1
|
Tournebize R, Chikhi L. Ignoring population structure in hominin evolutionary models can lead to the inference of spurious admixture events. Nat Ecol Evol 2024:10.1038/s41559-024-02591-6. [PMID: 39672950 DOI: 10.1038/s41559-024-02591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Genomic and ancient DNA data have revolutionized palaeoanthropology and our vision of human evolution, with indisputable landmarks like the sequencing of Neanderthal and Denisovan genomes. Yet, using genetic data to identify, date and quantify evolutionary events-such as ancient bottlenecks or admixture-is not straightforward, as inferences may depend on model assumptions. In the last two decades, the idea that Neanderthals and members of the Homo sapiens lineage interbred has gained momentum. From the status of unlikely theory, it has reached consensus among human evolutionary biologists. This theory is mainly supported by statistical approaches that depend on demographic models minimizing or ignoring population structure, despite its widespread occurrence and the fact that, when ignored, population structure can lead to the inference of spurious demographic events. We simulated genomic data under a structured and admixture-free model of human evolution, and found that all the tested admixture approaches identified long Neanderthal fragments in our simulated genomes and an admixture event that never took place. We also observed that several published admixture models failed to predict important empirical diversity or admixture statistics, and that we could identify several scenarios from our structured model that better predicted these statistics jointly. Using a simulated time series of ancient DNA, the structured scenarios could also predict the trajectory of the empirical D statistics. Our results suggest that models accounting for population structure are fundamental to improve our understanding of human evolution, and that admixture between Neanderthals and H. sapiens needs to be re-evaluated in the light of structured models. Beyond the Neanderthal case, we argue that ancient hybridization events, which are increasingly documented in many species, including with other hominins, may also benefit from such re-evaluation.
Collapse
Affiliation(s)
- Rémi Tournebize
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France.
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE) UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France.
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE) UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Åkerlund M, Baskozos G, Li W, Themistocleous AC, Pascal MMV, Rayner NW, Attal N, Baron R, Baudic S, Bennedsgaard K, Bouhassira D, Comini M, Crombez G, Faber CG, Finnerup NB, Gierthmühlen J, Granovsky Y, Gylfadottir SS, Hébert HL, Jensen TS, John J, Kemp HI, Lauria G, Laycock H, Meng W, Nilsen KB, Palmer C, Rice ASC, Serra J, Smith BH, Tesfaye S, Topaz LS, Veluchamy A, Vollert J, Yarnitsky D, van Zuydam N, Zwart JA, McCarthy MI, Lyssenko V, Bennett DL. Genetic associations of neuropathic pain and sensory profile in a deeply phenotyped neuropathy cohort. Pain 2024:00006396-990000000-00756. [PMID: 39471050 DOI: 10.1097/j.pain.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT We aimed to investigate the genetic associations of neuropathic pain in a deeply phenotyped cohort. Participants with neuropathic pain were cases and compared with those exposed to injury or disease but without neuropathic pain as control subjects. Diabetic polyneuropathy was the most common aetiology of neuropathic pain. A standardised quantitative sensory testing protocol was used to categorize participants based on sensory profile. We performed genome-wide association study, and in a subset of participants, we undertook whole-exome sequencing targeting analyses of 45 known pain-related genes. In the genome-wide association study of diabetic neuropathy (N = 1541), a top significant association was found at the KCNT2 locus linked with pain intensity (rs114159097, P = 3.55 × 10-8). Gene-based analysis revealed significant associations between LHX8 and TCF7L2 and neuropathic pain. Polygenic risk score for depression was associated with neuropathic pain in all participants. Polygenic risk score for C-reactive protein showed a positive association, while that for fasting insulin showed a negative association with neuropathic pain, in individuals with diabetic polyneuropathy. Gene burden analysis of candidate pain genes supported significant associations between rare variants in SCN9A and OPRM1 and neuropathic pain. Comparison of individuals with the "irritable" nociceptor profile to those with a "nonirritable" nociceptor profile identified a significantly associated variant (rs72669682, P = 4.39 × 10-8) within the ANK2 gene. Our study on a deeply phenotyped cohort with neuropathic pain has confirmed genetic associations with the known pain-related genes KCNT2, OPRM1, and SCN9A and identified novel associations with LHX8 and ANK2, genes not previously linked to pain and sensory profiles, respectively.
Collapse
Affiliation(s)
- Mikael Åkerlund
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Georgios Baskozos
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Wenqianglong Li
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | | | - Mathilde M V Pascal
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - N William Rayner
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadine Attal
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sophie Baudic
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | | | - Didier Bouhassira
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Maddalena Comini
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Mental Health and Neuroscience Reseach Institute, Maastricht, the Netherlands
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Gierthmühlen
- Department for Anesthesiology and Surgical Intensive Care Medicine, Pain Therapy, University Hospital of Kiel, Kiel, Germany
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sandra Sif Gylfadottir
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Troels S Jensen
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jishi John
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Harriet I Kemp
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Giuseppe Lauria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Clinical Neurosciences, IRCCS Fondazione Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Helen Laycock
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Kristian Bernhard Nilsen
- Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Colin Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jordi Serra
- Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Leah Shafran Topaz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - David Yarnitsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Anker Zwart
- Department of Research and Innovation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mark I McCarthy
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Malyarchuk BA. Genetic aspects of lactase deficiency in indigenous populations of Siberia. Vavilovskii Zhurnal Genet Selektsii 2024; 28:650-658. [PMID: 39440313 PMCID: PMC11491482 DOI: 10.18699/vjgb-24-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 10/25/2024] Open
Abstract
The ability to metabolize lactose in adulthood is associated with the persistence of lactase enzyme activity. In European populations, lactase persistence is determined mainly by the presence of the rs4988235-T variant in the MCM6 gene, which increases the expression of the LCT gene, encoding lactase. The highest rates of lactase persistence are characteristic of Europeans, and the lowest rates are found in East Asian populations. Analysis of published data on the distribution of the hypolactasia-associated variant rs4988235-C in the populations of Central Asia and Siberia showed that the frequency of this variant increases in the northeastern direction. The frequency of this allele is 87 % in Central Asia, 90.6 % in Southern Siberia, and 92.9 % in Northeastern Siberia. Consequently, the ability of the population to metabolize lactose decreases in the same geographical direction. The analysis of paleogenomic data has shown that the higher frequency of the rs4988235-T allele in populations of Central Asia and Southern Siberia is associated with the eastward spread of ancient populations of the Eastern European steppes, starting from the Bronze Age. The results of polymorphism analysis of exons and adjacent introns of the MCM6 and LCT genes in indigenous populations of Siberia indicate the possibility that polymorphic variants may potentially be related to lactose metabolism exist in East Asian populations. In East Asian populations, including Siberian ethnic groups, a ~26.5 thousand nucleotide pairs long region of the MCM6 gene, including a combination of the rs4988285-A, rs2070069-G, rs3087353-T, and rs2070068-A alleles, was found. The rs4988285 and rs2070069 loci are located in the enhancer region that regulates the activity of the LCT gene. Analysis of paleogenomic sequences showed that the genomes of Denisovans and Neanderthals are characterized by the above combination of alleles of the MCM6 gene. Thus, the haplotype discovered appears to be archaic. It could have been inherited from a common ancestor of modern humans, Neanderthals, and Denisovans, or it could have been acquired by hybridization with Denisovans or Neanderthals. The data obtained indicate a possible functional significance of archaic variants of the MCM6 gene.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| |
Collapse
|
4
|
Misra K, Ślęczkowska M, Santoro S, Gerrits MM, Mascia E, Marchi M, Salvi E, Smeets HJM, Hoeijmakers JGJ, Martinelli Boneschi FG, Filippi M, Lauria Pinter G, Faber CG, Esposito F. Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases. Int J Mol Sci 2024; 25:7248. [PMID: 39000354 PMCID: PMC11242789 DOI: 10.3390/ijms25137248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small-Fiber Neuropathy (SFN) is a disorder of the peripheral nervous system, characterised by neuropathic pain; approximately 11% of cases are linked to variants in Voltage-Gated Sodium Channels (VGSCs). This study aims to broaden the genetic knowledge on painful SFN by applying Whole-Exome Sequencing (WES) in Early-Onset (EO) cases. A total of 88 patients from Italy (n = 52) and the Netherlands (n = 36), with a disease onset at age ≤ 45 years old and a Pain Numerical Rating Score ≥ 4, were recruited. After variant filtering and classification, WES analysis identified 142 potentially causative variants in 93 genes; 8 are Pathogenic, 15 are Likely Pathogenic, and 119 are Variants of Uncertain Significance. Notably, an enrichment of variants in transient receptor potential genes was observed, suggesting their role in pain modulation alongside VGSCs. A pathway analysis performed by comparing EO cases with 40 Italian healthy controls found enriched mutated genes in the "Nicotinic acetylcholine receptor signaling pathway". Targeting this pathway with non-opioid drugs could offer novel therapeutic avenues for painful SFN. Additionally, with this study we demonstrated that employing a gene panel of reported mutated genes could serve as an initial screening tool for SFN in genetic studies, enhancing clinical diagnostics.
Collapse
Affiliation(s)
- Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Hubert J. M. Smeets
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Filippo Giovanni Martinelli Boneschi
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Clinical Neurology Unit, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo and Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Lauria Pinter
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy
| | - Catharina G. Faber
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
5
|
Voinescu CD, Mozere M, Genovese G, Downie ML, Gupta S, Gale DP, Bockenhauer D, Kleta R, Arcos-Burgos M, Stanescu HC. A Neanderthal haplotype introgressed into the human genome confers protection against membranous nephropathy. Kidney Int 2024; 105:791-798. [PMID: 38367960 DOI: 10.1016/j.kint.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Class 2 HLA and PLA2R1 alleles are exceptionally strong genetic risk factors for membranous nephropathy (MN), leading, through an unknown mechanism, to a targeted autoimmune response. Introgressed archaic haplotypes (introduced from an archaic human genome into the modern human genome) might influence phenotypes through gene dysregulation. Here, we investigated the genomic region surrounding the PLA2R1 gene. We reconstructed the phylogeny of Neanderthal and modern haplotypes in this region and calculated the probability of the observed clustering being the result of introgression or common descent. We imputed variants for the participants in our previous genome-wide association study and we compared the distribution of Neanderthal variants between MN cases and controls. The region associated with the lead MN risk locus in the PLA2R1 gene was confirmed and showed that, within a 507 kb region enriched in introgressed sequence, a stringently defined 105 kb haplotype, intersecting the coding regions for PLA2R1 and ITGB6, is inherited from Neanderthals. Thus, introgressed Neanderthal haplotypes overlapping PLA2R1 are differentially represented in MN cases and controls, with enrichment In controls suggesting a protective effect.
Collapse
Affiliation(s)
- Cătălin D Voinescu
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Monika Mozere
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mallory L Downie
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Sanjana Gupta
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Daniel P Gale
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Robert Kleta
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Horia C Stanescu
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK.
| |
Collapse
|
6
|
Chen Y, Yu XY, Xu SJ, Shi XQ, Zhang XX, Sun C. An indel introduced by Neanderthal introgression, rs3835124:ATTTATT > ATT, might contribute to prostate cancer risk by regulating PDK1 expression. Ann Hum Genet 2024; 88:126-137. [PMID: 37846608 DOI: 10.1111/ahg.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Prostate cancer is one of the most common cancer types in males and rs12621278:A > G has been suggested to be associated with this disease by previous genome-wide association studies. One thousand genomes project data analysis indicated that rs12621278:A > G is within two long-core haplotypes. However, the origin, causal variant(s), and molecular function of these haplotypes were remaining unclear. MATERIALS AND METHODS Population genetics analysis and functional genomics work was performed for this locus. RESULTS Phylogeny analysis verified that the rare haplotype is derived from Neanderthal introgression. Genome annotation suggested that three genetic variants in the core haplotypes, rs116108611:G > A, rs139972066:AAAAAAAA > AAAAAAAAA, and rs3835124:ATTTATT > ATT, are located in functional regions. Luciferase assay indicated that rs139972066:AAAAAAAA > AAAAAAAAA and rs116108611:G > A are not able to alter ITGA6 (integrin alpha 6) and ITGA6 antisense RNA 1 expression, respectively. In contrast, rs3835124:ATTTATT > ATT can significantly influence PDK1 (pyruvate dehydrogenase kinase 1) expression, which was verified by expression quantitative trait locus analysis. This genetic variant can alter transcription factor cut like homeobox 1 interaction efficiency. The introgressed haplotype was observed to be subject to positive selection in East Asian populations. The molecular function of the haplotype suggested that Neanderthal should be with lower PDK1 expression and further different energy homeostasis from modern human. CONCLUSION This study provided new insight into the contribution of Neanderthal introgression to human phenotypes.
Collapse
Affiliation(s)
- Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xin-Yi Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Shuang-Jia Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
7
|
Zeberg H, Jakobsson M, Pääbo S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell 2024; 187:1047-1058. [PMID: 38367615 DOI: 10.1016/j.cell.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 02/19/2024]
Abstract
Modern human ancestors diverged from the ancestors of Neandertals and Denisovans about 600,000 years ago. Until about 40,000 years ago, these three groups existed in parallel, occasionally met, and exchanged genes. A critical question is why modern humans, and not the other two groups, survived, became numerous, and developed complex cultures. Here, we discuss genetic differences among the groups and some of their functional consequences. As more present-day genome sequences become available from diverse groups, we predict that very few, if any, differences will distinguish all modern humans from all Neandertals and Denisovans. We propose that the genetic basis of what constitutes a modern human is best thought of as a combination of genetic features, where perhaps none of them is present in each and every present-day individual.
Collapse
Affiliation(s)
- Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden.
| | - Mattias Jakobsson
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Okinawa Institute of Science and Technology, Onnason 904-0495, Okinawa, Japan.
| |
Collapse
|
8
|
Agata A, Ohtsuka S, Noji R, Gotoh H, Ono K, Nomura T. A Neanderthal/Denisovan GLI3 variant contributes to anatomical variations in mice. Front Cell Dev Biol 2023; 11:1247361. [PMID: 38020913 PMCID: PMC10651735 DOI: 10.3389/fcell.2023.1247361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Changes in genomic structures underlie phenotypic diversification in organisms. Amino acid-changing mutations affect pleiotropic functions of proteins, although little is known about how mutated proteins are adapted in existing developmental programs. Here we investigate the biological effects of a variant of the GLI3 transcription factor (GLI3R1537C) carried in Neanderthals and Denisovans, which are extinct hominins close to modern humans. R1537C does not compromise protein stability or GLI3 activator-dependent transcriptional activities. In contrast, R1537C affects the regulation of downstream target genes associated with developmental processes. Furthermore, genome-edited mice carrying the Neanderthal/Denisovan GLI3 mutation exhibited various alterations in skeletal morphology. Our data suggest that an extinct hominin-type GLI3 contributes to species-specific anatomical variations, which were tolerated by relaxed constraint in developmental programs during human evolution.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratories for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Noji
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
9
|
Lawn T, Sendel M, Baron R, Vollert J. Beyond biopsychosocial: The keystone mechanism theory of pain. Brain Behav Immun 2023; 114:187-192. [PMID: 37625555 DOI: 10.1016/j.bbi.2023.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is a deeply personal experience, with interindividual differences in its chronification and treatment presenting a formidable healthcare challenge. The biopsychosocial model (BPSm) has been hugely influential within nascent attempts at precision pain medicine, steering the field away from a reductionist biomechanical viewpoint and emphasising complex interactions of biological, psychological, and social factors which shape the individuality of pain. However, despite offering a strong theoretical foundation and holistic perspective, we contend that the BPSm remains limited in its capacity to deliver truly mechanistically informed treatment of pain. We therefore propose the keystone model of pain which offers a pragmatic balance between the dimensionality expansive BPSm and overly reductive approaches, providing both theoretical and practical advantages for the transition from treating populations to individual people.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Vollert
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany; Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany; Pain Research, Department of Surgery and Cancer, Imperial College, London, UK; Neurophysiology, Mannheim Centre for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| |
Collapse
|
10
|
Faux P, Ding L, Ramirez-Aristeguieta LM, Chacón-Duque JC, Comini M, Mendoza-Revilla J, Fuentes-Guajardo M, Jaramillo C, Arias W, Hurtado M, Villegas V, Granja V, Barquera R, Everardo-Martínez P, Quinto-Sánchez M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Poletti G, Gallo C, Rothhammer F, Rojas W, Schmid AB, Adhikari K, Bennett DL, Ruiz-Linares A. Neanderthal introgression in SCN9A impacts mechanical pain sensitivity. Commun Biol 2023; 6:958. [PMID: 37816865 PMCID: PMC10564861 DOI: 10.1038/s42003-023-05286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023] Open
Abstract
The Nav1.7 voltage-gated sodium channel plays a key role in nociception. Three functional variants in the SCN9A gene (encoding M932L, V991L, and D1908G in Nav1.7), have recently been identified as stemming from Neanderthal introgression and to associate with pain symptomatology in UK BioBank data. In 1000 genomes data, these variants are absent in Europeans but common in Latin Americans. Analysing high-density genotype data from 7594 Latin Americans, we characterized Neanderthal introgression in SCN9A. We find that tracts of introgression occur on a Native American genomic background, have an average length of ~123 kb and overlap the M932L, V991L, and D1908G coding positions. Furthermore, we measured experimentally six pain thresholds in 1623 healthy Colombians. We found that Neanderthal ancestry in SCN9A is significantly associated with a lower mechanical pain threshold after sensitization with mustard oil and evidence of additivity of effects across Nav1.7 variants. Our findings support the reported association of Neanderthal Nav1.7 variants with clinical pain, define a specific sensory modality affected by archaic introgression in SCN9A and are consistent with independent effects of the Neanderthal variants on Nav1.7 function.
Collapse
Affiliation(s)
- Pierre Faux
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, 200438, Shanghai, China
- UMR ADES, Aix-Marseille Université, CNRS, EFS, 13005, Marseille, France
- UMR GenPhySE, INRAE, INP, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Li Ding
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, 200438, Shanghai, China
| | | | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, SE-1069, Stockholm, Sweden
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015, Paris, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, 1000000, Arica, Chile
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000, Medellín, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000, Medellín, Colombia
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), 07745, Jena, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
| | - Mirsha Quinto-Sánchez
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), 06320, Mexico City, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, 4510, Mexico City, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, U9129ACD, Puerto Madryn, Argentina
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, U9129ACD, Puerto Madryn, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, 4510, Mexico City, Mexico
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Arica, Chile
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000, Medellín, Colombia
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK.
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, 200438, Shanghai, China.
- UMR ADES, Aix-Marseille Université, CNRS, EFS, 13005, Marseille, France.
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Marchi M, Salvi E, Andelic M, Mehmeti E, D'Amato I, Cazzato D, Chiappori F, Lombardi R, Cartelli D, Devigili G, Dalla Bella E, Gerrits M, Almomani R, Malik RA, Ślęczkowska M, Mazzeo A, Gentile L, Dib-Hajj S, Waxman SG, Faber CG, Vecchio E, de Tommaso M, Lauria G. TRPA1 rare variants in chronic neuropathic and nociplastic pain patients. Pain 2023; 164:2048-2059. [PMID: 37079850 PMCID: PMC10443199 DOI: 10.1097/j.pain.0000000000002905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 04/22/2023]
Abstract
Supplemental Digital Content is Available in the Text. TRPA1 gene is significantly enriched of rare variants in neuropathic pain and fibromyalgia patients, with itch or cold-induced pain as the most common features, opening new treatment opportunities. Missing aspects of the heritability of chronic neuropathic pain, as a complex adult-onset trait, may be hidden within rare variants with low effect on disease risk, unlikely to be resolved by a single-variant approach. To identify new risk genes, we performed a next-generation sequencing of 107 pain genes and collapsed the rare variants through gene-wise aggregation analysis. The optimal unified sequence kernel association test was applied to 169 patients with painful neuropathy, 223 patients with nociplastic pain (82 diagnosed with chronic widespread pain and 141 with fibromyalgia), and 216 healthy controls. Frequency and features of variants in TRPA1 , which was the most significant gene, were further validated in 2 independent cohorts of 140 patients with chronic pain (90 with painful neuropathy and 50 with chronic widespread pain) and 34 with painless neuropathy. The effect of aminoacidic changes were modeled in silico according to physicochemical characteristics. TRPA1 was significantly enriched of rare variants which significantly discriminated chronic pain patients from healthy controls after Bonferroni correction (P = 6.7 × 10−4, ρ = 1), giving a risk of 4.8-fold higher based on the simple burden test (P = 0.0015, OR = 4.8). Among the 32 patients harboring TRPA1 variants, 24 (75%) were diagnosed with nociplastic pain, either fibromyalgia (12; 37.5%) or chronic widespread pain (12; 37.5%), whereas 8 (25%) with painful neuropathy. Irrespective of the clinical diagnosis, 12 patients (38%) complained of itch and 10 (31.3%) of cold-induced or cold-accentuated pain, mostly episodic. Our study widens the spectrum of channelopathy-related chronic pain disorders and contributes to bridging the gap between phenotype and targeted therapies based on patients' molecular profile. 1_tzjjvsic Kaltura
Collapse
Affiliation(s)
- Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria D'Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cazzato
- Clinical Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Chiappori
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche (CNR-ITB), Segrate (Milan), Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia Devigili
- Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Dalla Bella
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rowida Almomani
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rayaz A. Malik
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, The University of Manchester and NIHR/WellcomeTrust Clinical Research Facility, Manchester, United Kingdom
- Research Division, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Milena Ślęczkowska
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Anna Mazzeo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Gentile
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Catharina G. Faber
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eleonora Vecchio
- Neurophysiopathology Unit, DiBrain Department, Aldo Moro University, Bari, Italy
| | - Marina de Tommaso
- Neurophysiopathology Unit, DiBrain Department, Aldo Moro University, Bari, Italy
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|
14
|
Ågren R, Patil S, Zhou X, Sahlholm K, Pääbo S, Zeberg H. Major Genetic Risk Factors for Dupuytren's Disease Are Inherited From Neandertals. Mol Biol Evol 2023; 40:msad130. [PMID: 37315093 DOI: 10.1093/molbev/msad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Dupuytren's disease is characterized by fingers becoming permanently bent in a flexed position. Whereas people of African ancestry are rarely afflicted by Dupuytren's disease, up to ∼30% of men over 60 years suffer from this condition in northern Europe. Here, we meta-analyze 3 biobanks comprising 7,871 cases and 645,880 controls and find 61 genome-wide significant variants associated with Dupuytren's disease. We show that 3 of the 61 loci harbor alleles of Neandertal origin, including the second and third most strongly associated ones (P = 6.4 × 10-132 and P = 9.2 × 10-69, respectively). For the most strongly associated Neandertal variant, we identify EPDR1 as the causal gene. Dupuytren's disease is an example of how admixture with Neandertals has shaped regional differences in disease prevalence.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Snehal Patil
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kristoffer Sahlholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
15
|
Min-Shan Ko A. The 2022 nobel prize in physiology or medicine awarded for the decoding of the complete ancient human genome. Biomed J 2023; 46:100584. [PMID: 36796758 DOI: 10.1016/j.bj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Since the publication of the first ancient DNA sequence in 1984, experimental methods used to recover ancient DNA have advanced greatly, illuminating previously unknown branches of the human family tree and opening up several promising new avenues for future studies of human evolution. The 2022 Nobel Prize in Physiology or Medicine was awarded to Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, for his work on ancient DNA and human evolution. On his first day back at work, he was thrown in the pond as part of his institute's tradition of celebrating award winners.
Collapse
Affiliation(s)
- Albert Min-Shan Ko
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan; Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Abondio P, Bruno F, Bruni AC, Luiselli D. Rare Amyloid Precursor Protein Point Mutations Recapitulate Worldwide Migration and Admixture in Healthy Individuals: Implications for the Study of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232415871. [PMID: 36555510 PMCID: PMC9781461 DOI: 10.3390/ijms232415871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic discoveries related to Alzheimer's disease and other dementias have been performed using either large cohorts of affected subjects or multiple individuals from the same pedigree, therefore disregarding mutations in the context of healthy groups. Moreover, a large portion of studies so far have been performed on individuals of European ancestry, with a remarkable lack of epidemiological and genomic data from underrepresented populations. In the present study, 70 single-point mutations on the APP gene in a publicly available genetic dataset that included 2504 healthy individuals from 26 populations were scanned, and their distribution was analyzed. Furthermore, after gametic phase reconstruction, a pairwise comparison of the segments surrounding the mutations was performed to reveal patterns of haplotype sharing that could point to specific cross-population and cross-ancestry admixture events. Eight mutations were detected in the worldwide dataset, with several of them being specific for a single individual, population, or macroarea. Patterns of segment sharing reflected recent historical events of migration and admixture possibly linked to colonization campaigns. These observations reveal the population dynamics of the considered APP mutations in worldwide human groups and support the development of ancestry-informed screening practices for the improvement of precision and personalized approaches to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Francesco Bruno
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence:
| | - Amalia Cecilia Bruni
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
17
|
Neandertal introgression partitions the genetic landscape of neuropsychiatric disorders and associated behavioral phenotypes. Transl Psychiatry 2022; 12:433. [PMID: 36198681 PMCID: PMC9534885 DOI: 10.1038/s41398-022-02196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Despite advances in identifying the genetic basis of psychiatric and neurological disorders, fundamental questions about their evolutionary origins remain elusive. Here, introgressed variants from archaic humans such as Neandertals can serve as an intriguing research paradigm. We compared the number of associations for Neandertal variants to the number of associations of frequency-matched non-archaic variants with regard to human CNS disorders (neurological and psychiatric), nervous system drug prescriptions (as a proxy for disease), and related, non-disease phenotypes in the UK biobank (UKBB). While no enrichment for Neandertal genetic variants were observed in the UKBB for psychiatric or neurological disease categories, we found significant associations with certain behavioral phenotypes including pain, chronotype/sleep, smoking and alcohol consumption. In some instances, the enrichment signal was driven by Neandertal variants that represented the strongest association genome-wide. SNPs within a Neandertal haplotype that was associated with smoking in the UKBB could be replicated in four independent genomics datasets.Our data suggest that evolutionary processes in recent human evolution like admixture with Neandertals significantly contribute to behavioral phenotypes but not psychiatric and neurological diseases. These findings help to link genetic variants in a population to putative past beneficial effects, which likely only indirectly contribute to pathology in modern day humans.
Collapse
|
18
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
Weasel L. How Neanderthals became White: The introgression of race into contemporary human evolutionary genomics. Am Nat 2022; 200:129-139. [DOI: 10.1086/720130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Kastrati G, Rosén J, Thompson WH, Chen X, Larsson H, Nichols TE, Tracey I, Fransson P, Åhs F, Jensen KB. Genetic Influence on Nociceptive Processing in the Human Brain-A Twin Study. Cereb Cortex 2021; 32:266-274. [PMID: 34289027 PMCID: PMC8754385 DOI: 10.1093/cercor/bhab206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Nociceptive processing in the human brain is complex and involves several brain structures and varies across individuals. Determining the structures that contribute to interindividual differences in nociceptive processing is likely to improve our understanding of why some individuals feel more pain than others. Here, we found specific parts of the cerebral response to nociception that are under genetic influence by employing a classic twin-design. We found genetic influences on nociceptive processing in the midcingulate cortex and bilateral posterior insula. In addition to brain activations, we found genetic contributions to large-scale functional connectivity (FC) during nociceptive processing. We conclude that additive genetics influence specific brain regions involved in nociceptive processing. The genetic influence on FC during nociceptive processing is not limited to core nociceptive brain regions, such as the dorsal posterior insula and somatosensory areas, but also involves cognitive and affective brain circuitry. These findings improve our understanding of human pain perception and increases chances to find new treatments for clinical pain.
Collapse
Affiliation(s)
- Gránit Kastrati
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Psychology and Social Work, Mid Sweden University, SE-831 25, Östersund, Sweden
| | - Jörgen Rosén
- Department of Psychology and Social Work, Mid Sweden University, SE-831 25, Östersund, Sweden
| | - William H Thompson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Xu Chen
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RA, Leiden, the Netherlands
| | - Henrik Larsson
- Department of Medical Sciences, Örebro University, SE--701 82, Örebro, Sweden
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, OX3 7LF, Oxford, UK
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, SE-831 25, Östersund, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
23
|
Spitzer M. Unsere Vorfahren. NERVENHEILKUNDE 2021; 40:492-510. [DOI: 10.1055/a-1389-6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Schörnig M, Taverna E. A Closer Look to the Evolution of Neurons in Humans and Apes Using Stem-Cell-Derived Model Systems. Front Cell Dev Biol 2021; 9:661113. [PMID: 33968936 PMCID: PMC8097028 DOI: 10.3389/fcell.2021.661113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
The cellular, molecular and functional comparison of neurons from closely related species is crucial in evolutionary neurobiology. The access to living tissue and post-mortem brains of humans and non-human primates is limited and the state of the tissue might not allow recapitulating important species-specific differences. A valid alternative is offered by neurons derived from induced pluripotent stem cells (iPSCs) obtained from humans and non-human apes and primates. We will review herein the contribution of iPSCs-derived neuronal models to the field of evolutionary neurobiology, focusing on species-specific aspects of neuron’s cell biology and timing of maturation. In addition, we will discuss the use of iPSCs for the study of ancient human traits.
Collapse
Affiliation(s)
- Maria Schörnig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
25
|
Sachau J, Kersebaum D, Baron R, Dickenson AH. Unusual Pain Disorders - What Can Be Learned from Them? J Pain Res 2021; 13:3539-3554. [PMID: 33758536 PMCID: PMC7980038 DOI: 10.2147/jpr.s287603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is common in many different disorders and leads to a significant reduction in quality of life in the affected patients. Current treatment options are limited and often result in insufficient pain relief, partly due to the incomplete understanding of the underlying pathophysiological mechanisms. The identification of these pathomechanisms is therefore a central object of current research. There are also a number of rare pain diseases, that are generally little known and often undiagnosed, but whose correct diagnosis and examination can help to improve the management of pain disorders in general. In some of these unusual pain disorders like sodium-channelopathies or sensory modulation disorder the underlying pathophysiological mechanisms have only recently been unravelled. These mechanisms might serve as pharmacological targets that may also play a role in subgroups of other, more common pain diseases. In other unusual pain disorders, the identification of pathomechanisms has already led to the development of new drugs. A completely new therapeutic approach, the gene silencing, can even stop progression in hereditary transthyretin amyloidosis and porphyria, ie in pain diseases that would otherwise be rapidly fatal if left untreated. Thus, pain therapists and researchers should be aware of these rare and unusual pain disorders as they offer the unique opportunity to study mechanisms, identify new druggable targets and finally because early diagnosis might save many patient lives.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
26
|
Yates P, Koester JA, Taylor AR. Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore. Mar Drugs 2021; 19:md19030140. [PMID: 33801270 PMCID: PMC8002053 DOI: 10.3390/md19030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the phytoplankton themselves.
Collapse
|
27
|
Zeberg H, Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci U S A 2021; 118:e2026309118. [PMID: 33593941 PMCID: PMC7936282 DOI: 10.1073/pnas.2026309118] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is inherited from Neandertals. New, larger genetic association studies now allow additional genetic risk factors to be discovered. Using data from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region on chromosome 12 associated with requiring intensive care when infected with the virus is inherited from Neandertals. This region encodes proteins that activate enzymes that are important during infections with RNA viruses. In contrast to the previously described Neandertal haplotype that increases the risk for severe COVID-19, this Neandertal haplotype is protective against severe disease. It also differs from the risk haplotype in that it has a more moderate effect and occurs at substantial frequencies in all regions of the world outside Africa. Among ancient human genomes in western Eurasia, the frequency of the protective Neandertal haplotype may have increased between 20,000 and 10,000 y ago and again during the past 1,000 y.
Collapse
Affiliation(s)
- Hugo Zeberg
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany;
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany;
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| |
Collapse
|
28
|
Mora-Bermúdez F, Taverna E, Huttner WB. From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS J 2021; 289:1524-1535. [PMID: 33638923 DOI: 10.1111/febs.15793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023]
Abstract
Comparing the biology of humans to that of other primates, and notably other hominids, is a useful path to learn more about what makes us human. Some of the most interesting differences among hominids are closely related to brain development and function, for example behaviour and cognition. This makes it particularly interesting to compare the hominid neural cells of the neocortex, a part of the brain that plays central roles in those processes. However, well-preserved tissue from great apes is usually extremely difficult to obtain. A variety of new alternative tools, for example brain organoids, are now beginning to make it possible to search for such differences and analyse their potential biological and biomedical meaning. Here, we present an overview of recent findings from comparisons of the neural stem and progenitor cells (NSPCs) and neurons of hominids. In addition to differences in proliferation and differentiation of NSPCs, and maturation of neurons, we highlight that the regulation of the timing of these processes is emerging as a general foundational difference in the development of the neocortex of hominids.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
29
|
|
30
|
Ågren R, Zeberg H. Low-Resistance silver bromide electrodes for recording fast ion channel kinetics under voltage clamp conditions. J Neurosci Methods 2020; 348:108984. [PMID: 33164817 DOI: 10.1016/j.jneumeth.2020.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Two-electrode voltage clamp is a widely used technique for studying ionic currents. However, fast activation kinetics of ion channels are disguised by the capacitive transient during voltage clamp of Xenopus oocytes. The limiting factors of clamp performance include, but are not limited to, amplifier gain, membrane capacitance, and micropipette resistance. Previous work has focused on increasing amplifier gain (e.g.; high performing two-electrode amplifiers) or reducing the membrane capacitance (e.g.; the cut-open technique). NEW METHOD The use of an Ag-AgBr electrode with saturated KBr solution to reduce micropipette resistance. RESULTS The conductivity of 4 M KBr was 37 % higher compared to 3 M KCl and the micropipette resistance was reduced by 19 % when 4 M KBr was used, compared to the standard 3 M KCl solution. Micropipette resistances correlated positively with capacitive transient durations. Neither the current-voltage relationship of the voltage-gated sodium channel, Nav1.7, nor Xenopus oocyte stability were affected by bromide ions. COMPARISON WITH EXISTING METHODS The de facto standard for two-electrode voltage clamp is 3 M KCl and Ag-AgCl electrodes, which are associated an unnecessarily high micropipette resistance. Elsewise, cut-open voltage clamp techniques are technically demanding and require manipulation of the intracellular environment. CONCLUSIONS The use of an Ag-AgBr electrode with saturated KBr as micropipette solution reduces the capacitive transient in two-electrode voltage clamp recordings. Moreover, the exchange of chloride against bromide ions does not seem to affect oocyte physiology and ion channel kinetics.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 2020; 587:610-612. [PMID: 32998156 DOI: 10.1038/s41586-020-2818-3] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022]
Abstract
A recent genetic association study1 identified a gene cluster on chromosome 3 as a risk locus for respiratory failure after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A separate study (COVID-19 Host Genetics Initiative)2 comprising 3,199 hospitalized patients with coronavirus disease 2019 (COVID-19) and control individuals showed that this cluster is the major genetic risk factor for severe symptoms after SARS-CoV-2 infection and hospitalization. Here we show that the risk is conferred by a genomic segment of around 50 kilobases in size that is inherited from Neanderthals and is carried by around 50% of people in south Asia and around 16% of people in Europe.
Collapse
Affiliation(s)
- Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. .,Okinawa Institute of Science and Technology, Onna-son, Japan.
| |
Collapse
|
32
|
Callaway E. Neanderthal gene linked to increased pain sensitivity. Nature 2020:10.1038/d41586-020-02202-x. [PMID: 32704108 DOI: 10.1038/d41586-020-02202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|