1
|
Zeng LQ, Ling H, Fu SJ, Pu DY, Killen SS. Individual and group behavioral responses to nutritional state and context in a social fish. Behav Processes 2024; 220:105059. [PMID: 38878914 DOI: 10.1016/j.beproc.2024.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Understanding how animal collectives and societies form and function is a fundamental goal in animal biology. To date, research examining fish shoaling behavior has focused mostly on the general principles and ecological relevance of the phenomeon, while the ways in which physiological state (e.g., nutrition) affects collective behavior remain overlooked. Here, we investigated the shoaling behavior of common minnows (Phoxinus phoxinus) with three different nutritional states (control treatment: fasting for 24 h, fasting treatment: fasting for 7 days, and digestion treatment: 1 h after satiation feeding) across two ecological contexts (i.e., without and with food). No effects of either nutritional state or context were found on swimming speed, but the acceleration was greater in the digestion group than in the control group, with that in the fasting group being intermediate. Similar to change tendency in group length and group width of shoals, both interindividual distance and nearest neighbor distance were also greater in the fasting group than in the digestion group, suggesting that fasting and digestion may exert opposite driving forces on group cohesion. However, neither nutritional state nor context influenced the group area, group speed, group percent time moving, or group polarization. Both the foraging efficiency and the percentage of food items consumed by the fish shoals were greater in the fasting and control groups than in the digestion group. Our study suggested that one week of hunger and the energetically demanding stage of food digestion tend to have opposite influences on group shape, while the social foraging context does not influence the individual and group behavior of fish.
Collapse
Affiliation(s)
- Ling-Qing Zeng
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing 401331, China.
| | - Hong Ling
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing 401331, China; Yuechi Middle School, Sichuan 638300, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing 401331, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Fernandes TJ, Fu SJ, McKenzie DJ, Killen SS. Expanding the scope: integrating costs of digestive metabolism and growth into estimates of maximum oxygen uptake in fishes. J Exp Biol 2024; 227:jeb248197. [PMID: 39034854 DOI: 10.1242/jeb.248197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Timothy J Fernandes
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada, L5L 1C6
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
- School of Biodiversity, One Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - David J McKenzie
- UMR Marine Biodiversity, Exploitation, and Conservation, Université Montpellier, CNRS, IRD, IFREMER, INRAE, 34090 Montpellier, France
| | - Shaun S Killen
- School of Biodiversity, One Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
3
|
Norin T, Rowsey LE, Houslay TM, Reeve C, Speers-Roesch B. Among-individual variation in thermal plasticity of fish metabolic rates causes profound variation in temperature-specific trait repeatability, but does not co-vary with behavioural plasticity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220488. [PMID: 38186278 PMCID: PMC10772605 DOI: 10.1098/rstb.2022.0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 01/09/2024] Open
Abstract
Conspecifics of the same age and size differ consistently in the pace with which they expend energy. This among-individual variation in metabolic rate is thought to influence behavioural variation, since differences in energy requirements should motivate behaviours that facilitate energy acquisition, such as being bold or active in foraging. While there is evidence for links between metabolic rate and behaviour in constant environments, we know little about whether metabolic rate and behaviour change together when the environment changes-that is, if metabolic and behavioural plasticity co-vary. We investigated this using a fish that becomes dormant in winter and strongly reduces its activity when the environment cools, the cunner (Tautogolabrus adspersus). We found strong and predictable among-individual variation in thermal plasticity of metabolic rates, from resting to maximum levels, but no evidence for among-individual variation in thermal plasticity of movement activity, meaning that these key physiological and behavioural traits change independently when the environment changes. The strong among-individual variation in metabolic rate plasticity resulted in much higher repeatability (among-individual consistency) of metabolic rates at warm than cold temperatures, indicating that the potential for metabolic rate to evolve under selection is temperature-dependent, as repeatability can set the upper limit to heritability. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Henrik Dams Allé 202, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Thomas M. Houslay
- Centre of Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| |
Collapse
|
4
|
Ojelade O, Storm Z, Fu C, Cortese D, Munson A, Boulamail S, Pineda M, Kochhann D, Killen S. Capture and discard practises associated with an ornamental fishery affect the metabolic rate and aerobic capacity of three-striped dwarf cichlids Apistogramma trifasciata. CONSERVATION PHYSIOLOGY 2024; 12:coad105. [PMID: 38293637 PMCID: PMC10823353 DOI: 10.1093/conphys/coad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Fishing causes direct removal of individuals from wild populations but can also cause a physiological disturbance in fish that are released or discarded after capture. While sublethal physiological effects of fish capture have been well studied in commercial and recreational fisheries, this issue has been overlooked for the ornamental fish trade, where it is common to capture fish from the wild and discard non-target species. We examined metabolic responses to capture and discard procedures in the three-striped dwarf cichlid Apistogramma trifasciata, a popular Amazonian aquarium species that nonetheless may be discarded when not a target species. Individuals (n = 34) were tagged and exposed to each of four treatments designed to simulate procedures during the capture and discard process: 1) a non-handling control; 2) netting; 3) netting +30 seconds of air exposure; and 4) netting +60 seconds of air exposure. Metabolic rates were estimated using intermittent-flow respirometry, immediately following each treatment then throughout recovery overnight. Increasing amounts of netting and air exposure caused an acute increase in oxygen uptake and decrease in available aerobic scope. In general, recovery occurred quickly, with rapid decreases in oxygen uptake within the first 30 minutes post-handling. Notably, however, male fish exposed to netting +60 seconds of air exposure showed a delayed response whereby available aerobic scope was constrained <75% of maximum until ~4-6 hours post-stress. Larger fish showed a greater initial increase in oxygen uptake post-stress and slower rates of recovery. The results suggest that in the period following discard, this species may experience a reduced aerobic capacity for additional behavioural/physiological responses including feeding, territory defence and predator avoidance. These results are among the first to examine impacts of discard practises in the ornamental fishery and suggest ecophysiological research can provide valuable insight towards increasing sustainable practises in this global trade.
Collapse
Affiliation(s)
- Oluwaseun Ojelade
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Zoe Storm
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Cheng Fu
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Daphne Cortese
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Amelia Munson
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Sarah Boulamail
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Mar Pineda
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Daiani Kochhann
- Laboratory of Behavioural Ecophysiology, Center of Agrarian and Biological Sciences, Acaraú Valley State University, 850 Avenue da Universidade, Sobral, Ceará, Brazil, 62040370
| | - Shaun Killen
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| |
Collapse
|
5
|
Li B, Liang W, Fu S, Fu C, Cai Z, Munson A, Shi H. Swimming behavior affects ingestion of microplastics by fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106798. [PMID: 38104508 DOI: 10.1016/j.aquatox.2023.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Microplastics (< 5 mm) are widely found in organisms and have the potential harm to ecosystems. Despite their widespread prevalence in environments, there is high individual varation in the abundance of microplastics found in individuals of the same species. In the present study, juvenile cichlid fish (Chindongo demasoni) were chosen to determine the ingestion personality for microplastics in the laboratory. The visible implant fluorescent tags were used for individual recognition. The fish were fed with microplastic fiber, pellet, and food for comparison. Our results showed that the observation of the behaviors of fish could be successfully matched with subsequent measurements for each individual through the tag method in microplastic research. The difference in the abundance of fiber (0-27 items/ind.) among fish individuals was also observed in our study. Meanwhile, the abundance of fiber showed a positive correlation with the average speed and covered area of fish, which indicates the degree of activity of fish. Moreover, fish with higher speed or a front position had higher capturing times for pellet. Our results suggest that the swimming behaviors of fish affect their ingestion of microplastics, and active fish had a higher likelihood of ingesting microplastics, which might be one of the reasons for the common phenomena, i.e., great individual differences observed in microplastic studies.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 401331, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 401331, China
| | - Zonghui Cai
- Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour: from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220059. [PMID: 36802782 PMCID: PMC9939272 DOI: 10.1098/rstb.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2023] Open
Abstract
Collective behaviours, such as flocking in birds or decision making by bee colonies, are some of the most intriguing behavioural phenomena in the animal kingdom. The study of collective behaviour focuses on the interactions between individuals within groups, which typically occur over close ranges and short timescales, and how these interactions drive larger scale properties such as group size, information transfer within groups and group-level decision making. To date, however, most studies have focused on snapshots, typically studying collective behaviour over short timescales up to minutes or hours. However, being a biological trait, much longer timescales are important in animal collective behaviour, particularly how individuals change over their lifetime (the domain of developmental biology) and how individuals change from one generation to the next (the domain of evolutionary biology). Here, we give an overview of collective behaviour across timescales from the short to the long, illustrating how a full understanding of this behaviour in animals requires much more research attention on its developmental and evolutionary biology. Our review forms the prologue of this special issue, which addresses and pushes forward understanding the development and evolution of collective behaviour, encouraging a new direction for collective behaviour research. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Brandl SJ, Lefcheck JS, Bates AE, Rasher DB, Norin T. Can metabolic traits explain animal community assembly and functioning? Biol Rev Camb Philos Soc 2023; 98:1-18. [PMID: 36054431 DOI: 10.1111/brv.12892] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/12/2023]
Abstract
All animals on Earth compete for free energy, which is acquired, assimilated, and ultimately allocated to growth and reproduction. Competition is strongest within communities of sympatric, ecologically similar animals of roughly equal size (i.e. horizontal communities), which are often the focus of traditional community ecology. The replacement of taxonomic identities with functional traits has improved our ability to decipher the ecological dynamics that govern the assembly and functioning of animal communities. Yet, the use of low-resolution and taxonomically idiosyncratic traits in animals may have hampered progress to date. An animal's metabolic rate (MR) determines the costs of basic organismal processes and activities, thus linking major aspects of the multifaceted constructs of ecological niches (where, when, and how energy is obtained) and ecological fitness (how much energy is accumulated and passed on to future generations). We review evidence from organismal physiology to large-scale analyses across the tree of life to propose that MR gives rise to a group of meaningful functional traits - resting metabolic rate (RMR), maximum metabolic rate (MMR), and aerobic scope (AS) - that may permit an improved quantification of the energetic basis of species coexistence and, ultimately, the assembly and functioning of animal communities. Specifically, metabolic traits integrate across a variety of typical trait proxies for energy acquisition and allocation in animals (e.g. body size, diet, mobility, life history, habitat use), to yield a smaller suite of continuous quantities that: (1) can be precisely measured for individuals in a standardized fashion; and (2) apply to all animals regardless of their body plan, habitat, or taxonomic affiliation. While integrating metabolic traits into animal community ecology is neither a panacea to disentangling the nuanced effects of biological differences on animal community structure and functioning, nor without challenges, a small number of studies across different taxa suggest that MR may serve as a useful proxy for the energetic basis of competition in animals. Thus, the application of MR traits for animal communities can lead to a more general understanding of community assembly and functioning, enhance our ability to trace eco-evolutionary dynamics from genotypes to phenotypes (and vice versa), and help predict the responses of animal communities to environmental change. While trait-based ecology has improved our knowledge of animal communities to date, a more explicit energetic lens via the integration of metabolic traits may further strengthen the existing framework.
Collapse
Affiliation(s)
- Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Amanda E Bates
- Biology Department, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Hansen MJ, Krause S, Dhellemmes F, Pacher K, Kurvers RHJM, Domenici P, Krause J. Mechanisms of prey division in striped marlin, a marine group hunting predator. Commun Biol 2022; 5:1161. [PMID: 36316537 PMCID: PMC9622829 DOI: 10.1038/s42003-022-03951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial group-hunters cooperate to kill prey but then compete for their share with dominance being a strong predictor of prey division. In contrast, little is known about prey division in group-hunting marine predators that predominately attack small, evasive prey (e.g. fish schools). We identified individual striped marlin (Kajikia audax) hunting in groups. Groups surrounded prey but individuals took turns attacking. We found that competition for prey access led to an unequal division of prey among the predators, with 50% of the most frequently attacking marlin capturing 70–80% of the fish. Neither aggression, body size nor variation in hunting efficiency explained this skewed prey division. We did find that newly arrived groups of marlin gained on average more access to the prey. This raises the possibility that newly arrived marlin were hungrier and more motivated to feed. However, this result does not necessarily explain the unequal prey division among the predators because the skew in prey captures was found at the level of these groups. Dynamic prey division is probably widespread but under-reported in marine group-hunters and the inability of individuals to monopolize prey until satiation likely reduces the importance of social hierarchies for prey division. Striped marlin use a dynamic prey division method when hunting as a group, taking turns to feed but without doing so equally.
Collapse
Affiliation(s)
- M. J. Hansen
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - S. Krause
- grid.4562.50000 0001 0057 2672Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - F. Dhellemmes
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - K. Pacher
- grid.7468.d0000 0001 2248 7639Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - R. H. J. M. Kurvers
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany ,grid.419526.d0000 0000 9859 7917Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - P. Domenici
- grid.5326.20000 0001 1940 4177IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy ,IAS-CNR, Località Sa Mardini, 09170 Torregrande, Oristano Italy
| | - J. Krause
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany ,grid.6734.60000 0001 2292 8254Cluster of Excellence “Science of Intelligence,” Technical University of Berlin, Marchstr. 23, 10587 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Present Address: Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
9
|
Monnet G, Rosenfeld JS, Richards JG. Divergence in digestive and metabolic strategies matches habitat differentiation in juvenile salmonids. Ecol Evol 2022; 12:e9280. [PMID: 36110883 PMCID: PMC9465201 DOI: 10.1002/ece3.9280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Divergent energy acquisition and processing strategies associated with using different microhabitats may allow phenotypes to specialize and coexist at small spatial scales. To understand how ecological specialization affects differentiation in energy acquisition and processing strategies, we examined relationships among digestive physiology, growth, and energetics by performing captive experiments on juveniles of wild coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) that exploit adjacent habitats along natural low-to-high energy flux gradients (i.e., pools versus riffles) in coastal streams. We predicted that: (i) the specialization of steelhead trout to high-velocity, high-energy habitats would result in elevated food intake and growth at the cost of lower growth efficiency relative to coho salmon; (ii) the two species would differentiate along a rate-maximizing (steelhead trout) versus efficiency-maximizing (coho salmon) axis of digestive strategies matching their ecological lifestyle; and (iii) the higher postprandial metabolic demand (i.e., specific dynamic action, SDA) associated with elevated food intake would occupy a greater fraction of the steelhead trout aerobic budget. Relative to coho salmon, steelhead trout presented a pattern of faster growth and higher food intake but lower growth efficiency, supporting the existence of a major growth versus growth efficiency trade-off between species. After accounting for differences in ration size between species, steelhead trout also presented higher SDA than coho salmon, but similar intestinal transit time and lower assimilation efficiency. Both species presented similar aerobic budgets since the elevated SDA of steelhead trout was largely compensated by their higher aerobic scope relative to coho salmon. Our results illustrate the key contribution of digestive physiology to the adaptive differentiation of juvenile growth, energetics, and overall performance of taxa with divergent habitat specializations along a natural productivity gradient.
Collapse
Affiliation(s)
- Gauthier Monnet
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jordan S. Rosenfeld
- British Columbia Ministry of the EnvironmentVancouverBritish ColumbiaCanada
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey G. Richards
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
10
|
Fu SJ, Dong YW, Killen SS. Aerobic scope in fishes with different lifestyles and across habitats: Trade-offs among hypoxia tolerance, swimming performance and digestion. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111277. [PMID: 35870773 DOI: 10.1016/j.cbpa.2022.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Exercise and aerobic scope in fishes have attracted scientists' attention for several decades. While it has been suggested that aerobic scope may limit behavioral expression and tolerance to environmental stressors in fishes, the exact importance of aerobic scope in an ecological context remains poorly understood. In this review, we examine the ecological relevance of aerobic scope by reconsidering and reanalyzing the existing literature on Chinese freshwater fishes across a wide-range of habitats and lifestyles. The available evidence suggests that natural selection in fast-flowing aquatic habitats may favor species with a high aerobic scope and anaerobic capacity for locomotion, whereas in relatively slow-flowing habitats, hypoxia tolerance may be favored at the cost of reduced locomotor capacity. In addition, while physical activity can usually cause fishes from fast-flowing habitats to reach their aerobic metabolic ceiling (i.e., maximum metabolic rate), possibly due to selection pressure on locomotion, most species from slow-flowing habitats can only reach their metabolic ceiling during digestion, either alone or in combination with physical activity. Overall, we suggest that fish exhibit a continuum of metabolic types, from a 'visceral metabolic type' with a higher digestive performance to a 'locomotion metabolic type' which appears to have reduced capacity for digestion but enhanced locomotor performance. Generally, locomotor-type species can either satisfy the demands of their high swimming capacity with a high oxygen uptake capacity or sacrifice digestion while swimming. In contrast, most visceral-type species show a pronounced decrease in swimming performance while digesting, probably owing to conflicts within their aerobic scope. In conclusion, the ecological relevance of aerobic scope and the consequent effects on other physiological functions are closely related to habitat and the lifestyle of a given species. These results suggest that swimming performance, digestion and hypoxia tolerance might coevolve due to dependence on metabolic traits such as aerobic scope.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing 400047, China.
| | - Yun-Wei Dong
- Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Kim S, Álvarez‐Quintero N, Metcalfe NB. Does the match between individual and group behavior matter in shoaling sticklebacks? Ecol Evol 2022; 12:e8581. [PMID: 35222959 PMCID: PMC8844133 DOI: 10.1002/ece3.8581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
In animals living in groups, the social environment is fundamental to shaping the behaviors and life histories of an individual. A mismatch between individual and group behavior patterns may have disadvantages if the individual is incapable of flexibly changing its state in response to the social environment that influences its energy gain and expenditure. We used different social groups of juvenile three-spined sticklebacks (Gasterosteus aculeatus) with experimentally manipulated compositions of individual sociability to study the feedback between individual and group behaviors and to test how the social environment shapes behavior, metabolic rate, and growth. Experimentally created unsociable groups, containing a high proportion of less sociable fish, showed bolder collective behaviors during feeding than did corresponding sociable groups. Fish within groups where the majority of members had a level of sociability similar to their own gained more mass than did those within mismatched groups. Less sociable individuals within sociable groups tended to have a relatively low mass but a high standard metabolic rate. A mismatch between the sociability of an individual and that of the majority of the group in which it is living confers a growth disadvantage probably due to the expression of nonadaptive behaviors that increase energetic costs.
Collapse
Affiliation(s)
- Sin‐Yeon Kim
- Grupo Ecoloxía AnimalTorre CACTICentro de Investigación MariñaUniversidade de VigoVigoSpain
| | | | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
12
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Killen SS, Christensen EAF, Cortese D, Závorka L, Norin T, Cotgrove L, Crespel A, Munson A, Nati JJH, Papatheodoulou M, McKenzie DJ. Guidelines for reporting methods to estimate metabolic rates by aquatic intermittent-flow respirometry. J Exp Biol 2021; 224:jeb242522. [PMID: 34520540 PMCID: PMC8467026 DOI: 10.1242/jeb.242522] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that - in the future - data can be properly assessed by other scientists and conservationists.
Collapse
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emil A. F. Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - Libor Závorka
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- WasserCluster Lunz–Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amélie Crespel
- Department of Biology, University of Turku, 20500 Turku, Finland
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Environmental Science and Policy, University of California, Davis, CA 95615, USA
| | - Julie J. H. Nati
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| | - Magdalene Papatheodoulou
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Enalia Physis Environmental Research Centre (ENALIA), 2101 Nicosia, Cyprus
| | - David J. McKenzie
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
14
|
Harel R, Loftus JC, Crofoot MC. Locomotor compromises maintain group cohesion in baboon troops on the move. Proc Biol Sci 2021; 288:20210839. [PMID: 34315256 PMCID: PMC8316813 DOI: 10.1098/rspb.2021.0839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When members of a group differ in locomotor capacity, coordinating collective movement poses a challenge: some individuals may have to move faster (or slower) than their preferred speed to remain together. Such compromises have energetic repercussions, yet research in collective behaviour has largely neglected locomotor consensus costs. Here, we integrate high-resolution tracking of wild baboon locomotion and movement with simulations to demonstrate that size-based variation in locomotor capacity poses an obstacle to the collective movement. While all baboons modulate their gait and move-pause dynamics during collective movement, the costs of maintaining cohesion are disproportionately borne by smaller group members. Although consensus costs are not distributed equally, all group-mates do make locomotor compromises, suggesting a shared decision-making process drives the pace of collective movement in this highly despotic species. These results highlight the importance of considering how social dynamics and locomotor capacity interact to shape the movement ecology of group-living species.
Collapse
Affiliation(s)
- Roi Harel
- Department of Ecology, Evolution and Behavior, The Life Sciences institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 9190401.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Anthropology, University of California, Davis, CA 95616, USA
| | - J Carter Loftus
- Department of Ecology, Evolution and Behavior, The Life Sciences institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 9190401.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Anthropology, University of California, Davis, CA 95616, USA
| | - Margaret C Crofoot
- Department of Ecology, Evolution and Behavior, The Life Sciences institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 9190401.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Anthropology, University of California, Davis, CA 95616, USA.,Center for the Advanced Study of Collective Behavior, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
15
|
Jutfelt F, Norin T, Åsheim ER, Rowsey LE, Andreassen AH, Morgan R, Clark TD, Speers‐Roesch B. ‘Aerobic scope protection’ reduces ectotherm growth under warming. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13811] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources Technical University of Denmark Kgs. Lyngby Denmark
| | - Eirik R. Åsheim
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Organismal and Evolutionary Biology Research Programme Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Lauren E. Rowsey
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| | - Anna H. Andreassen
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Rachael Morgan
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Timothy D. Clark
- School of Life and Environmental Sciences Deakin University Geelong Vic. Australia
| | - Ben Speers‐Roesch
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| |
Collapse
|
16
|
Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron. Sci Rep 2021; 11:6431. [PMID: 33742043 PMCID: PMC7979757 DOI: 10.1038/s41598-021-85770-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
The schooling flashlight fish Anomalops katoptron can be found at dark nights at the water surface in the Indo-Pacific. Schools are characterized by bioluminescent blink patterns of sub-ocular light organs densely-packed with bioluminescent, symbiotic bacteria. Here we analyzed how blink patterns of A. katoptron are used in social interactions. We demonstrate that isolated specimen of A. katoptron showed a high motivation to align with fixed or moving artificial light organs in an experimental tank. This intraspecific recognition of A. katoptron is mediated by blinking light and not the body shape. In addition, A. katoptron adjusts its blinking frequencies according to the light intensities. LED pulse frequencies determine the swimming speed and the blink frequency response of A. katoptron, which is modified by light organ occlusion and not exposure. In the natural environment A. katoptron is changing its blink frequencies and nearest neighbor distance in a context specific manner. Blink frequencies are also modified by changes in the occlusion time and are increased from day to night and during avoidance behavior, while group cohesion is higher with increasing blink frequencies. Our results suggest that specific blink patterns in schooling flashlight fish A. katoptron define nearest neighbor distance and determine intraspecific communication.
Collapse
|
17
|
Pineda M, Aragao I, McKenzie DJ, Killen SS. Social dynamics obscure the effect of temperature on air breathing in Corydoras catfish. J Exp Biol 2020; 223:jeb222133. [PMID: 33097572 PMCID: PMC7673363 DOI: 10.1242/jeb.222133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
In some fishes, the ability to breathe air has evolved to overcome constraints in hypoxic environments but comes at a cost of increased predation. To reduce this risk, some species perform group air breathing. Temperature may also affect the frequency of air breathing in fishes, but this topic has received relatively little research attention. This study examined how acclimation temperature and acute exposure to hypoxia affected the air-breathing behaviour of a social catfish, the bronze corydoras Corydoras aeneus, and aimed to determine whether individual oxygen demand influenced the behaviour of entire groups. Groups of seven fish were observed in an arena to measure air-breathing frequency of individuals and consequent group air-breathing behaviour, under three oxygen concentrations (100%, 60% and 20% air saturation) and two acclimation temperatures (25 and 30°C). Intermittent flow respirometry was used to estimate oxygen demand of individuals. Increasingly severe hypoxia increased air breathing at the individual and group levels. Although there were minimal differences in air-breathing frequency among individuals in response to an increase in temperature, the effect of temperature that did exist manifested as an increase in group air-breathing frequency at 30°C. Groups that were more socially cohesive during routine activity took more breaths but, in most cases, air breathing among individuals was not temporally clustered. There was no association between an individual's oxygen demand and its air-breathing frequency in a group. For C.aeneus, although air-breathing frequency is influenced by hypoxia, behavioural variation among groups could explain the small overall effect of temperature on group air-breathing frequency.
Collapse
Affiliation(s)
- Mar Pineda
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Isabel Aragao
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - David J McKenzie
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 9190 Montpellier, France
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
18
|
Zhao J, Wen Y, Zhu S, Ye J, Zhu J, Ye Z, Jordan A. Solving post-prandial reduction in performance by adaptive regurgitation in a freshwater fish. Proc Biol Sci 2020; 287:20202172. [PMID: 33171081 DOI: 10.1098/rspb.2020.2172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foraging animals must balance benefits of food acquisition with costs induced by a post-prandial reduction in performance. Eating to satiation can lead to a reduction in locomotor and escape performance, which increases risk should a threat subsequently arises, but limiting feeding behaviour may be maladaptive if food intake is unnecessarily reduced in the prediction of threats that do not arise. The efficacy of the trade-off between continued and interrupted feeding therefore relies on information about the future risk, which is imperfect. Here, we find that black carp (Mylopharyngodon piceus) can balance this trade-off using an a posteriori strategy; by eating to satiation but regurgitating already ingested food when a threat arises. While degrees of satiation (DS) equal to or greater than 60% reduce elements of escape performance (turning angle, angular velocity, distance moved, linear velocity), at 40% DS or lower, performance in these tasks approaches levels comparable to that at 0% satiation. After experiencing a chasing event, we find that fish are able to regurgitate already ingested food, thereby changing the amount of food in their gastrointestinal tract to consistent levels that maintain high escape performance. Remarkably, regurgitation results in degrees of satiation between 40 and 60% DS, regardless of whether they had previously fed to 40, 60 or 100% DS. Using this response, fish are able to maximize food intake, but regurgitate extra food to maintain escape performance when they encounter a threat. This novel strategy may be effective for continual grazers and species with imperfect information about the level of threat in their environment.
Collapse
Affiliation(s)
- Jian Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Yanci Wen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, People's Republic of China.,Ocean Academy, Zhejiang University, Zhoushan, 316000, People's Republic of China
| | - Jinyun Ye
- School of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Junjie Zhu
- School of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, People's Republic of China.,Ocean Academy, Zhejiang University, Zhoushan, 316000, People's Republic of China
| | - Alex Jordan
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, 78467, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, 78467, Germany
| |
Collapse
|
19
|
Lim LS, Tan SY, Tuzan AD, Kawamura G, Mustafa S, Rahmah S, Liew HJ. Diel osmorespiration rhythms of juvenile marble goby (Oxyeleotris marmorata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1621-1629. [PMID: 32430644 DOI: 10.1007/s10695-020-00817-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
Collapse
Affiliation(s)
- Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sin-Ying Tan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Audrey Daning Tuzan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Gunzo Kawamura
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Saleem Mustafa
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sharifah Rahmah
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
20
|
Bierbach D, Mönck HJ, Lukas J, Habedank M, Romanczuk P, Landgraf T, Krause J. Guppies Prefer to Follow Large (Robot) Leaders Irrespective of Own Size. Front Bioeng Biotechnol 2020; 8:441. [PMID: 32500065 PMCID: PMC7243707 DOI: 10.3389/fbioe.2020.00441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Body size is often assumed to determine how successfully an individual can lead others with larger individuals being better leaders than smaller ones. But even if larger individuals are more readily followed, body size often correlates with specific behavioral patterns and it is thus unclear whether larger individuals are more often followed than smaller ones because of their size or because they behave in a certain way. To control for behavioral differences among differentially-sized leaders, we used biomimetic robotic fish (Robofish) of different sizes. Live guppies (Poecilia reticulata) are known to interact with Robofish in a similar way as with live conspecifics. Consequently, Robofish may serve as a conspecific-like leader that provides standardized behaviors irrespective of its size. We asked whether larger Robofish leaders are preferentially followed and whether the preferences of followers depend on own body size or risk-taking behavior ("boldness"). We found that live female guppies followed larger Robofish leaders in closer proximity than smaller ones and this pattern was independent of the followers' own body size as well as risk-taking behavior. Our study shows a "bigger is better" pattern in leadership that is independent of behavioral differences among differentially-sized leaders, followers' own size and risk-taking behavior.
Collapse
Affiliation(s)
- David Bierbach
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hauke J. Mönck
- Department of Mathematics and Computer Science, Institute for Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Juliane Lukas
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Marie Habedank
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Pawel Romanczuk
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tim Landgraf
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Institute for Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Jens Krause
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
21
|
Fürtbauer I, Brown MR, Heistermann M. Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish. Horm Behav 2020; 119:104636. [PMID: 31765656 DOI: 10.1016/j.yhbeh.2019.104636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/10/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
Androgens, traditionally viewed as hormones that regulate secondary sexual characteristics and reproduction in male vertebrates, are often modulated by social stimuli. High levels of the 'social hormone' testosterone (T) are linked to aggression, dominance, and competition. Low T levels, in contrast, promote sociopositive behaviours such as affiliation, social tolerance, and cooperation, which can be crucial for group-level, collective behaviours. Here, we test the hypothesis that - in a collective context - low T levels should be favourable, using non-reproductive male and female stickleback fish (Gasterosteus aculeatus) and non-invasive waterborne hormone analysis. In line with our predictions, we show that the fishes' T levels were significantly lower during shoaling compared to when alone, with high-T individuals showing the largest decrease. Ruling out stress-induced T suppression and increased T conversion into oestradiol, we find evidence that shoaling directly affects androgen responsiveness. We also show that groups characterized by lower mean T exhibit less hierarchical leader-follower dynamics, suggesting that low T promotes egalitarianism. Overall, we show that collective action results in lower T levels, which may serve to promote coordination and group performance. Our study, together with recent complementary findings in humans, emphasizes the importance of low T for the expression of sociopositive behaviour across vertebrates, suggesting similarities in endocrine mechanisms.
Collapse
Affiliation(s)
- Ines Fürtbauer
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - M Rowan Brown
- College of Engineering, Swansea University, SA1 8EN Swansea, UK
| | | |
Collapse
|
22
|
Jolles JW, King AJ, Killen SS. The Role of Individual Heterogeneity in Collective Animal Behaviour. Trends Ecol Evol 2020; 35:278-291. [DOI: 10.1016/j.tree.2019.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
|
23
|
|
24
|
Risk-taking and locomotion in foraging threespine sticklebacks (Gasterosteus aculeatus): the effect of nutritional stress is dependent on social context. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Tucker EK, Suski CD. Presence of conspecifics reduces between-individual variation and increases avoidance of multiple stressors in bluegill. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Jerde CL, Kraskura K, Eliason EJ, Csik SR, Stier AC, Taper ML. Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. Front Physiol 2019; 10:1166. [PMID: 31616308 PMCID: PMC6763608 DOI: 10.3389/fphys.2019.01166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
As an example of applying the evidential approach to statistical inference, we address one of the longest standing controversies in ecology, the evidence for, or against, a universal metabolic scaling relationship between metabolic rate and body mass. Using fish as our study taxa, we curated 25 studies with measurements of standard metabolic rate, temperature, and mass, with 55 independent trials and across 16 fish species and confronted this data with flexible random effects models. To quantify the body mass - metabolic rate relationship, we perform model selection using the Schwarz Information Criteria (ΔSIC), an established evidence function. Further, we formulate and justify the use of ΔSIC intervals to delineate the values of the metabolic scaling relationship that should be retained for further consideration. We found strong evidence for a metabolic scaling coefficient of 0.89 with a ΔSIC interval spanning 0.82 to 0.99, implying that mechanistically derived coefficients of 0.67, 0.75, and 1, are not supported by the data. Model selection supports the use of a random intercepts and random slopes by species, consistent with the idea that other factors, such as taxonomy or ecological or lifestyle characteristics, may be critical for discerning the underlying process giving rise to the data. The evidentialist framework applied here, allows for further refinement given additional data and more complex models.
Collapse
Affiliation(s)
- Christopher L. Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Erika J. Eliason
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Samantha R. Csik
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark L. Taper
- Department of Ecology, Montana State University, Bozeman, MT, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Armstrong T, Khursigara AJ, Killen SS, Fearnley H, Parsons KJ, Esbaugh AJ. Oil exposure alters social group cohesion in fish. Sci Rep 2019; 9:13520. [PMID: 31534177 PMCID: PMC6751191 DOI: 10.1038/s41598-019-49994-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Many animal taxa live in groups to increase foraging and reproductive success and aid in predator avoidance. For fish, a large proportion of species spend all or part of their lives in groups, with group coordination playing an important role in the emergent benefits of group-living. Group cohesion can be altered by an array of factors, including exposure to toxic environmental contaminants. Oil spills are one of the most serious forms of pollution in aquatic systems, and while a range of effects of acute oil exposure on animal physiology have been demonstrated, sub-lethal effects on animal behavior are relatively under-studied. Here we used an open-field behavioral assay to explore influence of acute oil exposure on social behavior in a gregarious fish native to the Gulf of Mexico, Atlantic croaker (Micropogonias undulatus). We used two oil concentrations (0.7% and 2% oil dilution, or 6.0 ± 0.9 and 32.9 ± 5.9 μg l-1 ΣPAH50 respectively) and assays were performed when all members of a group were exposed, when only one member was exposed, and when no individuals were exposed. Shoal cohesion, as assessed via mean neighbor distance, showed significant impairment following acute exposure to 2% oil. Fish in oil-exposed groups also showed reduced voluntary movement speed. Importantly, overall group cohesion was disrupted when even one fish within a shoal was exposed to 2% oil, and the behavior of unexposed in mixed groups, in terms of movement speed and proximity to the arena wall, was affected by the presence of these exposed fish. These results demonstrate that oil exposure can have adverse effects on fish behavior that may lead to reduced ecological success.
Collapse
Affiliation(s)
- Tiffany Armstrong
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Alexis J Khursigara
- University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, 78373, USA.
| | - Shaun S Killen
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Hannah Fearnley
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Kevin J Parsons
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, 78373, USA
| |
Collapse
|
28
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|
29
|
Cooper B, Adriaenssens B, Killen SS. Individual variation in the compromise between social group membership and exposure to preferred temperatures. Proc Biol Sci 2019; 285:rspb.2018.0884. [PMID: 29899078 DOI: 10.1098/rspb.2018.0884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023] Open
Abstract
Group living is widespread among animal species, and comes with a number of costs and benefits associated with foraging, predator avoidance and reproduction. It is largely unknown, however, whether individuals sacrifice exposure to their own preferred or optimal environmental conditions so they can remain part of a social group. Here, we demonstrate that individual three-spine sticklebacks vary in the degree to which they forego exposure to their preferred ambient temperature so they can associate with a group of conspecifics. Individual fish varied widely in preferred temperature when tested in isolation. When the same individuals were presented with a choice of a warm or cold thermal regime in the presence of a social group in one of the environments, fish spent more time with the group if it was close to their own individually preferred temperature. When a group was in a relatively cool environment, focal individuals that were more social deviated most strongly from their preferred temperature to associate with the group. Standard and maximum metabolic rate were not related to temperature preference or thermal compromise. However, individuals with a higher standard metabolic rate were less social, and so energetic demand may indirectly influence the environmental costs experienced by group members. The reduced tendency to engage with a social group when there is a large difference between the group temperature and the individual's preferred temperature suggests a role for temperature in group formation and cohesion that is mediated by individual physiology and behaviour. Together, these data highlight exposure to non-preferred temperatures as a potential cost of group membership that probably has important but to date unrecognized implications for metabolic demand, energy allocation, locomotor performance and overall group functioning.
Collapse
Affiliation(s)
- B Cooper
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - B Adriaenssens
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - S S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
30
|
Krause J, Seebacher F. Collective Behaviour: Physiology Determines Position. Curr Biol 2018; 28:R351-R354. [PMID: 29689209 DOI: 10.1016/j.cub.2018.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An animal's position within a group affects feeding - front positions generally offer richer pickings. However, a new study shows that position can be influenced by feeding because big meals reduce scope for locomotion.
Collapse
Affiliation(s)
- Jens Krause
- Humboldt University, Faculty of Life Sciences, 10115 Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| |
Collapse
|