1
|
Nakamasu AM. Peripheral straightness leads to shape diversification during formations of entire leaves. J Theor Biol 2025; 597:111990. [PMID: 39549933 DOI: 10.1016/j.jtbi.2024.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The ways to read out positional information are essential to determine final shapes in developmental processes. Relative shaping to different sizes of positional information enables robust morphogenesis; however, the same difference sometimes causes diversity. Different responses to a positional information will enable such switching of identical/diverse shapes, though detail mechanisms remain unknown. In this paper, we describe growing forms by constructing the contour of a two-dimensional object using propagating points and segments connecting them. In plant morphogenesis that lacks almost cell movements, tissue growth accompanied by cell divisions is central. We focused on peripheral cell composition in leaf formation as a frame. The growth with or without cell division on the periphery was analyzed with simple algorithms. We calculated the shapes of entire leaves with different ovality using combined growth algorithms as a model. Responces of the respective algorithms to simple positional information were explored to seek the origin of the shape diversification. The algorithm for "growth with cell divisions" maintained identical shapes; however, diverse shapes were generated by the algorithm "growth without cell division" with gradients. The simplified model allowed us to interpret the oval shape diversity due to slants on edges. We concluded that peripheral straightness can generate shape diversity, at least in leaf morphogenesis.
Collapse
Affiliation(s)
- Akiko M Nakamasu
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; Meiji Institute for Advanced Study of Mathematical Science (MIMS), Meiji University, Tokyo, Japan.
| |
Collapse
|
2
|
Li J, Zeng X, Jin Z, Zhou T, Lang C, Qin J, Zhang Q, Lan H, Li Y, An H, Zhao D. Genome-wide analysis of the SPL family in Zanthoxylum armatum and ZaSPL21 promotes flowering and improves salt tolerance in transgenic Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2025; 115:23. [PMID: 39832014 DOI: 10.1007/s11103-024-01530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z. armatum. Phylogenetic and collinearity analyzes demonstrated a close relationship between ZaSPLs and ZbSPLs from B subgenomes of Zanthoxylum bungeanum. Our miRNA sequencing revealed a high degree of conservation of miR156a within Z. armatum, with the za-miR156a sequence identical to miR156-5p in Arabidopsis thaliana and Citrus sinensis. Of the 45 genes identified by ZaSPLs, 21 were targeted by za-miR156a, transient co-expression experiments in N. benthamiana demonstrated the targeting relationship between za-miR156 and ZaSPL21. Furthermore, RNA-seq and qRT-PCR analysis revealed that ZaSPL genes exhibited elevated expression levels in juvenile tissues of Z. armatum. The expression of nine representative ZaSPL genes were upregulated under polyethylene glycol (PEG) and abscisic acid (ABA). Overexpression of ZaSPL21 delayed the germination of transgenic tobacco and facilitated the flowering process in transgenic N. benthamiana. Significant up-regulation in the expression levels of flowering-related genes such as NbFT1, NbPIP2;1, NbTCP1, NbCOL1, NbGI2, NbGAI1, NbCKX2, and NbARR4 was observed in transgenic plants, suggesting that ZaSPL21 may stimulate plant flowering by regulation of these genes. Furthermore, ZaSPL21 also increased the germination speed of transgenic tobacco seeds during drought and salt stress conditions, and improved the salt tolerance of transgenic seedlings. In conclusion, our study contributes to understanding the functional analysis of the SPL gene family in Z. armatum and emphasizes the crucial role of ZaSPL21 in improving tolerance to salt and promoting flowering. The results offer potential strategies for the further utilization of these genes to improve the salt tolerance of Z. armatum.
Collapse
Affiliation(s)
- Jianrong Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaofang Zeng
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Zhengyu Jin
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Tao Zhou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Chaoting Lang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Jin Qin
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Qingqing Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Haibo Lan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Yan Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Huaming An
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, China.
| | - Degang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
3
|
Wu X, Xiao Y, Liu P, Pang Q, Deng C, Fu C, Fang H, Chen C. Identification and Functional Analysis of Candidate Genes Influencing Citrus Leaf Size Through Transcriptome and Coexpression Network Approaches. Genes (Basel) 2025; 16:97. [PMID: 39858644 PMCID: PMC11765065 DOI: 10.3390/genes16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Leaves are the main organs involved in photosynthesis. They capture light energy and promote gas exchange, and their size and shape affect yield. Identifying the regulatory networks and key genes that control citrus leaf size is essential for increasing citrus crop yield. METHODS In this study, transcriptome sequencing was performed on three leaf materials: the 'Cuimi' kumquat (Nor) variety and its leaf variants, larger-leaf (VarB) and smaller-leaf (VarS) varieties. RESULTS Correlation and principal component analyses revealed a relatively close correlation between Nor and VarS. A total of 7264 differentially expressed genes (DEGs), including 2374 transcription factors (TFs), were identified, and 254 DEGs were common among the three materials. GO and KEGG enrichment analyses revealed significant enrichment in glucose metabolism, cell wall composition, starch biosynthesis, and photosynthesis pathways. WGCNA identified three specific modules related to the different leaf sizes of these three citrus materials. Fifteen candidate genes related to leaf size, including three transcription factors, Fh5g30470 (MYB), Fh7g07360 (AP2/ERF), and Fh5g02470 (SAP), were identified on the basis of connectivity and functional annotations. CONCLUSIONS These findings provide a theoretical foundation for a deeper understanding of the molecular mechanisms underlying citrus leaf size and offer new genetic resources for the study of citrus leaf size.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China; (X.W.); (Y.X.); (P.L.); (Q.P.); (C.D.); (C.F.); (H.F.)
| |
Collapse
|
4
|
Capaci P, Barozzi F, Forciniti S, Anglana C, Iuele H, Accogli RA, Carra A, Lenucci MS, del Mercato LL, Di Sansebastiano GP. RITA ® Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Viola ucriana Erben & Raimondo. PLANTS (BASEL, SWITZERLAND) 2024; 13:3530. [PMID: 39771230 PMCID: PMC11676409 DOI: 10.3390/plants13243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Viola ucriana Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of V. ucriana. This study aimed to establish a bioreactor-based micropropagation protocol for shoot multiplication and compare the efficacy of a TIS with that of conventional solid culture medium (SCM). Three different plant growth regulators (PGRs) were also compared: 6-benzylaminopurine (BA), zeatin, and meta-topolin-9-riboside (mTR). The starting material originated from seeds collected from mother plants in their natural environment. The best growth outcomes (in terms of shoot multiplication, shoot length, and relative growth rate) were achieved using THE RITA® TIS, with BA (0.2 mg/L) and mTR (0.5 or 0.8 mg/L) outperforming SCM. Anomalous or hyperhydric shoots were observed with all zeatin treatments (especially with 0.8 mg/L) in both the TIS and SCM, suggesting that this cytokinin is unsuitable for V. ucriana biomass production. The rooting phase was significantly improved by transferring propagules onto rockwool cubes fertilized with Hoagland solution. This approach yielded more robust roots in terms of number and length compared to the conventional agar-based medium supplemented with indole-3-butyric acid (IBA). Flow cytometry analysis confirmed the genetic fidelity of the regenerants from the optimal PGR treatments, showing that all plantlets maintained the diploid ploidy level of their maternal plants. Over 90% of the in vitro derived plantlets were successfully acclimatized to greenhouse conditions. This paper represents the first report of V. ucriana biomass multiplication using a RITA® bioreactor. The stability of the regenerants, confirmed by nuclei quantification via cytofluorimetry, provides guidance in establishing a true-to-type ex situ population, supporting conservation and future reinforcement efforts.
Collapse
Affiliation(s)
- Piergiorgio Capaci
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Fabrizio Barozzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Stefania Forciniti
- Institute of Nanotechnology—NANOTEC, Consiglio Nazionale delle Ricerche (CNR), Campus Ecotekne, 73100 Lecce, Italy; (S.F.); (H.I.); (L.L.d.M.)
| | - Chiara Anglana
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Helena Iuele
- Institute of Nanotechnology—NANOTEC, Consiglio Nazionale delle Ricerche (CNR), Campus Ecotekne, 73100 Lecce, Italy; (S.F.); (H.I.); (L.L.d.M.)
| | - Rita Annunziata Accogli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Angela Carra
- Institute of Biosciences and Bioresources, National Research Council (CNR-IBBR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Loretta L. del Mercato
- Institute of Nanotechnology—NANOTEC, Consiglio Nazionale delle Ricerche (CNR), Campus Ecotekne, 73100 Lecce, Italy; (S.F.); (H.I.); (L.L.d.M.)
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| |
Collapse
|
5
|
Soares JR, Robledo KJM, de Souza VC, Dias LLL, Silva LAS, da Silveira EC, Souza CDS, Sousa ES, Sodrzeieski PA, Sarmiento YCG, de Matos EM, Falcão TCDA, Fialho LDS, Guimaraes VM, Viccini LF, Pierdona FG, Romanel E, Fouracre J, Otoni WC, Nogueira FTS. Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp. THE NEW PHYTOLOGIST 2024. [PMID: 39668526 DOI: 10.1111/nph.20343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood. Here, we examined leaf and EFN morphology and development of two Passiflora species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factors. Low levels of miR156 correlated with leaf maturation and EFN formation in Passiflora edulis and P. cincinnata. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both Passiflora species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in P. cincinnata. Transcriptome analysis of young leaf primordia revealed that miR156-targeted SPLs may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants. Our work provides evidence that the miR156/SPL module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.
Collapse
Affiliation(s)
- Jessica Ribeiro Soares
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Kerly Jessenia Moncaleano Robledo
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Lana Laene Lima Dias
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Lazara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Emerson Campos da Silveira
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Claudinei da Silva Souza
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Elisandra Silva Sousa
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Pedro Alexandre Sodrzeieski
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Elyabe Monteiro de Matos
- Departamento de Biologia, Laboratório de Genética e Biotecnologia, ICB, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Thais Castilho de Arruda Falcão
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Universidade de São Paulo, Lorena, SP, 12602-810, Brazil
| | - Lilian da Silva Fialho
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Análises Bioquímicas/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Valeria Monteze Guimaraes
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Análises Bioquímicas/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Lyderson Facio Viccini
- Departamento de Biologia, Laboratório de Genética e Biotecnologia, ICB, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Flaviani Gabriela Pierdona
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Universidade de São Paulo, Lorena, SP, 12602-810, Brazil
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
6
|
Höfler M, Liu X, Greb T, Alim K. Mechanical forces instruct division plane orientation of cambium stem cells during radial growth in Arabidopsis thaliana. Curr Biol 2024; 34:5518-5531.e4. [PMID: 39571578 DOI: 10.1016/j.cub.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024]
Abstract
Robust regulation of cell division is central to the formation of complex multi-cellular organisms and is a hallmark of stem cell activity. In plants, due to the absence of cell migration, the correct placement of newly produced cell walls during cell division is of eminent importance for generating functional tissues and organs. In particular, during the radial growth of plant shoots and roots, precise regulation and organization of cell divisions in the cambium are essential to produce adjacent xylem and phloem tissues in a strictly bidirectional manner. Although several intercellular signaling cascades have been identified to instruct tissue organization during radial growth, the role of mechanical forces in guiding cambium stem cell activity has been frequently proposed but, so far, not been functionally investigated on the cellular level. Here, we coupled anatomical analyses with a cell-based vertex model to analyze the role of mechanical stress in radial plant growth at the cell and tissue scale. Simulations based on segmented cellular outlines of radially growing Arabidopsis hypocotyls revealed a distinct stress pattern with circumferential stresses in cambium stem cells, which coincided with the orientation of cortical microtubules. Integrating stress patterns as a cue instructing cell division orientation was sufficient for the emergence of typical cambium-derived cell files and agreed with experimental results for stress-related tissue organization in confining mechanical environments. Our work thus underlines the significance of mechanical forces in tissue organization through self-emerging stress patterns during the growth of plant organs.
Collapse
Affiliation(s)
- Mathias Höfler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), 85748 Garching b. München, Munich, Germany
| | - Xiaomin Liu
- Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Thomas Greb
- Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Karen Alim
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), 85748 Garching b. München, Munich, Germany.
| |
Collapse
|
7
|
Shankar N, Nath U. Advantage looping: Gene regulatory circuits between microRNAs and their target transcription factors in plants. PLANT PHYSIOLOGY 2024; 196:2304-2319. [PMID: 39230893 DOI: 10.1093/plphys/kiae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The 20 to 24 nucleotide microRNAs (miRNAs) and their target transcription factors (TF) have emerged as key regulators of diverse processes in plants, including organ development and environmental resilience. In several instances, the mature miRNAs degrade the TF-encoding transcripts, while their protein products in turn bind to the promoters of the respective miRNA-encoding genes and regulate their expression, thus forming feedback loops (FBLs) or feedforward loops (FFLs). Computational analysis suggested that such miRNA-TF loops are recurrent motifs in gene regulatory networks (GRNs) in plants as well as animals. In recent years, modeling and experimental studies have suggested that plant miRNA-TF loops in GRNs play critical roles in driving organ development and abiotic stress responses. Here, we discuss the miRNA-TF FBLs and FFLs that have been identified and studied in plants over the past decade. We then provide some insights into the possible roles of such motifs within GRNs. Lastly, we provide perspectives on future directions for dissecting the functions of miRNA-centric GRNs in plants.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
8
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
9
|
Li XM, Jenke H, Strauss S, Wang Y, Bhatia N, Kierzkowski D, Lymbouridou R, Huijser P, Smith RS, Runions A, Tsiantis M. Age-associated growth control modifies leaf proximodistal symmetry and enabled leaf shape diversification. Curr Biol 2024; 34:4547-4558.e9. [PMID: 39216485 DOI: 10.1016/j.cub.2024.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Biological shape diversity is often manifested in modulation of organ symmetry and modification of the patterned elaboration of repeated shape elements.1,2,3,4,5 Whether and how these two aspects of shape determination are coordinately regulated is unclear.5,6,7 Plant leaves provide an attractive system to investigate this problem, because they often show asymmetries along the proximodistal (PD) axis of their blades, along which they can also produce repeated marginal outgrowths such as serrations or leaflets.1 One aspect of leaf shape diversity is heteroblasty, where the leaf form in a single genotype is modified with progressive plant age.8,9,10,11 In Arabidopsis thaliana, a plant with simple leaves, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) controls heteroblasty by activating CyclinD3 expression, thereby sustaining proliferative growth and retarding differentiation in adult leaves.12,13 However, the precise significance of SPL9 action for leaf symmetry and marginal patterning is unknown. By combining genetics, quantitative shape analyses, and time-lapse imaging, we show that PD symmetry of the leaf blade in A. thaliana decreases in response to an age-dependent SPL9 expression gradient, and that SPL9 action coordinately regulates the distribution and shape of marginal serrations and overall leaf form. Using comparative analyses, we demonstrate that heteroblastic growth reprogramming in Cardamine hirsuta, a complex-leafed relative of A. thaliana, also involves prolonging the duration of cell proliferation and delaying differentiation. We further provide evidence that SPL9 enables species-specific action of homeobox genes that promote leaf complexity. In conclusion, we identified an age-dependent layer of organ PD growth regulation that modulates leaf symmetry and has enabled leaf shape diversification.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
10
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
11
|
Tasker-Brown W, Koh SWH, Trozzi N, Maio KA, Jamil I, Jiang Y, Majda M, Smith RS, Moubayidin L. An incoherent feed-forward loop involving bHLH transcription factors, Auxin and CYCLIN-Ds regulates style radial symmetry establishment in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2885-2903. [PMID: 39121182 DOI: 10.1111/tpj.16959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024]
Abstract
The bilateral-to-radial symmetry transition occurring during the development of the Arabidopsis thaliana female reproductive organ (gynoecium) is a crucial biological process linked to plant fertilization and seed production. Despite its significance, the cellular mechanisms governing the establishment and breaking of radial symmetry at the gynoecium apex (style) remain unknown. To fill this gap, we employed quantitative confocal imaging coupled with MorphoGraphX analysis, in vivo and in vitro transcriptional experiments, and genetic analysis encompassing mutants in two bHLH transcription factors necessary and sufficient to promote transition to radial symmetry, SPATULA (SPT) and INDEHISCENT (IND). Here, we show that defects in style morphogenesis correlate with defects in cell-division orientation and rate. We showed that the SPT-mediated accumulation of auxin in the medial-apical cells undergoing symmetry transition is required to maintain cell-division-oriented perpendicular to the direction of organ growth (anticlinal, transversal cell division). In addition, SPT and IND promote the expression of specific core cell-cycle regulators, CYCLIN-D1;1 (CYC-D1;1) and CYC-D3;3, to support progression through the G1 phase of the cell cycle. This transcriptional regulation is repressed by auxin, thus forming an incoherent feed-forward loop mechanism. We propose that this mechanism fine-tunes cell division rate and orientation with the morphogenic signal provided by auxin, during patterning of radial symmetry at the style.
Collapse
Affiliation(s)
| | - Samuel W H Koh
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Nicola Trozzi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Kestrel A Maio
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Iqra Jamil
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk, UK
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| |
Collapse
|
12
|
Byrne ME. In preprints: lifetime changes in leaf shape. Development 2024; 151:dev204213. [PMID: 39045848 DOI: 10.1242/dev.204213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Coen E, Prusinkiewicz P. Developmental timing in plants. Nat Commun 2024; 15:2674. [PMID: 38531864 PMCID: PMC10965974 DOI: 10.1038/s41467-024-46941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | - Przemyslaw Prusinkiewicz
- Department of Computer Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
14
|
Helariutta Y. Plant biology: Managing age-related bursts during leaf development. Curr Biol 2024; 34:R100-R101. [PMID: 38320472 DOI: 10.1016/j.cub.2023.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Age-dependent control of the miR165-regulated SPL transcription factor circuitry is responsible for the variation in leaf morphology over time. A new study reveals the underlying morphogenetic dynamics.
Collapse
Affiliation(s)
- Ykä Helariutta
- Faculty of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, FIN-0014 Helsinki, Finland.
| |
Collapse
|