1
|
Hogervorst MA, Soman KV, Gardarsdottir H, Goettsch WG, Bloem LT. Analytical Methods for Comparing Uncontrolled Trials With External Controls From Real-World Data: A Systematic Literature Review and Comparison With European Regulatory and Health Technology Assessment Practice. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2025; 28:161-174. [PMID: 39241824 DOI: 10.1016/j.jval.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES This study aimed to provide an overview of analytical methods in scientific literature for comparing uncontrolled medicine trials with external controls from individual patient data real-world data (IPD-RWD) and to compare these methods with recommendations made in guidelines from European regulatory and health technology assessment (HTA) organizations and with their evaluations described in assessment reports. METHODS A systematic literature review (until March 1, 2023) in PubMed and Connected Papers was performed to identify analytical methods for comparing uncontrolled trials with external controls from IPD-RWD. These methods were compared descriptively with methods recommended in method guidelines and encountered in assessment reports of the European Medicines Agency (2015-2020) and 4 European HTA organizations (2015-2023). RESULTS Thirty-four identified scientific articles described analytical methods for comparing uncontrolled trial data with IPD-RWD-based external controls. The various methods covered controlling for confounding and/or dependent censoring, correction for missing data, and analytical comparative modeling methods. Seven guidelines also focused on research design, RWD quality, and transparency aspects, and 4 of those recommended analytical methods for comparisons with IPD-RWD. The methods discussed in regulatory (n = 15) and HTA (n = 35) assessment reports were often based on aggregate data and lacked transparency owing to the few details provided. CONCLUSIONS Literature and guidelines suggest a methodological approach to comparing uncontrolled trials with external controls from IPD-RWD similar to target trial emulation, using state-of-the-art methods. External controls supporting regulatory and HTA decision making were rarely in line with this approach. Twelve recommendations are proposed to improve the quality and acceptability of these methods.
Collapse
Affiliation(s)
- Milou A Hogervorst
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Kanaka V Soman
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Helga Gardarsdottir
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; Division Laboratory and Pharmacy, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands; Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Wim G Goettsch
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; National Health Care Institute (ZIN), Diemen, The Netherlands
| | - Lourens T Bloem
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Song L, Zhang N, Jiang TT, Jia Y, Liu Y. Paediatric Drug Development in China: Current Status and Future Prospects. Paediatr Drugs 2024; 26:555-563. [PMID: 38837008 DOI: 10.1007/s40272-024-00636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
For more than two decades, regulatory agencies throughout the world released guidelines, rules and laws to stimulate and assist in paediatric drug development. In 2014, the National Health and Family Planning Commission (now known as the National Health Commission, NHC) and five other departments in China jointly issued 'Several Opinions on Safeguarding Medication for Children', after which several policies and regulations were issued to implement the priority review and approval of paediatric medicinal products and support the development of new drugs, including new dosage forms and strengths, for children. A total of 172 special medicinal products for children were approved from 2018 to 2022. Since 2016, the NHC, together with relevant administrative departments, has formulated and issued four paediatric drug lists containing 129 medicinal products to encourage research and development. At present, approximately 25 of these drugs (at exactly the same dosage forms and strengths as on the lists) have been approved for marketing, including antitumour drugs and immunomodulators, nervous system drugs, drugs for mental disorders and drugs for rare diseases. In this review, we analysed the regulations issued for promoting paediatric drug development in China, including the priority review and approval system, technical guidelines, data protection and financial support policies and general profiles of paediatric drug approval, clinical trials and the addition of information for children in the labels of marketed medicinal products. Finally, we discussed the challenges and possible strategies in the research and development of paediatric drugs in China.
Collapse
Affiliation(s)
- Lin Song
- Department of Pharmacy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ni Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ting-Ting Jiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuntao Jia
- Department of Pharmacy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Alipour‐Haris G, Liu X, Acha V, Winterstein AG, Burcu M. Real-world evidence to support regulatory submissions: A landscape review and assessment of use cases. Clin Transl Sci 2024; 17:e13903. [PMID: 39092896 PMCID: PMC11295294 DOI: 10.1111/cts.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Real-world evidence (RWE) has an increasing role in preapproval settings to support the approval of new medicines and indications. The main objectives of this study were to identify and characterize regulatory use cases that utilized RWE and other related observational approaches through targeted review of publications and regulatory review documents. After screening and inclusion/exclusion, the review characterized 85 regulatory applications with RWE. A total of 31 were in oncology and 54 were in non-oncology therapeutic areas. Most were for indications in adults only (N = 42, 49.4%), while 13 were in pediatrics only (15.3%), and 30 were in both (35.3%). In terms of regulatory context, 59 cases (69.4%) were for an original marketing application, 24 (28.2%) were for label expansion, and 2 (2.4%) were for label modification. Most also received special regulatory designations (e.g., orphan indication, breakthrough therapy, fast track, conditional, and accelerated approvals). There were 42 cases that utilized RWE to support single-arm trials. External data to support single-arm trials were utilized in various ways across use cases, including direct matching, benchmarking, natural history studies as well as literature or previous trials. A variety of data sources were utilized, including electronic health records, claims, registries, site-based charts. Endpoints in oncology use cases commonly included overall survival, progression-free survival. In 13 use cases, RWE was not considered supportive/definitive in regulatory decision-making due to design issues (e.g., small sample size, selection bias, missing data). Overall, RWE is utilized in regulatory approval processes for new indications/label expansion across various therapeutic areas with wide range of approaches. Multifaceted cross-sector efforts are needed to further improve the quality and utility of RWE in regulatory decision-making.
Collapse
|
4
|
Ahmed S, Wedekind MF, Del Rivero J, Raygada M, Lockridge R, Glod JW, Flowers C, Thomas BJ, Bernstein DB, Kapustina OB, Jain A, Miettinen M, Raffeld M, Xi L, Tyagi M, Kim J, Aldape K, Malayeri AA, Kaplan RN, Allen T, Vivelo CA, Sandler AB, Widemann BC, Reilly KM. Longitudinal Natural History Study of Children and Adults with Rare Solid Tumors: Initial Results for First 200 Participants. CANCER RESEARCH COMMUNICATIONS 2023; 3:2468-2482. [PMID: 37966258 PMCID: PMC10699159 DOI: 10.1158/2767-9764.crc-23-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Understanding of tumor biology and identification of effective therapies is lacking for many rare tumors. My Pediatric and Adult Rare Tumor (MyPART) network was established to engage patients, advocates, and researchers and conduct a comprehensive longitudinal Natural History Study of Rare Solid Tumors. Through remote or in-person enrollment at the NIH Clinical Center, participants with rare solid tumors ≥4 weeks old complete standardized medical and family history forms, patient reported outcomes, and provide tumor, blood and/or saliva samples. Medical records are extracted for clinical status and treatment history, and tumors undergo genomic analysis. A total of 200 participants (65% female, 35% male, median age at diagnosis 43 years, range = 2-77) enrolled from 46 U.S. states and nine other countries (46% remote, 55% in-person). Frequent diagnoses were neuroendocrine neoplasms (NEN), adrenocortical carcinomas (ACC), medullary thyroid carcinomas (MTC), succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumors (sdGIST), and chordomas. At enrollment, median years since diagnosis was 3.5 (range = 0-36.6), 63% participants had metastatic disease and 20% had no evidence of disease. Pathogenic germline and tumor mutations included SDHA/B/C (sdGIST), RET (MTC), TP53 and CTNNB1 (ACC), MEN1 (NEN), and SMARCB1 (poorly-differentiated chordoma). Clinically significant anxiety was observed in 20%-35% of adults. Enrollment of participants and comprehensive data collection were feasible. Remote enrollment was critical during the COVID-19 pandemic. Over 30 patients were enrolled with ACC, NEN, and sdGIST, allowing for clinical/genomic analyses across tumors. Longitudinal follow-up and expansion of cohorts are ongoing to advance understanding of disease course and establish external controls for interventional trials. SIGNIFICANCE This study demonstrates that comprehensive, tumor-agnostic data and biospecimen collection is feasible to characterize different rare tumors, and speed progress in research. The findings will be foundational to developing external controls groups for single-arm interventional trials, where randomized control trials cannot be conducted because of small patient populations.
Collapse
Affiliation(s)
- Shadin Ahmed
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Robin Lockridge
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Crystal Flowers
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - BJ Thomas
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Donna B. Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Oxana B. Kapustina
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ashish Jain
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, Massachusetts
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jung Kim
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ashkan A. Malayeri
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Taryn Allen
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina A. Vivelo
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Kelly Government Solutions, Bethesda, Maryland
| | - Abby B. Sandler
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Karlyne M. Reilly
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | |
Collapse
|
5
|
Diaz-Garelli F, Shah A, Mikhno A, Agrawal P, Kinnischtzke A, Vigersky RA. Using Continuous Glucose Monitoring Values for Bolus Size Calculation in Smart Multiple Daily Injection Systems: No Negative Impact on Post-bolus Glycemic Outcomes Found in Real-World Data. J Diabetes Sci Technol 2023:19322968231202803. [PMID: 37743727 DOI: 10.1177/19322968231202803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Recent evidence shows that it may be safe to estimate bolus sizes based on continuous glucose monitoring (CGM) rather than blood glucose (BG) values using glycemic trend-adjusted bolus calculators. Users may already be doing this in the real world, though it is unclear whether this is safe or effective for calculators not employing trend adjustment. METHODS We assessed real-world data from a smart multiple daily injections (MDIs) device users with a CGM system, hypothesizing that four-hour post-bolus outcomes using CGM values are not inferior to those using BG values. Our data set included 184 users and spanned 18 months with 79 000 bolus observations. We tested differences using logistic regression predicting CGM or BG value usage based on outcomes and confirmed initial results using a mixed model regression accounting for within-subject correlations. RESULTS Comparing four-hour outcomes for bolus events using CGM and BG values revealed no differences using our initial approach (P > .183). This finding was confirmed by our mixed model regression approach in all cases (P > .199), except for times below range outcomes. Higher times below range were predictive of lower odds of CGM-based bolus calculations (OR = 0.987, P < .0001 and OR = 0.987, P = .0276, for time below 70 and 54 mg/dL, respectively). CONCLUSIONS We found no differences in four-hour post-bolus glycemic outcomes when using CGM or BG except for time below range, which showed evidence of being lower for CGM. Though preliminary, our results confirm prior findings showing non-inferiority of using CGM values for bolus calculation compared with BG usage in the real world.
Collapse
|
6
|
Becker JC, Ugurel S, Leiter U, Meier F, Gutzmer R, Haferkamp S, Zimmer L, Livingstone E, Eigentler TK, Hauschild A, Kiecker F, Hassel JC, Mohr P, Fluck M, Thomas I, Garzarolli M, Grimmelmann I, Drexler K, Spillner AN, Eckhardt S, Schadendorf D. Adjuvant immunotherapy with nivolumab versus observation in completely resected Merkel cell carcinoma (ADMEC-O): disease-free survival results from a randomised, open-label, phase 2 trial. Lancet 2023; 402:798-808. [PMID: 37451295 DOI: 10.1016/s0140-6736(23)00769-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an immunogenic but aggressive skin cancer. Even after complete resection and radiation, relapse rates are high. PD-1 and PD-L1 checkpoint inhibitors showed clinical benefit in advanced MCC. We aimed to assess efficacy and safety of adjuvant immune checkpoint inhibition in completely resected MCC (ie, a setting without an established systemic standard-of-care treatment). METHODS In this multicentre phase 2 trial, patients (any stage, Eastern Cooperative Oncology Group performance status 0-1) at 20 academic medical centres in Germany and the Netherlands with completely resected MCC lesions were randomly assigned 2:1 to receive nivolumab 480 mg every 4 weeks for 1 year, or observation, stratified by stage (American Joint Committee on Cancer stages 1-2 vs stages 3-4), age (<65 vs ≥65 years), and sex. Landmark disease-free survival (DFS) at 12 and 24 months was the primary endpoint, assessed in the intention-to-treat populations. Overall survival and safety were secondary endpoints. This planned interim analysis was triggered when the last-patient-in was followed up for more than 1 year. This study is registered with ClinicalTrials.gov (NCT02196961) and with the EU Clinical Trials Register (2013-000043-78). FINDINGS Between Oct 1, 2014, and Aug 31, 2020, 179 patients were enrolled (116 [65%] stage 3-4, 122 [68%] ≥65 years, 111 [62%] male). Stratification factors (stage, age, sex) were balanced across the nivolumab (n=118) and internal control group (observation, n=61); adjuvant radiotherapy was more common in the control group. At a median follow-up of 24·3 months (IQR 19·2-33·4), median DFS was not reached (between-groups hazard ratio 0·58, 95% CI 0·30-1·12); DFS rates in the nivolumab group were 85% at 12 months and 84% at 24 months, and in the observation group were 77% at 12 months and 73% at 24 months. Overall survival results were not yet mature. Grade 3-4 adverse events occurred in 48 [42%] of 115 patients who received at least one dose of nivolumab and seven [11%] of 61 patients in the observation group. No treatment-related deaths were reported. INTERPRETATION Adjuvant therapy with nivolumab resulted in an absolute risk reduction of 9% (1-year DFS) and 10% (2-year DFS). The present interim analysis of ADMEC-O might suggest clinical use of nivolumab in this area of unmet medical need. However, overall survival events rates, with ten events in the active treatment group and six events in the half-the-size observation group, are not mature enough to draw conclusions. The explorative data of our trial support the continuation of ongoing, randomised trials in this area. ADMEC-O suggests that adjuvant immunotherapy is clinically feasible in this area of unmet medical need. FUNDING Bristol Myers Squibb.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Dermatology, University Hospital Essen, Essen, Germany; Translational Skin Cancer Research, Department of Dermatology and West German Cancer Center, University of Medicine Duisburg-Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Ulrike Leiter
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Dresden, Dresden, Germany; German Cancer Consortium, Partner Site Dresden, Dresden, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Thomas K Eigentler
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Felix Kiecker
- Department of Dermatology and Venereology, Vivantes Klinikum Berlin Neukölln, Berlin, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium, Partner Site Heidelberg, Heidelberg, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, Buxtehude, Germany
| | - Michael Fluck
- Department of Oncology Hornheide, Fachklinik Hornheide, Münster, Germany
| | - Ioannis Thomas
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Marlene Garzarolli
- Department of Dermatology, University Hospital Dresden, Dresden, Germany
| | - Imke Grimmelmann
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany.
| |
Collapse
|
7
|
Acuna P, Supnet-Wells ML, Spencer NA, de Guzman JK, Russo M, Hunt A, Stephen C, Go C, Carr S, Ganza NG, Lagarde JB, Begalan S, Multhaupt-Buell T, Aldykiewicz G, Paul L, Ozelius L, Bragg DC, Perry B, Green JR, Miller JW, Sharma N. Establishing a natural history of X-linked dystonia parkinsonism. Brain Commun 2023; 5:fcad106. [PMID: 37265597 PMCID: PMC10231801 DOI: 10.1093/braincomms/fcad106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 08/10/2024] Open
Abstract
X-linked dystonia parkinsonism is a neurodegenerative movement disorder that affects men whose mothers originate from the island of Panay, Philippines. Current evidence indicates that the most likely cause is an expansion in the TAF1 gene that may be amenable to treatment. To prepare for clinical trials of therapeutic candidates for X-linked dystonia parkinsonism, we focused on the identification of quantitative phenotypic measures that are most strongly associated with disease progression. Our main objective is to establish a comprehensive, quantitative assessment of movement dysfunction and bulbar motor impairments that are sensitive and specific to disease progression in persons with X-linked dystonia parkinsonism. These measures will set the stage for future treatment trials. We enrolled patients with X-linked dystonia parkinsonism and performed a comprehensive oromotor, speech and neurological assessment. Measurements included patient-reported questionnaires regarding daily living activities and both neurologist-rated movement scales and objective quantitative measures of bulbar function and nutritional status. Patients were followed for 18 months from the date of enrollment and evaluated every 6 months during that period. We analysed a total of 87 men: 29 were gene-positive and had symptoms at enrollment, seven were gene-positive and had no symptoms at enrollment and 51 were gene-negative. We identified measures that displayed a significant change over the study. We used principal variables analysis to identify a minimal battery of 21 measures that explains 67.3% of the variance over the course of the study. These measures included patient-reported, clinician-rated and objective quantitative outcomes that may serve as endpoints in future clinical trials.
Collapse
Affiliation(s)
- Patrick Acuna
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | - Melanie Leigh Supnet-Wells
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Neil A Spencer
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Jan Kristoper de Guzman
- Department of Neurology, Jose Reyes Memorial Medical Center, Manila, Metro Manila, 1012Philippines
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | - Massimiliano Russo
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hunt
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Stephen
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Criscely Go
- Department of Neurology, Jose Reyes Memorial Medical Center, Manila, Metro Manila, 1012Philippines
| | - Samuel Carr
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Niecy Grace Ganza
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | | | - Shin Begalan
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | - Trisha Multhaupt-Buell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Gabrielle Aldykiewicz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lisa Paul
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bridget Perry
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Charlestown, MA 02129, USA
| | - Jordan R Green
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Charlestown, MA 02129, USA
| | - Jeffrey W Miller
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
8
|
Nugent D, Acharya SS, Baumann KJ, Bedrosian C, Bialas R, Brown K, Corzo D, Haidar A, Hayward CPM, Marks P, Menegatti M, Miller ME, Nammacher K, Palla R, Peltier S, Pruthi RK, Recht M, Sørensen B, Tarantino M, Wolberg AS, Shapiro AD. Building the foundation for a community-generated national research blueprint for inherited bleeding disorders: research priorities for ultra-rare inherited bleeding disorders. Expert Rev Hematol 2023; 16:55-70. [PMID: 36920862 PMCID: PMC10020868 DOI: 10.1080/17474086.2023.2175661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Ultra-rare inherited bleeding disorders (BDs) present important challenges for generating a strong evidence foundation for optimal diagnosis and management. Without disorder-appropriate treatment, affected individuals potentially face life-threatening bleeding, delayed diagnosis, suboptimal management of invasive procedures, psychosocial distress, pain, and decreased quality-of-life. RESEARCH DESIGN AND METHODS The National Hemophilia Foundation (NHF) and the American Thrombosis and Hemostasis Network identified the priorities of people with inherited BDs and their caregivers, through extensive inclusive community consultations, to inform a blueprint for future decades of research. Multidisciplinary expert Working Group (WG) 3 distilled highly feasible transformative ultra-rare inherited BD research opportunities from the community-identified priorities. RESULTS WG3 identified three focus areas with the potential to advance the needs of all people with ultra-rare inherited BDs and scored the feasibility, impact, and risk of priority initiatives, including 13 in systems biology and mechanistic science; 2 in clinical research, data collection, and research infrastructure; and 5 in the regulatory process for novel therapeutics and required data collection. CONCLUSIONS Centralization and expansion of expertise and resources, flexible innovative research and regulatory approaches, and inclusion of all people with ultra-rare inherited BDs and their health care professionals will be essential to capitalize on the opportunities outlined herein.
Collapse
Affiliation(s)
- Diane Nugent
- Center for Inherited Blood Disorders, Orange, California, USA
- Children’s Hospital of Orange County, University of California at Irvine, Irvine, California, USA
| | - Suchitra S. Acharya
- Hemostasis and Thrombosis Center, Northwell Health, New Hyde Park, New York, New York, USA
| | - Kimberly J. Baumann
- Center for Bleeding and Clotting Disorders, M Health Fairview, Minneapolis, Minnesota, USA
| | | | - Rebeca Bialas
- Plasminogen Deficiency Foundation, Durham, North Carolina, USA
| | - Kai Brown
- National Hemophilia Foundation, New York, New York, USA
| | - Deya Corzo
- Sigilon Therapeutics, Cambridge, Massachusetts, USA
| | - Amar Haidar
- Patient author, Lived Experience Expert, Dearborn, Michigan, USA
| | - Catherine P. M. Hayward
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Marks
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marzia Menegatti
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Roberta Palla
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Skye Peltier
- Center for Bleeding and Clotting Disorders, M Health Fairview, Minneapolis, Minnesota, USA
| | - Rajiv K. Pruthi
- Comprehensive Hemophilia Center, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Recht
- American Thrombosis and Hemostasis Network, Rochester, New York, USA
- The Hemophilia Center, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Liu F, Demosthenes P. Real-world data: a brief review of the methods, applications, challenges and opportunities. BMC Med Res Methodol 2022; 22:287. [PMID: 36335315 PMCID: PMC9636688 DOI: 10.1186/s12874-022-01768-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Abstract
Background
The increased adoption of the internet, social media, wearable devices, e-health services, and other technology-driven services in medicine and healthcare has led to the rapid generation of various types of digital data, providing a valuable data source beyond the confines of traditional clinical trials, epidemiological studies, and lab-based experiments.
Methods
We provide a brief overview on the type and sources of real-world data and the common models and approaches to utilize and analyze real-world data. We discuss the challenges and opportunities of using real-world data for evidence-based decision making This review does not aim to be comprehensive or cover all aspects of the intriguing topic on RWD (from both the research and practical perspectives) but serves as a primer and provides useful sources for readers who interested in this topic.
Results and Conclusions
Real-world hold great potential for generating real-world evidence for designing and conducting confirmatory trials and answering questions that may not be addressed otherwise. The voluminosity and complexity of real-world data also call for development of more appropriate, sophisticated, and innovative data processing and analysis techniques while maintaining scientific rigor in research findings, and attentions to data ethics to harness the power of real-world data.
Collapse
|
10
|
Jiao F, Chen YF, Min M, Jimenez S. Challenges and potential strategies utilizing external data for efficacy evaluation in small-sized clinical trials. J Biopharm Stat 2022; 32:21-33. [PMID: 34986063 DOI: 10.1080/10543406.2021.2011906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In clinical trials for diseases with very small patient populations, trial investigators may encounter recruitment difficulties. It can be challenging to conduct clinical trials with enough power to detect a treatment effect, and randomization may not be feasible due to timeline, budget, and ethical concerns. To bring breakthrough therapies to the market quickly, it is important to come up with efficient approaches to utilizing individual patient data through improved study design and sound statistical methods. Emerging topics in this area include the use of Bayesian approaches to flexibly incorporate prior information into the current clinical trials, the use of historical controls to efficiently conduct trials that will reduce the number of subjects recruited and ease ethical considerations, and the use of innovative study designs, such as a platform design, to improve the efficiency and speed of the medical therapy development progress. In this paper, we describe three scenarios which highlight some of the challenges encountered in small-sized clinical trial development and provide potential statistical approaches to overcome the aforementioned challenges.
Collapse
Affiliation(s)
- Feiran Jiao
- Team 1, Division of Clinical Evidence and Analysis 2, Office of Clinical Evidence and Analysis, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Yeh-Fong Chen
- Division of Biometrics IX, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Min Min
- Team 1, Division of Clinical Evidence and Analysis 2, Office of Clinical Evidence and Analysis, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sara Jimenez
- Division of Biometrics IX, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|