1
|
Kong D, Kong L, Liu C, Wu Q, Wang J, Dai C. Commissural and monosynaptic inputs to medial vestibular nucleus GABAergic neurons in mice. Front Neurol 2024; 15:1484488. [PMID: 39440253 PMCID: PMC11493639 DOI: 10.3389/fneur.2024.1484488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Objective MVN GABAergic neurons is involved in the rebalance of commissural system contributing to alleviating acute peripheral vestibular dysfunction syndrome. This study aims to depict monosynaptic inputs to MVN GABAergic neurons. Methods The modified rabies virus-based retrogradation method combined with the VGAT-IRES-Cre mice was used in this study. Moreover, the commissural connections with MVN GABAergic neurons were analyzed. Results We identified 60 nuclei projecting to MVN GABAergic neurons primarily distributed in the cerebellum and the medulla. The uvula-nodulus, gigantocellular reticular nucleus, prepositus nucleus, intermediate reticular nucleus, and three other nuclei sent dense inputs to MVN GABAergic neurons. The medial (fastigial) cerebellar nucleus, dorsal paragigantocellular nucleus, lateral paragigantocellular nucleus and 10 other nuclei sent moderate inputs to MVN GABAergic neurons. Sparse inputs to MVN GABAergic neurons originated from the nucleus of the solitary tract, lateral reticular nucleus, pedunculopontine tegmental nucleus and 37 other nuclei. The MVN GABAergic neurons were regulated by the contralateral MVN, lateral vestibular nucleus, superior vestibular nucleus, and inferior vestibular nucleus. Conclusion Our study contributes to further understanding of the vestibular dysfunction in terms of neural circuits and search for new strategies to facilitate vestibular compensation.
Collapse
Affiliation(s)
- Dedi Kong
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lingxi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chengwei Liu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Kashiwagi M, Beck G, Kanuka M, Arai Y, Tanaka K, Tatsuzawa C, Koga Y, Saito YC, Takagi M, Oishi Y, Sakaguchi M, Baba K, Ikuno M, Yamakado H, Takahashi R, Yanagisawa M, Murayama S, Sakurai T, Sakai K, Nakagawa Y, Watanabe M, Mochizuki H, Hayashi Y. A pontine-medullary loop crucial for REM sleep and its deficit in Parkinson's disease. Cell 2024:S0092-8674(24)00975-9. [PMID: 39303715 DOI: 10.1016/j.cell.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp+ neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp+ neurons, neurons expressing nitric oxide synthase 1 (Nos1+ neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit. Nos1+ neurons also project to areas that control wide forebrain activity. Ablating Crhbp+ neurons reduces sleep and impairs REM sleep atonia. In Parkinson's disease patients with REM sleep behavior disorders, CRHBP-immunoreactive neurons are largely reduced and contain pathologic α-synuclein, providing insight into the mechanisms underlying the sleep deficits characterizing this disease.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Goichi Beck
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshifumi Arai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumiko Koga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki C Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, 69373 Lyon, France
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Wang D, Bao C, Wu H, Li J, Zhang X, Wang S, Zhou F, Li H, Dong H. A hypothalamus-lateral periaqueductal gray GABAergic neural projection facilitates arousal following sevoflurane anesthesia in mice. CNS Neurosci Ther 2024; 30:e70047. [PMID: 39317457 PMCID: PMC11421888 DOI: 10.1111/cns.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The lateral hypothalamus (LHA) is an evolutionarily conserved structure that regulates basic functions of an organism, particularly wakefulness. To clarify the function of LHAGABA neurons and their projections on regulating general anesthesia is crucial for understanding the excitatory and inhibitory effects of anesthetics on the brain. The aim of the present study is to investigate whether LHAGABA neurons play either an inhibitory or a facilitatory role in sevoflurane-induced anesthetic arousal regulation. METHODS We used fiber photometry and immunofluorescence staining to monitor changes in neuronal activity during sevoflurane anesthesia. Opto-/chemogenetic modulations were employed to study the effect of neurocircuit modulations during the anesthesia. Anterograde tracing was used to identify a GABAergic projection from the LHA to a periaqueductal gray (PAG) subregion. RESULTS c-Fos staining showed that LHAGABA activity was inhibited by induction of sevoflurane anesthesia. Anterograde tracing revealed that LHAGABA neurons project to multiple arousal-associated brain areas, with the lateral periaqueductal gray (LPAG) being one of the dense projection areas. Optogenetic experiments showed that activation of LHAGABA neurons and their downstream target LPAG reduced the burst suppression ratio (BSR) during continuous sevoflurane anesthesia. Chemogenetic experiments showed that activation of LHAGABA and its projection to LPAG neurons prolonged the anesthetic induction time and promoted wakefulness. CONCLUSIONS In summary, we show that an inhibitory projection from LHAGABA to LPAGGABA neurons promotes arousal from sevoflurane-induced loss of consciousness, suggesting a complex control of wakefulness through intimate interactions between long-range connections.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Chang Bao
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Huimin Wu
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Fang Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| |
Collapse
|
4
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ma W, Li L, Kong L, Zhang H, Yuan P, Huang Z, Wang Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 2023; 29:4147-4159. [PMID: 37424163 PMCID: PMC10651995 DOI: 10.1111/cns.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.
Collapse
Affiliation(s)
- Wei‐Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ling‐Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Ping‐Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yi‐Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Chen J, Gannot N, Li X, Zhu R, Zhang C, Li P. Control of Emotion and Wakefulness by Neurotensinergic Neurons in the Parabrachial Nucleus. Neurosci Bull 2023; 39:589-601. [PMID: 36522525 PMCID: PMC10073397 DOI: 10.1007/s12264-022-00994-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/04/2022] [Indexed: 12/23/2022] Open
Abstract
The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.
Collapse
Affiliation(s)
- Jingwen Chen
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, China
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rongrong Zhu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, China
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Kawano T, Kashiwagi M, Kanuka M, Chen CK, Yasugaki S, Hatori S, Miyazaki S, Tanaka K, Fujita H, Nakajima T, Yanagisawa M, Nakagawa Y, Hayashi Y. ER proteostasis regulators cell-non-autonomously control sleep. Cell Rep 2023; 42:112267. [PMID: 36924492 DOI: 10.1016/j.celrep.2023.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Sleep is regulated by peripheral tissues under fatigue. The molecular pathways in peripheral cells that trigger systemic sleep-related signals, however, are unclear. Here, a forward genetic screen in C. elegans identifies 3 genes that strongly affect sleep amount: sel-1, sel-11, and mars-1. sel-1 and sel-11 encode endoplasmic reticulum (ER)-associated degradation components, whereas mars-1 encodes methionyl-tRNA synthetase. We find that these machineries function in non-neuronal tissues and that the ER unfolded protein response components inositol-requiring enzyme 1 (IRE1)/XBP1 and protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor-2α (eIF2α)/activating transcription factor-4 (ATF4) participate in non-neuronal sleep regulation, partly by reducing global translation. Neuronal epidermal growth factor receptor (EGFR) signaling is also required. Mouse studies suggest that this mechanism is conserved in mammals. Considering that prolonged wakefulness increases ER proteostasis stress in peripheral tissues, our results suggest that peripheral ER proteostasis factors control sleep homeostasis. Moreover, based on our results, peripheral tissues likely cope with ER stress not only by the well-established cell-autonomous mechanisms but also by promoting the individual's sleep.
Collapse
Affiliation(s)
- Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Toshiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yoshimi Nakagawa
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Traut J, Mengual JP, Meijer EJ, McKillop LE, Alfonsa H, Hoerder-Suabedissen A, Song SH, Fehér KD, Riemann D, Molnar Z, Akerman CJ, Vyazovskiy VV, Krone LB. Effects of clozapine-N-oxide and compound 21 on sleep in laboratory mice. eLife 2023; 12:e84740. [PMID: 36892930 PMCID: PMC9998087 DOI: 10.7554/elife.84740] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools for remote control of targeted cell populations using chemical actuators that bind to modified receptors. Despite the popularity of DREADDs in neuroscience and sleep research, potential effects of the DREADD actuator clozapine-N-oxide (CNO) on sleep have never been systematically tested. Here, we show that intraperitoneal injections of commonly used CNO doses (1, 5, and 10 mg/kg) alter sleep in wild-type male laboratory mice. Using electroencephalography (EEG) and electromyography (EMG) to analyse sleep, we found a dose-dependent suppression of rapid eye movement (REM) sleep, changes in EEG spectral power during non-REM (NREM) sleep, and altered sleep architecture in a pattern previously reported for clozapine. Effects of CNO on sleep could arise from back-metabolism to clozapine or binding to endogenous neurotransmitter receptors. Interestingly, we found that the novel DREADD actuator, compound 21 (C21, 3 mg/kg), similarly modulates sleep despite a lack of back-metabolism to clozapine. Our results demonstrate that both CNO and C21 can modulate sleep of mice not expressing DREADD receptors. This implies that back-metabolism to clozapine is not the sole mechanism underlying side effects of chemogenetic actuators. Therefore, any chemogenetic experiment should include a DREADD-free control group injected with the same CNO, C21, or newly developed actuator. We suggest that electrophysiological sleep assessment could serve as a sensitive tool to test the biological inertness of novel chemogenetic actuators.
Collapse
Affiliation(s)
- Janine Traut
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
| | - Jose Prius Mengual
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
| | - Elise J Meijer
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
| | - Hannah Alfonsa
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | | | - Seo Ho Song
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Kristoffer D Fehér
- Geneva University Hospitals (HUG), Division of Psychiatric SpecialtiesGenevaSwitzerland
- University Hospital of Psychiatry and Psychotherapy, University of BernBernSwitzerland
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
| | - Zoltan Molnar
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
- University Hospital of Psychiatry and Psychotherapy, University of BernBernSwitzerland
- Centre for Experimental Neurology, University of BernBernSwitzerland
| |
Collapse
|
10
|
Sulaman BA, Wang S, Tyan J, Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 2023; 26:196-212. [PMID: 36581730 DOI: 10.1038/s41593-022-01236-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep-wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep-wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.
Collapse
Affiliation(s)
- Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Su Wang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
12
|
Fujiyama T, Takenaka H, Asano F, Miyanishi K, Hotta-Hirashima N, Ishikawa Y, Kanno S, Seoane-Collazo P, Miwa H, Hoshino M, Yanagisawa M, Funato H. Mice Lacking Cerebellar Cortex and Related Structures Show a Decrease in Slow-Wave Activity With Normal Non-REM Sleep Amount and Sleep Homeostasis. Front Behav Neurosci 2022; 16:910461. [PMID: 35722192 PMCID: PMC9203121 DOI: 10.3389/fnbeh.2022.910461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to the well-known motor control, the cerebellum has recently been implicated in memory, cognition, addiction, and social behavior. Given that the cerebellum contains more neurons than the cerebral cortex and has tight connections to the thalamus and brainstem nuclei, it is possible that the cerebellum also regulates sleep/wakefulness. However, the role of the cerebellum in sleep was unclear, since cerebellar lesion studies inevitably involved massive inflammation in the adjacent brainstem, and sleep changes in lesion studies were not consistent with each other. Here, we examine the role of the cerebellum in sleep and wakefulness using mesencephalon- and rhombomere 1-specific Ptf1a conditional knockout (Ptf1a cKO) mice, which lack the cerebellar cortex and its related structures, and exhibit ataxic gait. Ptf1a cKO mice had similar wake and non-rapid eye movement sleep (NREMS) time as control mice and showed reduced slow wave activity during wakefulness, NREMS and REMS. Ptf1a cKO mice showed a decrease in REMS time during the light phase and had increased NREMS delta power in response to 6 h of sleep deprivation, as did control mice. Ptf1a cKO mice also had similar numbers of sleep spindles and fear memories as control mice. Thus, the cerebellum does not appear to play a major role in sleep-wake control, but may be involved in the generation of slow waves.
Collapse
Affiliation(s)
- Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Henri Takenaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Asano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Hideki Miwa
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Masashi Yanagisawa
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
- Hiromasa Funato
| |
Collapse
|
13
|
Miyazaki S, Kawano T, Yanagisawa M, Hayashi Y. Intracellular Ca2+ dynamics in the ALA neuron reflect sleep pressure and regulate sleep in Caenorhabditis elegans. iScience 2022; 25:104452. [PMID: 35707721 PMCID: PMC9189131 DOI: 10.1016/j.isci.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying sleep homeostasis are poorly understood. The nematode Caenorhabditis elegans exhibits 2 types of sleep: lethargus, or developmentally timed, and stress-induced sleep. Lethargus is characterized by alternating cycles of sleep and motion bouts. Sleep bouts are homeostatically regulated, i.e., prolonged active bouts lead to prolonged sleep bouts. Here we reveal that the interneuron ALA is crucial for homeostatic regulation during lethargus. Intracellular Ca2+ in ALA gradually increased during active bouts and rapidly decayed upon transitions to sleep bouts. Longer active bouts were accompanied by higher intracellular Ca2+ peaks. Optogenetic activation of ALA during active bouts caused transitions to sleep bouts. Dysfunction of CEH-17, which is an LIM homeodomain transcription factor selectively expressed in ALA, impaired the characteristic patterns of ALA intracellular Ca2+ and abolished the homeostatic regulation of sleep bouts. These findings indicate that ALA encodes sleep pressure and contributes to sleep homeostasis. ALA gradually increases its activity during motion bouts during lethargus in C. elegans Dysfunction or artificial activation of ALA perturbs the sleep structure ALA plays a crucial role in homeostatic sleep regulation
Collapse
Affiliation(s)
- Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 603-8363, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Corresponding author
| |
Collapse
|
14
|
Nemoto T, Irukayama-Tomobe Y, Hirose Y, Tanaka H, Takahashi G, Takahashi S, Yanagisawa M, Kanbayashi T. Effect of sevoflurane preconditioning on sleep reintegration after alteration by lipopolysaccharide. J Sleep Res 2022; 31:e13556. [PMID: 35170121 DOI: 10.1111/jsr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Despite extensive evidence on the organ protective effects of sevoflurane, its effect on disturbed sleep remains unclear. We hypothesised that sevoflurane preconditioning positively impacts disturbed sleep caused by systemic inflammation. A prospective, randomised laboratory investigation was conducted in C57BL/6J mice. A mouse model of lipopolysaccharide (LPS)-induced systemic inflammation was employed to investigate the effects of sevoflurane on sleep recovery. Symptom recovery was evaluated through electroencephalography/electromyography (EEG/EMG) and histological studies. The mice were exposed to 2% sevoflurane before and after peritoneal injection of LPS. The EEG and EMG were recorded for 24 h after the procedure. Brain tissue was harvested after the sevoflurane/LPS procedure and was immunostained using individual antibodies against choline acetyltransferase (ChAT) and Fos. The ChAT-positive and ChAT/Fos double-positive cells were analysed quantitatively in the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus (PPTg/LDTg). Compared with control mice, mice preconditioned with sevoflurane but not post-conditioned showed a significant increase in rapid eye movement (REM) sleep during EEG recording following the LPS challenge. They also demonstrated a shorter REM latency, indicating an early recovery from LPS-altered sleep. The bouts of REM episodes were retained with sevoflurane preconditioning. More ChAT/Fos double-positive cells were observed in the PPTg/LDTg in the sevoflurane preconditioning plus LPS group than in the LPS-only group. Sevoflurane preconditioning promotes recovery from altered sleep induced by systemic inflammation. Activation of PPTg/LDTg is considered a mechanism underlying sleep reintegration. The recovery phenomenon shows potential for clinical application in cases of sleep disturbances induced by systemic inflammation.
Collapse
Affiliation(s)
- Tsuyoshi Nemoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,School of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Irukayama-Tomobe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuki Hirose
- School of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromu Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,School of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Genki Takahashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,School of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Life Science Centre for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takashi Kanbayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Ibaraki Prefectural Medical Centre of Psychiatry, Kasama, Japan
| |
Collapse
|
15
|
Kashiwagi M, Kanuka M, Tanaka K, Fujita M, Nakai A, Tatsuzawa C, Kobayashi K, Ikeda K, Hayashi Y. Impaired wakefulness and rapid eye movement sleep in dopamine-deficient mice. Mol Brain 2021; 14:170. [PMID: 34794460 PMCID: PMC8600805 DOI: 10.1186/s13041-021-00879-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Despite the established roles of the dopaminergic system in promoting arousal, the effects of loss of dopamine on the patterns of sleep and wakefulness remain elusive. Here, we examined the sleep architecture of dopamine-deficient (DD) mice, which were previously developed by global knockout of tyrosine hydroxylase and its specific rescue in noradrenergic and adrenergic neurons. We found that DD mice have reduced time spent in wakefulness. Unexpectedly, DD mice also exhibited a marked reduction in the time spent in rapid eye movement (REM) sleep. The electroencephalogram power spectrum of all vigilance states in DD mice were also affected. These results support the current understanding of the critical roles of the dopaminergic system in maintaining wakefulness and also implicate its previously unknown effects on REM sleep.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Masayo Fujita
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan.,Doctoral Programs in Neuroscience, Degree Programs in Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan. .,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
16
|
Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 2020; 529:1926-1953. [PMID: 33135183 DOI: 10.1002/cne.25065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Anne Drury Fuller
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Eileen Nguyen
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Katherine Chuang
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - David Swygart
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia Rose Wienbar
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyger Lin
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Gregory William Schwartz
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020; 11:1662. [PMID: 32793050 PMCID: PMC7385183 DOI: 10.3389/fpsyg.2020.01662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid eye movement (REM) sleep is a distinct, homeostatically controlled brain state characterized by an activated electroencephalogram (EEG) in combination with paralysis of skeletal muscles and is associated with vivid dreaming. Understanding how REM sleep is controlled requires identification of the neural circuits underlying its initiation and maintenance, and delineation of the homeostatic processes regulating its expression on multiple timescales. Soon after its discovery in humans in 1953, the pons was demonstrated to be necessary and sufficient for the generation of REM sleep. But, especially within the last decade, researchers have identified further neural populations in the hypothalamus, midbrain, and medulla that regulate REM sleep by either promoting or suppressing this brain state. The discovery of these populations was greatly facilitated by the availability of novel technologies for the dissection of neural circuits. Recent quantitative models integrate findings about the activity and connectivity of key neurons and knowledge about homeostatic mechanisms to explain the dynamics underlying the recurrence of REM sleep. For the future, combining quantitative with experimental approaches to directly test model predictions and to refine existing models will greatly advance our understanding of the neural and homeostatic processes governing the regulation of REM sleep.
Collapse
Affiliation(s)
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Martin T, Bonargent T, Besnard S, Quarck G, Mauvieux B, Pigeon E, Denise P, Davenne D. Vestibular stimulation by 2G hypergravity modifies resynchronization in temperature rhythm in rats. Sci Rep 2020; 10:9216. [PMID: 32514078 PMCID: PMC7280278 DOI: 10.1038/s41598-020-65496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Input from the light/dark (LD) cycle constitutes the primary synchronizing stimulus for the suprachiasmatic nucleus (SCN) circadian clock. However, the SCN can also be synchronized by non-photic inputs. Here, we hypothesized that the vestibular system, which detects head motion and orientation relative to gravity, may provide sensory inputs to synchronize circadian rhythmicity. We investigated the resynchronization of core temperature (Tc) circadian rhythm to a six-hour phase advance of the LD cycle (LD + 6) using hypergravity (2 G) as a vestibular stimulation in control and bilateral vestibular loss (BVL) rats. Three conditions were tested: an LD + 6 exposure alone, a series of seven 2 G pulses without LD + 6, and a series of seven one-hour 2 G pulses (once a day) following LD + 6. First, following LD + 6, sham rats exposed to 2 G pulses resynchronized earlier than BVL rats (p = 0.01), and earlier than sham rats exposed to LD + 6 alone (p = 0.002). Each 2 G pulse caused an acute drop of Tc in sham rats (-2.8 ± 0.3 °C; p < 0.001), while BVL rats remained unaffected. This confirms that the vestibular system influences chronobiological regulation and supports the hypothesis that vestibular input, like physical activity, should be considered as a potent time cue for biological rhythm synchronization, acting in synergy with the visual system.
Collapse
Affiliation(s)
- Tristan Martin
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | | | - Stéphane Besnard
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Gaëlle Quarck
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Benoit Mauvieux
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Eric Pigeon
- University, UNICAEN, ENSICAEN, LAC, 14000, Caen, France
| | - Pierre Denise
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Damien Davenne
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France.
| |
Collapse
|
19
|
Abstract
Research over the last 20 years has firmly established the existence of sleep states across the animal kingdom. Work in non-mammalian animal models such as nematodes, fruit flies, and zebrafish has now uncovered many evolutionarily conserved aspects of sleep physiology and regulation, including shared circuit architecture, homeostatic and circadian control elements, and principles linking sleep physiology to function. Non-mammalian sleep research is now shedding light on fundamental aspects of the genetic and neuronal circuit regulation of sleep, with direct implications for the understanding of how sleep is regulated in mammals.
Collapse
Affiliation(s)
- Declan G. Lyons
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| |
Collapse
|
20
|
Liu CY, Tsai CJ, Yasugaki S, Nagata N, Morita M, Isotani A, Yanagisawa M, Hayashi Y. Copine-7 is required for REM sleep regulation following cage change or water immersion and restraint stress in mice. Neurosci Res 2020; 165:14-25. [PMID: 32283105 DOI: 10.1016/j.neures.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Sleep is affected by the environment. In rodents, changes in the amount of rapid eye movement sleep (REMS) can precede those of other sleep/wake stages. The molecular mechanism underlying the dynamic regulation of REMS remains poorly understood. Here, we focused on the sublaterodorsal nucleus (SLD), located in the pontine tegmental area, which plays a crucial role in the regulation of REMS. We searched for genes selectively expressed in the SLD and identified copine-7 (Cpne7), whose involvement in sleep was totally unknown. We generated Cpne7-Cre knock-in mice, which enabled both the knockout (KO) of Cpne7 and the genetic labeling of Cpne7-expressing cells. While Cpne7-KO mice exhibited normal sleep under basal conditions, the amount of REMS in Cpne7-KO mice was larger compared to wildtype mice following cage change or water immersion and restraint stress, both of which are conditions that acutely reduce REMS. Thus, it was suggested that copine-7 is involved in negatively regulating REMS under certain conditions. In addition, chemogenetically activating Cpne7-expressing neurons in the SLD reduced the amount of REMS, suggesting that these neurons negatively regulate REMS. These results identify copine-7 and Cpne7-expressing neurons in the SLD as candidate molecular or neuronal components of the regulatory system that controls REMS.
Collapse
Affiliation(s)
- Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chia-Jung Tsai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Morita
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayako Isotani
- NPO for Biotechnology Research and Development, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of MIRAI in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
21
|
Lewis S. Slow wave machine. Nat Rev Neurosci 2020; 21:182. [DOI: 10.1038/s41583-020-0284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|