1
|
Hua Q, Chi X, Zhang W, Song H, Wang Y, Liu Z, Wang H, Xu B. Damage to the behavior and physiological functions of Apis mellifera (Hymenoptera: Apidae) by monocrotaline via the modulation of tryptophan metabolism and the corazonin receptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175931. [PMID: 39218096 DOI: 10.1016/j.scitotenv.2024.175931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid found in plants of the Crotalaria genus. As primary pollinators of Crotalaria plants, honeybees come into contact with this harmful substance. However, limited research has been conducted on the effects of MCT on Apis mellifera, particularly the risks of long-term exposure to sublethal concentrations. Through evaluating the proboscis extension reflex (PER) ability, analyzing the honeybee brain transcriptome, and analyzing the honeybee hemolymph metabolome, we discovered that sublethal concentrations of MCT impair the olfactory and memory capabilities of honeybees by affecting tryptophan (Trp) metabolism. Furthermore, MCT upregulates the expression of the corazonin receptor (CrzR) gene in the honeybee brain, which elevates reactive oxygen species (ROS) levels in the brain while reducing glucose levels in the hemolymph, consequently shortening the honeybees' lifespan. Our findings regarding the multifaceted impact of MCT on honeybees lay the foundation for exploring its toxicological pathways and management in honeybee populations.
Collapse
Affiliation(s)
- Qi Hua
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Wei Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
2
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
3
|
Miyamoto T, Hedjazi S, Miyamoto C, Amrein H. Drosophila neuronal Glucose-6-Phosphatase is a modulator of neuropeptide release that regulates muscle glycogen stores via FMRFamide signaling. Proc Natl Acad Sci U S A 2024; 121:e2319958121. [PMID: 39008673 PMCID: PMC11287260 DOI: 10.1073/pnas.2319958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Sheida Hedjazi
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Chika Miyamoto
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| |
Collapse
|
4
|
Miyamoto T, Hedjazi S, Miyamoto C, Amrein H. Drosophila Neuronal Glucose 6 Phosphatase is a Modulator of Neuropeptide Release that Regulates Muscle Glycogen Stores via FMRFamide Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.568950. [PMID: 38077084 PMCID: PMC10705280 DOI: 10.1101/2023.11.28.568950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a non-canonical function of the Drosophila Glucose-6-Phosphatase ( G6P ) gene in a subset of neurosecretory cells in the CNS that governs systemic glucose homeostasis in food deprived flies. Here, we show that G6P expressing neurons define 6 groups of neuropeptide secreting cells, 4 in the brain and 2 in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide neuropeptides ( FMRFa G6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFa G6P neurons for attaining a prominent Golgi apparatus and secreting neuropeptides efficiently. Finally, we establish that G6P dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of neuropeptides and enhancing signaling to respective target tissues expressing cognate receptors. SIGNIFICANCE STATEMENT Glucose-6-phosphtase (G6P) is a critical enzyme in sugar synthesis and catalyzes the final step in glucose production. In Drosophila - and insects in general - where trehalose is the circulating sugar and Trehalose phosphate synthase, and not G6P, is used for sugar production, G6P has adopted a novel and unique role in peptidergic neurons in the CNS. Interestingly, flies lacking G6P show diminished Neuropeptide secretions and have a smaller Golgi apparatus in peptidergic neurons. It is hypothesized that the role of G6P is to counteract glycolysis, thereby creating a cellular environment that is more amenable to efficient neuropeptide secretion.
Collapse
|
5
|
Lei Y, Liang X, Sun Y, Yao T, Gong H, Chen Z, Gao Y, Wang H, Wang R, Huang Y, Yang T, Yu M, Liu L, Yi CX, Wu QF, Kong X, Xu X, Liu S, Zhang Z, Liu T. Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus. Cell Metab 2024; 36:438-453.e6. [PMID: 38325338 DOI: 10.1016/j.cmet.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.
Collapse
Affiliation(s)
- Ying Lei
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Xian Liang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yunong Sun
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Ting Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi 710063, China
| | - Hongyu Gong
- School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yunqi Huang
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Tao Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Miao Yu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Longqi Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxing Kong
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xun Xu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Shiping Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China; School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
6
|
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 2023; 21:e3002359. [PMID: 37934726 PMCID: PMC10629620 DOI: 10.1371/journal.pbio.3002359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Li Y, Wang J, Xu Y, Meng Q, Wu M, Su Y, Miao Y, Wang Y. The water extract of Potentilla discolor Bunge (PDW) ameliorates high-sugar diet-induced type II diabetes model in Drosophila melanogaster via JAK/STAT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023:116760. [PMID: 37301307 DOI: 10.1016/j.jep.2023.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla discolor Bunge (PD) is a member of the Rosaceae family. It has been traditionally used in folk medicine for the treatment of diabetes. Additionally, people in folk also eat fresh and tender PD stems as vegetables or brew them as tea. AIM OF THE STUDY The aim of this study was to explore the antidiabetic effects and underlying mechanisms of the water extract of Potentilla discolor (PDW) in a fruit fly model of high-sugar diet-induced type 2 diabetes. MATERIALS AND METHODS The antidiabetic efficacy of PDW was evaluated in a fruit fly model of diabetes induced by a high-sugar diet (HSD). Various physiological parameters were tested to evaluate the anti-diabetic effect of PDW. Gene expression levels related to insulin signaling pathways, glucose metabolism, lipid metabolism, and JAK/STAT signaling pathways were primarily analyzed using RT-qPCR to investigate the therapeutic mechanisms. RESULTS In this study, we found that the water extract of Potentilla discolor (PDW) can ameliorate type II diabetes phenotypes induced by the HSD in fruit flies. These phenotypes include growth rate, body size, hyperglycemia, glycogen metabolism, fat storage, and intestinal microflora homeostasis. PDW also improved the body size of s6k and rheb knockdown flies, suggesting its potential to activate the downstream insulin pathway and alleviate insulin resistance. Furthermore, we demonstrated that PDW reduced the expression of two target genes of the JAK/STAT signaling pathway, namely the insulin antagonist Impl2 and insulin receptor inhibitor Socs36E, which act as regulators inhibiting the activation of the insulin signaling pathway. CONCLUSIONS This study provides evidence for the anti-diabetic activity of PDW and suggests that its underlying mechanism may involve the improvement of insulin resistance by inhibiting the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Junlin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Mengdi Wu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
8
|
Drosophila suzukii energetic pathways are differently modulated by nutritional geometry in males and females. Sci Rep 2022; 12:21194. [PMID: 36476948 PMCID: PMC9729594 DOI: 10.1038/s41598-022-25509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
As a polyphagous pest, Drosophila suzukii has a variety of host fruits available for feeding and oviposition, but how the nutritional geometry of different hosts influences its metabolism is still poorly understood. This work aimed to evaluate how D. suzukii metabolic and transcriptional pathways are influenced by feeding on different host fruits, and how sex influences these responses. Adult flies were allowed to feed on five different fruit-based media. Lipids, glucose, glycogen, and energy pathways-associated gene expression, were quantified. Females showed an energetic metabolism easily adaptable to the food's nutritional characteristics; in contrast, males' energetic metabolism was particularly influenced by food, predominantly those fed on raspberry media who showed changes in glucose levels and in the expression of genes associated with metabolic pathways, suggesting activation of gluconeogenesis and trehaloneogenesis as a result of nutritional deficiency. Here we present novel insight into how D. suzukii's energetic pathways are modulated depending on fruits' nutritional geometry and sex. While the females showed high adaptability in their energetic metabolism to the diet, males were more feeding-sensitive. These findings might be used not only to control this pest population but to better advise producers to invest in less suitable fruits based on the hosts' nutritional geometry.
Collapse
|
9
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
10
|
Zong Q, Mao B, Zhang HB, Wang B, Yu WJ, Wang ZW, Wang YF. Comparative Ubiquitome Analysis Reveals Deubiquitinating Effects Induced by Wolbachia Infection in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23169459. [PMID: 36012723 PMCID: PMC9409319 DOI: 10.3390/ijms23169459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The endosymbiotic Wolbachia bacteria frequently cause cytoplasmic incompatibility (CI) in their insect hosts, where Wolbachia-infected males cross with uninfected females, leading to no or fewer progenies, indicating a paternal modification by Wolbachia. Recent studies have identified a Wolbachia protein, CidB, containing a DUB (deubiquitylating enzyme) domain, which can be loaded into host sperm nuclei and involved in CI, though the DUB activity is not necessary for CI in Drosophila melanogaster. To investigate whether and how Wolbachia affect protein ubiquitination in testes of male hosts and are thus involved in male fertility, we compared the protein and ubiquitinated protein expressions in D. melanogaster testes with and without Wolbachia. A total of 643 differentially expressed proteins (DEPs) and 309 differentially expressed ubiquitinated proteins (DEUPs) were identified to have at least a 1.5-fold change with a p-value of <0.05. Many DEPs were enriched in metabolic pathway, ribosome, RNA transport, and post-translational protein modification pathways. Many DEUPs were involved in metabolism, ribosome, and proteasome pathways. Notably, 98.1% DEUPs were downregulated in the presence of Wolbachia. Four genes coding for DEUPs in ubiquitin proteasome pathways were knocked down, respectively, in Wolbachia-free fly testes. Among them, Rpn6 and Rpn7 knockdown caused male sterility, with no mature sperm in seminal vesicles. These results reveal deubiquitylating effects induced by Wolbachia infection, suggesting that Wolbachia can widely deubiquitinate proteins that have crucial functions in male fertility of their hosts, but are not involved in CI. Our data provide new insights into the regulatory mechanisms of endosymbiont/host interactions and male fertility.
Collapse
|
11
|
Wang XP, Huang Z, Li YL, Jin KY, Dong DJ, Wang JX, Zhao XF. Krüppel-like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20-hydroxyecdysone regulation. PLoS Genet 2022; 18:e1010229. [PMID: 35696369 PMCID: PMC9191741 DOI: 10.1371/journal.pgen.1010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression. Glucose is the direct substrate for energy production in animal and humans. Autophagy and gluconeogenesis are known to help organisms maintaining energy substrates; however, the mechanism of integration of autophagy and gluconeogenesis is unclear. Holometabolous insects stop feeding during metamorphosis under steroid hormone 20-hydroxyecdysone (20E) regulation, providing a good model for the study. Using lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that Krüppel-like factor 15 (KLF15) integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20E regulation. 20E increased Klf15 expression, and KLF15 in turn promoted autophagy-related and gluconeogenesis-related genes expression during metamorphosis. Autophagy and apoptosis of the fat body provided substrates for gluconeogenesis. This work clarified the important functions and mechanisms of KLF15 in autophagy and glycometabolism reprogramming for glucose homeostasis after feeding stop during insect metamorphosis.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhen Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
12
|
Seyedalmoosavi MM, Mielenz M, Veldkamp T, Daş G, Metges CC. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review. J Anim Sci Biotechnol 2022; 13:31. [PMID: 35509031 PMCID: PMC9069764 DOI: 10.1186/s40104-022-00682-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, interest in the larvae of black soldier fly (BSF) (Hermetia illucens) as a sustainable protein resource for livestock feed has increased considerably. However, knowledge on the nutritional and physiological aspects of this insect, especially compared to other conventional farmed animals is scarce. This review presents a critical comparison of data on the growth potential and efficiency of the BSF larvae (BSFL) compared to conventional monogastric livestock species. Advantages of BSFL over other monogastric livestock species includes their high growth rate and their ability to convert low-grade organic waste into high-quality protein and fat-rich biomass suitable for use in animal feed. Calculations using literature data suggest that BSFL are more efficient than broilers, pigs and fish in terms of conversion of substrate protein into body mass, but less efficient than broilers and fish in utilization of substrate gross energy to gain body mass. BSFL growth efficiency varies greatly depending on the nutrient quality of their dietary substrates. This might be associated with the function of their gastrointestinal tract, including the activity of digestive enzymes, the substrate particle characteristics, and their intestinal microbial community. The conceived advantage of BSFL having an environmental footprint better than conventional livestock is only true if BSFL is produced on low-grade organic waste and its protein would directly be used for human consumption. Therefore, their potential role as a new species to better close nutrient cycles in agro-ecological systems needs to be reconsidered, and we conclude that BSFL is a complementary livestock species efficiently utilizing organic waste that cannot be utilized by other livestock. In addition, we provide comparative insight into morpho-functional aspects of the gut, characterization of digestive enzymes, gut microbiota and fiber digestion. Finally, current knowledge on the nutritional utilization and requirements of BSFL in terms of macro- and micro-nutrients is reviewed and found to be rather limited. In addition, the research methods to determine nutritional requirements of conventional livestock are not applicable for BSFL. Thus, there is a great need for research on the nutrient requirements of BSFL.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Teun Veldkamp
- Wageningen UR, Livestock Research, P.O. Box 338, 6700AH, Wageningen, Netherlands
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany.
| |
Collapse
|
13
|
Yoshinari Y, Kosakamoto H, Kamiyama T, Hoshino R, Matsuoka R, Kondo S, Tanimoto H, Nakamura A, Obata F, Niwa R. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun 2021; 12:4818. [PMID: 34376687 PMCID: PMC8355161 DOI: 10.1038/s41467-021-25146-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryo Hoshino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rena Matsuoka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Obata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development Chiyoda-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
14
|
Keller JP, Marvin JS, Lacin H, Lemon WC, Shea J, Kim S, Lee RT, Koyama M, Keller PJ, Looger LL. In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep 2021; 35:109284. [PMID: 34161775 DOI: 10.1016/j.celrep.2021.109284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/06/2020] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 μM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.
Collapse
Affiliation(s)
- Jacob P Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Soomin Kim
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Richard T Lee
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA; The Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
15
|
Guichard M, Dainat B, Eynard S, Vignal A, Servin B, Neuditschko M. Identification of quantitative trait loci associated with calmness and gentleness in honey bees using whole-genome sequences. Anim Genet 2021; 52:472-481. [PMID: 33970494 PMCID: PMC8360191 DOI: 10.1111/age.13070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 01/05/2023]
Abstract
The identification of quantitative trait loci (QTL) through genome-wide association studies (GWAS) is a powerful method for unravelling the genetic background of selected traits and improving early-stage predictions. In honey bees (Apis mellifera), past genetic analyses have particularly focused on individual queens and workers. In this study, we used pooled whole-genome sequences to ascertain the genetic variation of the entire colony. In total, we sampled 216 Apis mellifera mellifera and 28 Apis mellifera carnica colonies. Different experts subjectively assessed the gentleness and calmness of the colonies using a standardised protocol. Conducting a GWAS for calmness on 211 purebred A. m. mellifera colonies, we identified three QTL, on chromosomes 8, 6, and 12. The two first QTL correspond to LOC409692 gene, coding for a disintegrin and metalloproteinase domain-containing protein 10, and to Abscam gene, coding for a Dscam family member Abscam protein, respectively. The last gene has been reported to be involved in the domestication of A. mellifera. The third QTL is located 13 kb upstream of LOC102655631, coding for a trehalose transporter. For gentleness, two QTL were identified on chromosomes 4 and 3. They are located within gene LOC413669, coding for a lap4 protein, and gene LOC413416, coding for a bicaudal C homolog 1-B protein, respectively. The identified positional candidate genes of both traits mainly affect the olfaction and nervous system of honey bees. Further research is needed to confirm the results and to better understand the genetic and phenotypic basis of calmness and gentleness.
Collapse
Affiliation(s)
- M Guichard
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, Bern, 3003, Switzerland.,Agroscope, Animal GenoPhenomics, Rte de la Tioleyre 4, Posieux, 1725, Switzerland
| | - B Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, Bern, 3003, Switzerland
| | - S Eynard
- GenPhySE, INRA, INPT, INPENVT, Université de Toulouse, Castanet-Tolosan, 31320, France.,UMT PrADE, Protection des Abeilles Dans l'Environnement, Avignon, 84914, France
| | - A Vignal
- GenPhySE, INRA, INPT, INPENVT, Université de Toulouse, Castanet-Tolosan, 31320, France.,UMT PrADE, Protection des Abeilles Dans l'Environnement, Avignon, 84914, France
| | - B Servin
- GenPhySE, INRA, INPT, INPENVT, Université de Toulouse, Castanet-Tolosan, 31320, France.,UMT PrADE, Protection des Abeilles Dans l'Environnement, Avignon, 84914, France
| | -
- Domaine de Vilvert, Bat 224, CS80009, Jouy-en-Josas CEDEX, 78353, France
| | - M Neuditschko
- Agroscope, Animal GenoPhenomics, Rte de la Tioleyre 4, Posieux, 1725, Switzerland
| |
Collapse
|
16
|
Catalani E, Silvestri F, Bongiorni S, Taddei AR, Fanelli G, Rinalducci S, De Palma C, Perrotta C, Prantera G, Cervia D. Retinal damage in a new model of hyperglycemia induced by high-sucrose diets. Pharmacol Res 2021; 166:105488. [PMID: 33582248 DOI: 10.1016/j.phrs.2021.105488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Loss of retinal neurons may precede clinical signs of diabetic retinopathy (DR). We studied for the first time the effects of hyperglycemia on the visual system of the fruit fly Drosophila melanogaster to characterize a model for glucose-induced retinal neurodegeneration, thus complementing more traditional vertebrate systems. Adult flies were fed with increased high-sucrose regimens which did not modify the locomotion ability, muscle phenotype and mobility after 10 days. The increased availability of dietary sucrose induced hyperglycemia and phosphorylation of Akt in fat tissue, without significant effects on adult growth and viability, consistent with the early phase of insulin signaling and a low impact on the overall metabolic profile of flies at short term. Noteworthy, high-sucrose diets significantly decreased Drosophila responsiveness to the light as a consequence of vision defects. Hyperglycemia did not alter the gross anatomical architecture of the external eye phenotype although a progressive damage of photosensitive units was observed. Appreciable levels of cleaved caspase 3 and nitrotyrosine were detected in the internal retina network as well as punctate staining of Light-Chain 3 and p62, and accumulated autophagosomes, indicating apoptotic features, peroxynitrite formation and autophagy turnover defects. In summary, our results in Drosophila support the view that hyperglycemia induced by high-sucrose diets lead to eye defects, apoptosis/autophagy dysregulation, oxidative stress, and visual dysfunctions which are evolutionarily conserved, thus offering a meaningful opportunity of using a simple in vivo model to study the pathophysiology of neuroretinal alterations that develop in patients at the early stages of DR.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
17
|
Chowdhury HH. Differences in cytosolic glucose dynamics in astrocytes and adipocytes measured by FRET-based nanosensors. Biophys Chem 2020; 261:106377. [PMID: 32302866 DOI: 10.1016/j.bpc.2020.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The cellular response to fluctuations in blood glucose levels consists of integrative regulation of cell glucose uptake and glucose utilization in the cytosol, resulting in altered levels of glucose in the cytosol. Cytosolic glucose is difficult to be measured in the intact tissue, however recently methods have become available that allow measurements of glucose in single living cells with fluorescence resonance energy transfer (FRET) based protein sensors. By studying the dynamics of cytosolic glucose levels in different experimental settings, we can gain insights into the properties of plasma membrane permeability to glucose and glucose utilization in the cytosol, and how these processes are modulated by different environmental conditions, agents and enzymes. In this review, we compare the cytosolic regulation of glucose in adipocytes and astrocytes - two important regulators of energy balance and glucose homeostasis in whole body and brain, respectively, with particular emphasis on the data obtained with FRET based protein sensors as well as other biochemical and molecular approaches.
Collapse
Affiliation(s)
- Helena H Chowdhury
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia.
| |
Collapse
|