their frequency does not vary with movement speed. Our results converge with recent findings to suggest an updated view of human hippocampal electrophysiology. Rather than one hippocampal theta oscillation with a single general role, high- and low-frequency theta oscillations, respectively, may reflect spatial and non-spatial cognitive processes.
Collapse
Affiliation(s)
- Abhinav Goyal
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan Miller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Salman E Qasim
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Honghui Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cory S Inman
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Jui-Jui Lin
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 9107, USA
- Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 9107, USA
| | - Michael R Sperling
- Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
8
|
Liu X, Sun CX, Gao J, Xu SY. Controllability of Networks of Multiple Coupled Neural Populations: An Analytical Method for Neuromodulation's Feasibility. Int J Neural Syst 2020; 30:2050001. [PMID: 31969078 DOI: 10.1142/s012906572050001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuromodulation plays a vital role in the prevention and treatment of neurological and psychiatric disorders. Neuromodulation's feasibility is a long-standing issue because it provides the necessity for neuromodulation to realize the desired purpose. A controllability analysis of neural dynamics is necessary to ensure neuromodulation's feasibility. Here, we present such a theoretical method by using the concept of controllability from the control theory that neuromodulation's feasibility can be studied smoothly. Firstly, networks of multiple coupled neural populations with different topologies are established to mathematically model complicated neural dynamics. Secondly, an analytical method composed of a linearization method, the Kalman controllable rank condition and a controllability index is applied to analyze the controllability of the established network models. Finally, the relationship between network dynamics or topological characteristic parameters and controllability is studied by using the analytical method. The proposed method provides a new idea for the study of neuromodulation's feasibility, and the results are expected to guide us to better modulate neurodynamics by optimizing network dynamics and network topology.
Collapse
Affiliation(s)
- Xian Liu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Cheng-Xia Sun
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jing Gao
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shi-Yun Xu
- China Electric Power Research Institute, Beijing 100192, P. R. China.,NAAM Group, Faculty of Science, King Abdulaziz University, Jeddah 999088, Saudi Arabia
| |
Collapse
|
9
|
Starrett MJ, Ekstrom AD. Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information. Front Hum Neurosci 2018; 12:281. [PMID: 30050422 PMCID: PMC6050378 DOI: 10.3389/fnhum.2018.00281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022] Open
Abstract
Studying human spatial navigation in the lab can be challenging, particularly when including non-invasive neural measures like functional magnetic resonance imaging (fMRI) and scalp encephalography (EEG). While there is broad consensus that human spatial navigation involves both egocentric (self-referenced) and allocentric (world-referenced) coding schemes, exactly how these can be measured in ecologically meaningful situations remains controversial. Here, we explore these two forms of representation and how we might better measure them by reviewing commonly used spatial memory tasks and proposing a new task: the relative vector discrimination (RVD) task. Additionally, we explore how different encoding modalities (desktop virtual reality, immersive virtual reality, maps, and real-world navigation) might alter how egocentric and allocentric representations manifest. Specifically, we discuss desktop virtual reality vs. more immersive forms of navigation that better approximate real-world situations, and the extent to which less immersive encoding modalities alter neural and cognitive codes engaged during navigation more generally. We conclude that while encoding modality likely alters navigation-related codes to some degree, including egocentric and allocentric representations, it does not fundamentally change the underlying representations. Considering these arguments together, we suggest that tools to study human navigation in the lab, such as desktop virtual reality, provide overall a reasonable approximation of in vivo navigation, with some caveats.
Collapse
Affiliation(s)
- Michael J Starrett
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States.,Neuroscience Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Díez E, Díez-Álamo AM, Wojcik DZ, Glenberg AM, Fernandez A. Retrieving Against the Flow: Incoherence Between Optic Flow and Movement Direction Has Little Effect on Memory for Order. Front Hum Neurosci 2018; 12:102. [PMID: 29632479 PMCID: PMC5879133 DOI: 10.3389/fnhum.2018.00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 11/25/2022] Open
Abstract
Research from multiple areas in neuroscience suggests a link between self-locomotion and memory. In two free recall experiments with adults, we looked for a link between (a) memory, and (b) the coherence of movement and optic flow. In both experiments, participants heard lists of words while on a treadmill and wearing a virtual reality (VR) headset. In the first experiment, the VR scene and treadmill were stationary during encoding. During retrieval, all participants walked forward, but the VR scene was stationary, moved forward, or moved backwards. In the second experiment, during encoding all participants walked forward and viewed a forward-moving VR scene. During retrieval, all participants continued to walk forward but the VR scene was stationary, forward-moving, or backward-moving. In neither experiment was there a significant difference in the amount recalled, or output order strategies, attributable to differences in movement conditions. Thus, any effects of movement on memory are more limited than theories of hippocampal function and theories in cognitive psychology anticipate.
Collapse
Affiliation(s)
| | | | | | - Arthur M Glenberg
- INICO, University of Salamanca, Salamanca, Spain.,Department of Psychology, Arizona State University, Tempe, AZ, United States.,Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|