1
|
Hindmarsh Sten T, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. Cell 2025:S0092-8674(25)00037-6. [PMID: 39952248 DOI: 10.1016/j.cell.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection-female choice and male-male competition-work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a "song" that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes-P1a and pC1x neurons-are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Shade Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
2
|
Meissner GW, Vannan A, Jeter J, Close K, DePasquale GM, Dorman Z, Forster K, Beringer JA, Gibney T, Hausenfluck JH, He Y, Henderson K, Johnson L, Johnston RM, Ihrke G, Iyer NA, Lazarus R, Lee K, Li HH, Liaw HP, Melton B, Miller S, Motaher R, Novak A, Ogundeyi O, Petruncio A, Price J, Protopapas S, Tae S, Taylor J, Vorimo R, Yarbrough B, Zeng KX, Zugates CT, Dionne H, Angstadt C, Ashley K, Cavallaro A, Dang T, Gonzalez GA, Hibbard KL, Huang C, Kao JC, Laverty T, Mercer M, Perez B, Pitts SR, Ruiz D, Vallanadu V, Zheng GZ, Goina C, Otsuna H, Rokicki K, Svirskas RR, Cheong HSJ, Dolan MJ, Ehrhardt E, Feng K, Galfi BEI, Goldammer J, Huston SJ, Hu N, Ito M, McKellar C, Minegishi R, Namiki S, Nern A, Schretter CE, Sterne GR, Venkatasubramanian L, Wang K, Wolff T, Wu M, George R, Malkesman O, Aso Y, Card GM, Dickson BJ, Korff W, Ito K, Truman JW, Zlatic M, Rubin GM. A split-GAL4 driver line resource for Drosophila neuron types. eLife 2025; 13:RP98405. [PMID: 39854223 PMCID: PMC11759409 DOI: 10.7554/elife.98405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Allison Vannan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Jeter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kari Close
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gina M DePasquale
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Zachary Dorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaitlyn Forster
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jaye Anne Beringer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Theresa Gibney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kristin Henderson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lauren Johnson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gudrun Ihrke
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rachel Lazarus
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelley Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hsing-Hsi Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hua-Peng Liaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brian Melton
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Scott Miller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reeham Motaher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alexandra Novak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alyson Petruncio
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jacquelyn Price
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sophia Protopapas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Susana Tae
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Taylor
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca Vorimo
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brianna Yarbrough
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kevin Xiankun Zeng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Angstadt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelly Ashley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Amanda Cavallaro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tam Dang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cuizhen Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jui-Chun Kao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Todd Laverty
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Monti Mercer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brenda Perez
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Scarlett Rose Pitts
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Danielle Ruiz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viruthika Vallanadu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Grace Zhiyu Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert R Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Han SJ Cheong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael-John Dolan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Basel EI Galfi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - Stephen J Huston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nan Hu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire McKellar
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Cell & Molecular Biology, University of California, BerkeleyBerkeleyUnited States
| | | | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ming Wu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | |
Collapse
|
3
|
Li M, Chen DS, Junker IP, Szorenyi FI, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior in Drosophila. Nat Commun 2024; 15:9210. [PMID: 39468043 PMCID: PMC11519493 DOI: 10.1038/s41467-024-53610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor circuit facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Li J, Ning C, Liu Y, Deng B, Wang B, Shi K, Wang R, Fang R, Zhou C. The function of juvenile-adult transition axis in female sexual receptivity of Drosophila melanogaster. eLife 2024; 12:RP92545. [PMID: 39240259 PMCID: PMC11379460 DOI: 10.7554/elife.92545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
Collapse
Affiliation(s)
- Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguancun Life Sciences Park, Beijing, China
| | - Bingcai Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuan Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024; 38:47-61. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
6
|
Rohrbach EW, Asuncion JD, Meera P, Kralovec M, Deshpande SA, Schweizer FE, Krantz DE. Heterogeneity in the projections and excitability of tyraminergic/octopaminergic neurons that innervate the Drosophila reproductive tract. Front Mol Neurosci 2024; 17:1374896. [PMID: 39156129 PMCID: PMC11327148 DOI: 10.3389/fnmol.2024.1374896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024] Open
Abstract
Aminergic nuclei in mammals are generally composed of relatively small numbers of cells with broad projection patterns. Despite the gross similarity of many individual neurons, recent transcriptomic, anatomic and behavioral studies suggest previously unsuspected diversity. Smaller clusters of aminergic neurons in the model organism Drosophila melanogaster provide an opportunity to explore the ramifications of neuronal diversity at the level of individual cells. A group of approximately 10 tyraminergic/octopaminergic neurons innervates the female reproductive tract in flies and has been proposed to regulate multiple activities required for fertility. The projection patterns of individual neurons within the cluster are not known and it remains unclear whether they are functionally heterogenous. Using a single cell labeling technique, we show that each region of the reproductive tract is innervated by a distinct subset of tyraminergic/octopaminergic cells. Optogenetic activation of one subset stimulates oviduct contractions, indicating that the cluster as a whole is not required for this activity, and underscoring the potential for functional diversity across individual cells. Using whole cell patch clamp, we show that two adjacent and morphologically similar cells are tonically inhibited, but each responds differently to injection of current or activation of the inhibitory GluCl receptor. GluCl appears to be expressed at relatively low levels in tyraminergic/octopaminergic neurons within the cluster, suggesting that it may regulate their excitability via indirect pathways. Together, our data indicate that specific tyraminergic/octopaminergic cells within a relatively homogenous cluster have heterogenous properties and provide a platform for further studies to determine the function of each cell.
Collapse
Affiliation(s)
- Ethan W. Rohrbach
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pratap Meera
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mason Kralovec
- UCLA College of Arts and Sciences, Los Angeles, CA, United States
| | - Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Felix E. Schweizer
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David E. Krantz
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
7
|
Stürner T, Brooks P, Capdevila LS, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HS, Kovalyak J, Tenshaw E, Parekh R, Schlegel P, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung S, Murthy M, Tuthill J, Lee WCA, Card GM, Costa M, Jefferis GS, Eichler K. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596633. [PMID: 38895426 PMCID: PMC11185702 DOI: 10.1101/2024.06.04.596633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J. Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew S. Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S.J. Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Brain Mind Institute & Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Alexander S. Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Mala Murthy
- Computer Science Department, Princeton University, USA
| | - John Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung A. Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S.X.E. Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Genetics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Diamandi JA, Duckhorn JC, Miller KE, Weinstock M, Leone S, Murphy MR, Shirangi TR. Developmental remodeling repurposes larval neurons for sexual behaviors in adult Drosophila. Curr Biol 2024; 34:1183-1193.e3. [PMID: 38377996 DOI: 10.1016/j.cub.2024.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Most larval neurons in Drosophila are repurposed during metamorphosis for functions in adult life, but their contribution to the neural circuits for sexually dimorphic behaviors is unknown. Here, we identify two interneurons in the nerve cord of adult Drosophila females that control ovipositor extrusion, a courtship rejection behavior performed by mated females. We show that these two neurons are present in the nerve cord of larvae as mature, sexually monomorphic interneurons. During pupal development, they acquire the expression of the sexual differentiation gene, doublesex; undergo doublesex-dependent programmed cell death in males; and are remodeled in females for functions in female mating behavior. Our results demonstrate that the neural circuits for courtship in Drosophila are built in part using neurons that are sexually reprogrammed from former sex-shared activities in larval life.
Collapse
Affiliation(s)
- Julia A Diamandi
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Julia C Duckhorn
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Kara E Miller
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Mason Weinstock
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Sofia Leone
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Micaela R Murphy
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Troy R Shirangi
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA.
| |
Collapse
|
9
|
Lillvis JL, Wang K, Shiozaki HM, Xu M, Stern DL, Dickson BJ. Nested neural circuits generate distinct acoustic signals during Drosophila courtship. Curr Biol 2024; 34:808-824.e6. [PMID: 38295797 DOI: 10.1016/j.cub.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
Many motor control systems generate multiple movements using a common set of muscles. How are premotor circuits able to flexibly generate diverse movement patterns? Here, we characterize the neuronal circuits that drive the distinct courtship songs of Drosophila melanogaster. Male flies vibrate their wings toward females to produce two different song modes-pulse and sine song-which signal species identity and male quality. Using cell-type-specific genetic reagents and the connectome, we provide a cellular and synaptic map of the circuits in the male ventral nerve cord that generate these songs and examine how activating or inhibiting each cell type within these circuits affects the song. Our data reveal that the song circuit is organized into two nested feedforward pathways with extensive reciprocal and feedback connections. The larger network produces pulse song, the more complex and ancestral song form. A subset of this network produces sine song, the simpler and more recent form. Such nested organization may be a common feature of motor control circuits in which evolution has layered increasing flexibility onto a basic movement pattern.
Collapse
Affiliation(s)
- Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA.
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201602, China
| | - Hiroshi M Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Min Xu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
10
|
Simpson JH. Descending control of motor sequences in Drosophila. Curr Opin Neurobiol 2024; 84:102822. [PMID: 38096757 PMCID: PMC11215313 DOI: 10.1016/j.conb.2023.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
The descending neurons connecting the fly's brain to its ventral nerve cord respond to sensory stimuli and evoke motor programs of varying complexity. Anatomical characterization of the descending neurons and their synaptic connections suggests how these circuits organize movements, while optogenetic manipulation of their activity reveals what behaviors they can induce. Monitoring their responses to sensory stimuli or during behavior performance indicates what information they may encode. Recent advances in all three approaches make the descending neurons an excellent place to better understand the sensorimotor integration and transformation required for nervous systems to govern the motor sequences that constitute animal behavior.
Collapse
Affiliation(s)
- Julie H Simpson
- Dept. Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, USA.
| |
Collapse
|
11
|
Pang R, Baker C, Murthy M, Pillow J. Inferring neural dynamics of memory during naturalistic social communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577404. [PMID: 38328156 PMCID: PMC10849655 DOI: 10.1101/2024.01.26.577404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Memory processes in complex behaviors like social communication require forming representations of the past that grow with time. The neural mechanisms that support such continually growing memory remain unknown. We address this gap in the context of fly courtship, a natural social behavior involving the production and perception of long, complex song sequences. To study female memory for male song history in unrestrained courtship, we present 'Natural Continuation' (NC)-a general, simulation-based model comparison procedure to evaluate candidate neural codes for complex stimuli using naturalistic behavioral data. Applying NC to fly courtship revealed strong evidence for an adaptive population mechanism for how female auditory neural dynamics could convert long song histories into a rich mnemonic format. Song temporal patterning is continually transformed by heterogeneous nonlinear adaptation dynamics, then integrated into persistent activity, enabling common neural mechanisms to retain continuously unfolding information over long periods and yielding state-of-the-art predictions of female courtship behavior. At a population level this coding model produces multi-dimensional advection-diffusion-like responses that separate songs over a continuum of timescales and can be linearly transformed into flexible output signals, illustrating its potential to create a generic, scalable mnemonic format for extended input signals poised to drive complex behavioral responses. This work thus shows how naturalistic behavior can directly inform neural population coding models, revealing here a novel process for memory formation.
Collapse
Affiliation(s)
- Rich Pang
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton, NJ and New York, NY, USA
| | - Christa Baker
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Present address: Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | | |
Collapse
|
12
|
Yang YT, Hu SW, Zhu Y. A protocol for measuring the sexual receptivity of female Drosophila. STAR Protoc 2023; 4:102563. [PMID: 37703181 PMCID: PMC10507193 DOI: 10.1016/j.xpro.2023.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Female receptivity in mating is crucial for successful copulation, but protocols for quantifying female behaviors reflecting receptivity are scarce compared to the analysis of male behaviors. Here, we present a protocol for assessing the sexual receptivity of female Drosophila that considers behaviors from both sexes. We describe steps for preparing and loading flies into a courtship chamber, video recording the behaviors of the pairs, and analyzing their behavioral displays. This protocol includes behavior recognition criteria suitable for typical laboratory settings. For complete details on the use and execution of this protocol, please refer to Yang et al. (2023).1.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; Sino-Danish Center for Education and Research, Beijing 101408, China.
| | - Shao Wei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 101408, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China.
| |
Collapse
|
13
|
Li M, Chen DS, Junker IP, Szorenyi F, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570174. [PMID: 38106147 PMCID: PMC10723342 DOI: 10.1101/2023.12.05.570174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor program facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabianna Szorenyi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Current address: School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Büschges A, Gorostiza EA. Neurons with names: Descending control and sensorimotor processing in insect motor control. Curr Opin Neurobiol 2023; 83:102766. [PMID: 37865029 DOI: 10.1016/j.conb.2023.102766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 10/23/2023]
Abstract
Technical and methodological advances in recent years have brought new ways to tackle major classical questions in insect motor control. Particularly, significant advancements were achieved in comprehending brain descending control by characterizing descending neurons, their targets in the ventral nerve cord (VNC), and how local networks there integrate sensory information. While physiological experiments in larger insects brought us a better understanding of how sensory modalities are processed locally in the VNC, the development and improvement of genetic tools, principally in Drosophila, opened the door to individually characterize actors at these three levels of information flow in behavioral control. This brief review brings together the names and roles of some of those actors, by highlighting the most significant findings from our perspective.
Collapse
Affiliation(s)
- Ansgar Büschges
- Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | - E Axel Gorostiza
- Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| |
Collapse
|
15
|
Sten TH, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565582. [PMID: 37961193 PMCID: PMC10635267 DOI: 10.1101/2023.11.03.565582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection - female choice and male-male competition - work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a 'song' that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes - P1a and pC1x neurons - are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
- Present address: Department of Biology, Stanford University, Stanford, CA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Shadé Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
16
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
17
|
Meissner GW, Nern A, Dorman Z, DePasquale GM, Forster K, Gibney T, Hausenfluck JH, He Y, Iyer NA, Jeter J, Johnson L, Johnston RM, Lee K, Melton B, Yarbrough B, Zugates CT, Clements J, Goina C, Otsuna H, Rokicki K, Svirskas RR, Aso Y, Card GM, Dickson BJ, Ehrhardt E, Goldammer J, Ito M, Kainmueller D, Korff W, Mais L, Minegishi R, Namiki S, Rubin GM, Sterne GR, Wolff T, Malkesman O. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 2023; 12:e80660. [PMID: 36820523 PMCID: PMC10030108 DOI: 10.7554/elife.80660] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Zachary Dorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gina M DePasquale
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaitlyn Forster
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Theresa Gibney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Jeter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lauren Johnson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelley Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brian Melton
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brianna Yarbrough
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert R Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lisa Mais
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | |
Collapse
|
18
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
19
|
The doublesex gene regulates dimorphic sexual and aggressive behaviors in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2201513119. [PMID: 36067320 PMCID: PMC9477402 DOI: 10.1073/pnas.2201513119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most animal species display dimorphic sexual behaviors and male-biased aggressiveness. Current models have focused on the male-specific product from the fruitless (fruM) gene, which controls male courtship and male-specific aggression patterns in fruit flies, and describe a male-specific mechanism underlying sexually dimorphic behaviors. Here we show that the doublesex (dsx) gene, which expresses male-specific DsxM and female-specific DsxF transcription factors, functions in the nervous system to control both male and female sexual and aggressive behaviors. We find that Dsx is not only required in central brain neurons for male and female sexual behaviors, but also functions in approximately eight pairs of male-specific neurons to promote male aggressiveness and approximately two pairs of female-specific neurons to inhibit female aggressiveness. DsxF knockdown females fight more frequently, even with males. Our findings reveal crucial roles of dsx, which is broadly conserved from worms to humans, in a small number of neurons in both sexes to establish dimorphic sexual and aggressive behaviors.
Collapse
|
20
|
Baker CA, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco DA, Eckstein N, Funke J, Dickson BJ, Murthy M. Neural network organization for courtship-song feature detection in Drosophila. Curr Biol 2022; 32:3317-3333.e7. [PMID: 35793679 PMCID: PMC9378594 DOI: 10.1016/j.cub.2022.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Animals communicate using sounds in a wide range of contexts, and auditory systems must encode behaviorally relevant acoustic features to drive appropriate reactions. How feature detection emerges along auditory pathways has been difficult to solve due to challenges in mapping the underlying circuits and characterizing responses to behaviorally relevant features. Here, we study auditory activity in the Drosophila melanogaster brain and investigate feature selectivity for the two main modes of fly courtship song, sinusoids and pulse trains. We identify 24 new cell types of the intermediate layers of the auditory pathway, and using a new connectomic resource, FlyWire, we map all synaptic connections between these cell types, in addition to connections to known early and higher-order auditory neurons-this represents the first circuit-level map of the auditory pathway. We additionally determine the sign (excitatory or inhibitory) of most synapses in this auditory connectome. We find that auditory neurons display a continuum of preferences for courtship song modes and that neurons with different song-mode preferences and response timescales are highly interconnected in a network that lacks hierarchical structure. Nonetheless, we find that the response properties of individual cell types within the connectome are predictable from their inputs. Our study thus provides new insights into the organization of auditory coding within the Drosophila brain.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Janelia Research Campus, HHMI, Ashburn, VA, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Computer Science, Princeton University, Princeton, NJ, USA
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nils Eckstein
- Janelia Research Campus, HHMI, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Jan Funke
- Janelia Research Campus, HHMI, Ashburn, VA, USA
| | | | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
21
|
Ma B, Wang R, Liu Y, Deng B, Wang T, Wu F, Zhou C. Serotonin Signaling Modulates Sexual Receptivity of Virgin Female Drosophila. Neurosci Bull 2022; 38:1277-1291. [PMID: 35788510 PMCID: PMC9672162 DOI: 10.1007/s12264-022-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
The choice of females to accept or reject male courtship is a critical decision for animal reproduction. Serotonin (5-hydroxytryptamine; 5-HT) has been found to regulate sexual behavior in many species, but it is unclear how 5-HT and its receptors function to regulate different aspects of sexual behavior. Here we used Drosophila melanogaster as the model animal to investigate how 5-HT and its receptors modulate female sexual receptivity. We found that knockout of tryptophan hydroxylase (Trh), which is involved in the biosynthesis of 5-HT, severely reduced virgin female receptivity without affecting post-mating behaviors. We identified a subset of sexually dimorphic Trh neurons that co-expressed fruitless (fru), in which the activity was correlated with sexual receptivity in females. We also found that 5-HT1A and 5-HT7 receptors regulate virgin female receptivity. Our findings demonstrate how 5-HT functions in sexually dimorphic neurons to promote virgin female receptivity through two of its receptors.
Collapse
Affiliation(s)
- Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaohua Liu
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, 30801, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Zhongguancun Life Sciences Park, Beijing, 102206, China
| | - Tao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
22
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|
23
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol 2022; 73:102523. [DOI: 10.1016/j.conb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
|
25
|
Abstract
Quantitative behavioral analysis of Drosophila courtship reveals that visual cues of a female's body influence which actions a male performs during courtship. These actions in turn influence female actions, producing a mutual synchronization of courtship between male and female flies.
Collapse
Affiliation(s)
- Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Duckhorn JC, Cande J, Metkus MC, Song H, Altamirano S, Stern DL, Shirangi TR. Regulation of Drosophila courtship behavior by the Tlx/tailless-like nuclear receptor, dissatisfaction. Curr Biol 2022; 32:1703-1714.e3. [PMID: 35245457 DOI: 10.1016/j.cub.2022.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Sexually dimorphic courtship behaviors in Drosophila melanogaster develop from the activity of the sexual differentiation genes, doublesex (dsx) and fruitless (fru), functioning with other regulatory factors that have received little attention. The dissatisfaction (dsf) gene encodes an orphan nuclear receptor homologous to vertebrate Tlx and Drosophila tailless that is critical for the development of several aspects of female- and male-specific sexual behaviors. Here, we report the pattern of dsf expression in the central nervous system and show that the activity of sexually dimorphic abdominal interneurons that co-express dsf and dsx is necessary and sufficient for vaginal plate opening in virgin females, ovipositor extrusion in mated females, and abdominal curling in males during courtship. We find that dsf activity results in different neuroanatomical outcomes in females and males, promoting and suppressing, respectively, female development and function of these neurons depending upon the sexual state of dsx expression. We posit that dsf and dsx interact to specify sex differences in the neural circuitry for dimorphic abdominal behaviors.
Collapse
Affiliation(s)
- Julia C Duckhorn
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Jessica Cande
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mary C Metkus
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Hyeop Song
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Sofia Altamirano
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Troy R Shirangi
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA.
| |
Collapse
|
27
|
Ning J, Li Z, Zhang X, Wang J, Chen D, Liu Q, Sun Y. Behavioral signatures of structured feature detection during courtship in Drosophila. Curr Biol 2022; 32:1211-1231.e7. [DOI: 10.1016/j.cub.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
28
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
29
|
Garaulet DL, Moro A, Lai EC. A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Rep 2021; 36:109335. [PMID: 34233178 PMCID: PMC8344067 DOI: 10.1016/j.celrep.2021.109335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Virgin females of many species conduct distinctive behaviors, compared with post-mated and/or pregnant individuals. In Drosophila, this post-mating switch is initiated by seminal factors, implying that the default female state is virgin. However, we recently showed that loss of miR-iab-4/8-mediated repression of the transcription factor Homothorax (Hth) within the abdominal ventral nerve cord (VNC) causes virgins to execute mated behaviors. Here, we use genomic analysis of mir-iab-4/8 deletion and hth-microRNA (miRNA) binding site mutants (hth[BSmut]) to elucidate doublesex (dsx) as a critical downstream factor. Dsx and Hth proteins are highly complementary in CNS, and Dsx is downregulated in miRNA/hth[BSmut] mutants. Moreover, virgin behavior is highly dose sensitive to developmental dsx function. Strikingly, depletion of Dsx from very restricted abdominal neurons (SAG-1 cells) abrogates female virgin conducts, in favor of mated behaviors. Thus, a double-negative regulatory pathway in the VNC (miR-iab-4/8 ⫞ Hth ⫞ Dsx) specifies the virgin behavioral state. Garaulet et al. use transcriptomic analysis to reveal new downstream elements in a post-transcriptional cascade, via miR-iab-4/8 and Homothorax, that affects patterning of the CNS. This genetic circuit regulates the accumulation of a secondary target (Doublesex), whose level in specific neurons determines the behavior of adult virgin flies.
Collapse
Affiliation(s)
- Daniel L Garaulet
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Albertomaria Moro
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
30
|
Ishimoto H, Kamikouchi A. Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cell Mol Life Sci 2021; 78:4805-4819. [PMID: 33837450 PMCID: PMC11071752 DOI: 10.1007/s00018-021-03820-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.
Collapse
Grants
- JP20H03355 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04997 Ministry of Education, Culture, Sports, Science and Technology
- 19H04933 Ministry of Education, Culture, Sports, Science and Technology
- 17K19450 Ministry of Education, Culture, Sports, Science and Technology
- 15K07147 Ministry of Education, Culture, Sports, Science and Technology
- 18K06332 Ministry of Education, Culture, Sports, Science and Technology
- Naito Foundation
- Inamori Foundation
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
31
|
Male courtship song drives escape responses that are suppressed for successful mating. Sci Rep 2021; 11:9227. [PMID: 33927291 PMCID: PMC8084941 DOI: 10.1038/s41598-021-88691-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Persuasion is a crucial component of the courtship ritual needed to overcome contact aversion. In fruit flies, it is well established that the male courtship song prompts receptivity in female flies, in part by causing sexually mature females to slow down and pause, allowing copulation. Whether the above receptivity behaviours require the suppression of contact avoidance or escape remains unknown. Here we show, through genetic manipulation of neurons we identified as required for female receptivity, that male song induces avoidance/escape responses that are suppressed in wild type flies. First, we show that silencing 70A09 neurons leads to an increase in escape, as females increase their walking speed during courtship together with an increase in jumping and a reduction in pausing. The increase in escape response is specific to courtship, as escape to a looming threat is not intensified. Activation of 70A09 neurons leads to pausing, confirming the role of these neurons in escape modulation. Finally, we show that the escape displays by the female result from the presence of a courting male and more specifically from the song produced by a courting male. Our results suggest that courtship song has a dual role, promoting both escape and pause in females and that escape is suppressed by the activity of 70A09 neurons, allowing mating to occur.
Collapse
|
32
|
Abstract
Females communicate sexual receptivity in various ways. Drosophila signal that they are mated and ovulating, and resistive to mating again, by extruding their egg-laying organ (ovipositor). Connectome-aided circuit analysis reveals how this break up message is computed and differs from an acceptance response in virgins.
Collapse
|