1
|
Meserve JH, Navarro MF, Ortiz EA, Granato M. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit. PLoS Genet 2024; 20:e1011415. [PMID: 39432544 PMCID: PMC11527297 DOI: 10.1371/journal.pgen.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024] Open
Abstract
In the developing brain, groups of neurons organize into functional circuits that direct diverse behaviors. One such behavior is the evolutionarily conserved acoustic startle response, which in zebrafish is mediated by a well-defined hindbrain circuit. While numerous molecular pathways that guide neurons to their synaptic partners have been identified, it is unclear if and to what extent distinct neuron populations in the startle circuit utilize shared molecular pathways to ensure coordinated development. Here, we show that the planar cell polarity (PCP)-associated atypical cadherins Celsr3 and Celsr2, as well as the Celsr binding partner Frizzled 3a/Fzd3a, are critical for axon guidance of two neuron types that form synapses with each other: the command-like neuron Mauthner cells that drive the acoustic startle escape response, and spiral fiber neurons which provide excitatory input to Mauthner cells. We find that Mauthner axon growth towards synaptic targets is vital for Mauthner survival. We also demonstrate that symmetric spiral fiber input to Mauthner cells is critical for escape direction, which is necessary to respond to directional threats. Moreover, we identify distinct roles for Celsr3 and Celsr2, as Celsr3 is required for startle circuit development while Celsr2 is dispensable, though Celsr2 can partially compensate for loss of Celsr3 in Mauthner cells. This contrasts with facial branchiomotor neuron migration in the hindbrain, which requires Celsr2 while we find that Celsr3 is dispensable. Combined, our data uncover critical and distinct roles for individual PCP components during assembly of the acoustic startle hindbrain circuit.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria F. Navarro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin 16 promotes sensory gating via the endocrine corpuscles of Stannius. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614609. [PMID: 39386705 PMCID: PMC11463452 DOI: 10.1101/2024.09.23.614609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin 16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin 16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin 16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1L, and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and establish Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Koster KP, Green WN. Editorial: Role of protein palmitoylation in synaptic plasticity and neuronal differentiation, volume II. Front Synaptic Neurosci 2024; 16:1473989. [PMID: 39319198 PMCID: PMC11420002 DOI: 10.3389/fnsyn.2024.1473989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Affiliation(s)
- Kevin P. Koster
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
4
|
Zúñiga Mouret R, Greenbaum JP, Doll HM, Brody EM, Iacobucci EL, Roland NC, Simamora RC, Ruiz I, Seymour R, Ludwick L, Krawitz JA, Groneberg AH, Marques JC, Laborde A, Rajan G, Del Bene F, Orger MB, Jain RA. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows. iScience 2024; 27:109455. [PMID: 38550987 PMCID: PMC10973200 DOI: 10.1016/j.isci.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 10/04/2024] Open
Abstract
Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.
Collapse
Affiliation(s)
- Rodrigo Zúñiga Mouret
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jordyn P. Greenbaum
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hannah M. Doll
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison WI 53705, USA
| | - Eliza M. Brody
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, USA
| | | | | | - Roy C. Simamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Ivan Ruiz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Rory Seymour
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Leanne Ludwick
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Jacob A. Krawitz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Antonia H. Groneberg
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - João C. Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Gokul Rajan
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Institut Curie, PSL Research University; INSERM U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Roshan A. Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
5
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution in zebrafish distinguishes between innate and acute startle behavior regulation. PLoS One 2024; 19:e0300529. [PMID: 38498506 PMCID: PMC10947677 DOI: 10.1371/journal.pone.0300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line (escapist) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a (syt7a) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate independently from those regulating acute threshold regulation.
Collapse
Affiliation(s)
- Elelbin A. Ortiz
- Department of Neuroscience, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Philip D. Campbell
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Psychiatry, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| |
Collapse
|
6
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution on Chromosome 25 in zebrafish distinguishes between development and acute regulation of behavioral thresholds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554673. [PMID: 37662318 PMCID: PMC10473726 DOI: 10.1101/2023.08.25.554673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line ( escapist ) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a ( syt7a ) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate largely independently from those regulating acute threshold regulation.
Collapse
|
7
|
Dogra D, Meza-Santoscoy PL, Gavrilovici C, Rehak R, de la Hoz CLR, Ibhazehiebo K, Rho JM, Kurrasch DM. kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 2023; 64:2186-2199. [PMID: 37209379 DOI: 10.1111/epi.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paola L Meza-Santoscoy
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Renata Rehak
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane L R de la Hoz
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Nelson JC, Shoenhard H, Granato M. Integration of cooperative and opposing molecular programs drives learning-associated behavioral plasticity. PLoS Genet 2023; 19:e1010650. [PMID: 36972301 PMCID: PMC10079226 DOI: 10.1371/journal.pgen.1010650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/06/2023] [Accepted: 02/02/2023] [Indexed: 03/29/2023] Open
Abstract
Habituation is a foundational learning process critical for animals to adapt their behavior to changes in their sensory environment. Although habituation is considered a simple form of learning, the identification of a multitude of molecular pathways including several neurotransmitter systems that regulate this process suggests an unexpected level of complexity. How the vertebrate brain integrates these various pathways to accomplish habituation learning, whether they act independently or intersect with one another, and whether they act via divergent or overlapping neural circuits has remained unclear. To address these questions, we combined pharmacogenetic pathway analysis with unbiased whole-brain activity mapping using the larval zebrafish. Based on our findings, we propose five distinct molecular modules for the regulation of habituation learning and identify a set of molecularly defined brain regions associated with four of the five modules. Moreover, we find that in module 1 the palmitoyltransferase Hip14 cooperates with dopamine and NMDA signaling to drive habituation, while in module 3 the adaptor protein complex subunit Ap2s1 drives habituation by antagonizing dopamine signaling, revealing two distinct and opposing roles for dopaminergic neuromodulation in the regulation of behavioral plasticity. Combined, our results define a core set of distinct modules that we propose act in concert to regulate habituation-associated plasticity, and provide compelling evidence that even seemingly simple learning behaviors in a compact vertebrate brain are regulated by a complex and overlapping set of molecular mechanisms.
Collapse
Affiliation(s)
- Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
10
|
Santistevan NJ, Nelson JC, Ortiz EA, Miller AH, Kenj Halabi D, Sippl ZA, Granato M, Grinblat Y. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold. PLoS One 2022; 17:e0270903. [PMID: 35834485 PMCID: PMC9282658 DOI: 10.1371/journal.pone.0270903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering. METHODS To identify genes critical for plasticity, a forward genetic screen for zebrafish genes that mediate habituation learning was performed, which identified a mutant allele, doryp177, that caused reduced habituation of the acoustic startle response. In this study, we combine whole-genome sequencing with behavioral analyses to characterize and identify the gene affected in doryp177 mutants. RESULTS Whole-genome sequencing identified the calcium voltage-gated channel auxiliary subunit alpha-2/delta-3 (cacna2d3) as a candidate gene affected in doryp177 mutants. Behavioral characterization of larvae homozygous for two additional, independently derived mutant alleles of cacna2d3, together with failure of these alleles to complement doryp177, confirmed a critical role for cacna2d3 in habituation learning. Notably, detailed analyses of the acoustic response in mutant larvae also revealed increased startle sensitivity to acoustic stimuli, suggesting a broader role for cacna2d3 in controlling innate response thresholds to acoustic stimuli. CONCLUSIONS Taken together, our data demonstrate a critical role for cacna2d3 in sensory filtering, a process that is disrupted in human CNS disorders, e.g. ADHD, schizophrenia, and autism.
Collapse
Affiliation(s)
- Nicholas J. Santistevan
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew H. Miller
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- Neuroscience Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dima Kenj Halabi
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Zoë A. Sippl
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MG); (YG)
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (MG); (YG)
| |
Collapse
|
11
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
12
|
Abstract
Nervous system assembly relies on a diversity of cellular processes ranging from dramatic tissue reorganization to local, subcellular changes all driven by precise molecular programs. Combined, these processes culminate in an animal's ability to plan and execute behaviors. Animal behavior can, therefore, serve as a functional readout of nervous system development. Benefitting from an expansive and growing set of molecular and imaging tools paired with an ever-growing number of assays of diverse behaviors, the zebrafish system has emerged as an outstanding platform at the intersection of nervous system assembly, plasticity and behavior. Here, we summarize recent advancements in the field, including how developing neural circuits are refined to shape complex behaviors and plasticity.
Collapse
Affiliation(s)
- Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Sudhakari PA, Ramisetty BCM. Modeling endonuclease colicin-like bacteriocin operons as 'genetic arms' in plasmid-genome conflicts. Mol Genet Genomics 2022; 297:763-777. [PMID: 35320397 DOI: 10.1007/s00438-022-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are acellular propagating entities that depend on bacteria, as molecular parasites, for propagation. A 'tussle' between bacteria and plasmid ensues; bacteria for riddance of the plasmid and plasmid for persistence within a live host. Plasmid-maintenance systems such as endonuclease Colicin-Like Bacteriocins (CLBs) ensure plasmid propagation within the population; (i) the plasmid-cured cells are killed by the CLBs; (ii) damaged cells lyse and release the CLBs that eliminate the competitors, and (iii) the released plasmids invade new bacteria. Surprisingly, endonuclease CLB operons occur on bacterial genomes whose significance is unknown. Here, we study genetics, eco-evolutionary drive, and physiological relevance of genomic endonuclease CLB operons. We investigated plasmidic and genomic endonuclease CLB operons using sequence analyses from an eco-evolutionary perspective. We found 1266 genomic and plasmidic endonuclease CLB operons across 30 bacterial genera. Although 51% of the genomes harbor endonuclease CLB operons, the majority of the genomic endonuclease CLB operons lacked a functional lysis gene, suggesting the negative selection of lethal genes. The immunity gene of the endonuclease CLB operon protects the plasmid-cured host, eliminating the metabolic burden. We show mutual exclusivity of endonuclease CLB operons on genomes and plasmids. We propose an anti-addiction hypothesis for genomic endonuclease CLB operons. Using a stochastic hybrid agent-based model, we show that the endonuclease CLB operons on genomes confer an advantage to the host genome in terms of immunity to the toxin and elimination of plasmid burden. The conflict between bacterial genome and plasmids allows the emergence of 'genetic arms' such as CLB operons that regulate the ecological interplay of bacterial genomes and plasmids.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, 312@ASK1, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, 312@ASK1, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
14
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
15
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
16
|
Modeling Neurodevelopmental Disorders and Epilepsy Caused by Loss of Function of kif2a in Zebrafish. eNeuro 2021; 8:ENEURO.0055-21.2021. [PMID: 34404749 PMCID: PMC8425962 DOI: 10.1523/eneuro.0055-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years there has been extensive research on malformations of cortical development (MCDs) that result in clinical features like developmental delay, intellectual disability, and drug-resistant epilepsy (DRE). Various studies highlighted the contribution of microtubule-associated genes (including tubulin and kinesin encoding genes) in MCD development. It has been reported that de novo mutations in KIF2A, a member of the kinesin-13 family, are linked to brain malformations and DRE. Although it is known that KIF2A functions by regulating microtubule depolymerization via an ATP-driven process, in vivo implications of KIF2A loss of function remain partly unclear. Here, we present a novel kif2a knock-out zebrafish model, showing hypoactivity, habituation deficits, pentylenetetrazole-induced seizure susceptibility and microcephaly, as well as neuronal cell proliferation defects and increased apoptosis. Interestingly, kif2a−/− larvae survived until adulthood and were fertile. Notably, our kif2a zebrafish knock-out model demonstrated many phenotypic similarities to KIF2A mouse models. This study provides valuable insights into the functional importance of kif2a in zebrafish and phenotypical hallmarks related to KIF2A mutations. Ultimately, this model could be used in a future search for more effective therapies that alleviate the clinical symptoms typically associated with MCDs.
Collapse
|
17
|
Xu L, Guan NN, Huang CX, Hua Y, Song J. A neuronal circuit that generates the temporal motor sequence for the defensive response in zebrafish larvae. Curr Biol 2021; 31:3343-3357.e4. [PMID: 34289386 DOI: 10.1016/j.cub.2021.06.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023]
Abstract
Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.
Collapse
Affiliation(s)
- Lulu Xu
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Na N Guan
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China
| | - Chun-Xiao Huang
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jianren Song
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
18
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
19
|
Meserve JH, Nelson JC, Marsden KC, Hsu J, Echeverry FA, Jain RA, Wolman MA, Pereda AE, Granato M. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet 2021; 17:e1008943. [PMID: 34061829 PMCID: PMC8195410 DOI: 10.1371/journal.pgen.1008943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/11/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry Hsu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fabio A. Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Roshan A. Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marc A. Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bátora D, Zsigmond Á, Lőrincz IZ, Szegvári G, Varga M, Málnási-Csizmadia A. Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner-Cell During Habituation. Front Neural Circuits 2021; 15:648487. [PMID: 33828462 PMCID: PMC8019725 DOI: 10.3389/fncir.2021.648487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor integration is a pivotal feature of the nervous system for ensuring a coordinated motor response to external stimuli. In essence, such neural circuits can optimize behavioral performance based on the saliency of environmental cues. In zebrafish, habituation of the acoustic startle response (ASR) is a simple behavior integrated into the startle command neurons, called the Mauthner cells. Whereas the essential neuronal components that regulate the startle response have been identified, the principles of how this regulation is integrated at the subcellular regions of the Mauthner cell, which in turn modulate the performance of the behavior, is still not well understood. Here, we reveal mechanistically distinct dynamics of excitatory inputs converging onto the lateral dendrite (LD) and axon initial segment (AIS) of the Mauthner cell by in vivo imaging glutamate release using iGluSnFR, an ultrafast glutamate sensing fluorescent reporter. We find that modulation of glutamate release is dependent on NMDA receptor activity exclusively at the AIS, which is responsible for setting the sensitivity of the startle reflex and inducing a depression of synaptic activity during habituation. In contrast, glutamate-release at the LD is not regulated by NMDA receptors and serves as a baseline component of Mauthner cell activation. Finally, using in vivo calcium imaging at the feed-forward interneuron population component of the startle circuit, we reveal that these cells indeed play pivotal roles in both setting the startle threshold and habituation by modulating the AIS of the Mauthner cell. These results indicate that a command neuron may have several functionally distinct regions to regulate complex aspects of behavior.
Collapse
Affiliation(s)
- Dániel Bátora
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary
| | | | | | - Gábor Szegvári
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary
| | | | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary.,Motorpharma Limited, Budapest, Hungary
| |
Collapse
|
21
|
Induction of Short-Term Sensitization by an Aversive Chemical Stimulus in Zebrafish Larvae. eNeuro 2020; 7:ENEURO.0336-19.2020. [PMID: 33004417 PMCID: PMC7729299 DOI: 10.1523/eneuro.0336-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.
Collapse
|
22
|
Sanders SS, Hernandez LM, Soh H, Karnam S, Walikonis RS, Tzingounis AV, Thomas GM. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. eLife 2020; 9:56058. [PMID: 33185190 PMCID: PMC7685708 DOI: 10.7554/elife.56058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/12/2020] [Indexed: 01/02/2023] Open
Abstract
The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.
Collapse
Affiliation(s)
- Shaun S Sanders
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| | - Luiselys M Hernandez
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Santi Karnam
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | | | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| |
Collapse
|