1
|
Guadagnin AR, Peñagaricano F, Dahl GE, Laporta J. Programming effects of intrauterine hyperthermia on adrenal gland development. J Dairy Sci 2024; 107:6308-6321. [PMID: 38580145 DOI: 10.3168/jds.2023-24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Maternal heat stress during late pregnancy can lead to intrauterine hyperthermia and affect fetal hypothalamic-pituitary-adrenal axis development and function. Herein, we investigated the effects of chronic environmental heat stress exposure of Holstein cows in the last 2 mo of gestation on their offspring's adrenal gland histomorphology and transcriptome. Cows in their last 54 ± 5 d of gestation were either heat stressed (housed under the shade of a freestall barn) or provided heat stress abatement via active cooling (via water soakers and fans) during a subtropical summer (temperature-humidity index >68). Respiration rate (RR) and skin temperature (ST) were elevated in heat-stressed dams relative to the cows with access to heat abatement (23 breaths/min and 2°C higher for RR and ST, respectively). Heifers born to heat-stressed cows experienced heat stress in utero (HS), whereas heifers born to actively cooled cows did not (CL). The adrenal gland was harvested from 6 heifers per group that were euthanized at birth (d 0; n = 12) or 1 wk after weaning (d 63; n = 12). Circulating cortisol was measured from blood samples collected weekly throughout the preweaning period. At d 63, heifers that experienced HS while developing in utero had heavier adrenal glands, with a greater total tissue surface area and thickness of the zona glomerulosa (ZG), fasciculata (ZF), and reticularis (ZR), compared with CL heifers. In addition, the adrenal gland of HS heifers had fewer cells in the ZG, more and larger cells in the ZF, and larger cells in the ZR, relative to CL heifers. Although no changes in circulating cortisol were observed through the preweaning period, the transcriptomic profile of the adrenal tissue was altered by fetal exposure to hyperthermia. Both at birth and on d 63, approximately 30 pathways were differentially expressed in the adrenal glands of HS heifers relative to CL. These pathways were associated with immune function, inflammation, prolactin signaling, cell function, and calcium transport. Upstream regulators significantly activated or inhibited in the adrenal glands of heifers exposed to intrauterine hyperthermia were identified. Maternal exposure to heat stress during late gestation caused an enlargement of their offspring's adrenal glands by inducing ZG and ZF cell hypertrophy, and caused gene expression changes. These phenotypic, histological, and molecular changes in the adrenal gland might lead to alterations in stress, immune, and metabolic responses later in life.
Collapse
Affiliation(s)
- Anne R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
2
|
Riesgraf KA, Akins MS, Laporta J, Weigel KA. Long-term growth, feed efficiency, enteric methane emission, and blood metabolite responses to in utero hyperthermia in Holstein heifers. J Dairy Sci 2024; 107:6358-6370. [PMID: 38608943 DOI: 10.3168/jds.2023-24417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Dairy producers are experiencing production and animal welfare pressures from the increasing frequency and severity of heat stress events due to global climate change. Offspring performance during the preweaning and lactating periods is compromised when exposed to heat stress during late gestation (in utero). However, knowledge of the lingering effects of in utero heat stress on yearling dairy heifers is limited. Herein, we investigated the long-term effects of in utero heat stress on heifer growth, feed efficiency, and enteric methane emissions in postpubertal heifers. During the last 56 d of gestation, 38 pregnant cows carrying heifer calves were exposed to either heat stress (IUHT; n = 17) or artificial cooling (IUCL; n = 21). At 18 ± 1 mo of age, the resulting IUCL and IUHT heifers were enrolled in the present 63-d study. Heifers were blocked by weight and randomly assigned to 3 pens with Calan gates. Body weights were recorded on 3 consecutive days at the start and end of the trial and used to calculate ADG. Body condition score, hip width, body length, and chest girth were measured at the start and end of the study. All heifers were fed a TMR comprised of 46.6% oatlage, 44.6% grass/alfalfa haylage, 7.7% male-sterile corn silage, 0.3% urea, and 0.8% mineral/vitamin supplement (on a DM basis). The TMR and refusal samples were obtained daily, composited weekly, and dried to calculate DMI. During the study, each pen had access to a GreenFeed unit for 8 ± 1d to measure CH4 and CO2 gas fluxes. During the last 3 d of measuring CH4 and CO2 fluxes, fecal samples were collected, composited by animal, dried, and analyzed to calculate NDF, OM, and DM digestibility. On the last day of fecal sampling, blood samples were also collected via coccygeal venipuncture, and GC time-of-flight MS analysis was performed. Residual feed intake (RFI; predicted DMI - observed DMI), and feed conversion efficiency (FCE; DMI/ADG) were calculated to estimate feed efficiency. No differences were found in initial or final BW, hip width, chest girth, or BCS; however, IUCL heifers were longer in body length compared with IUHT heifers. Dry matter intake, ADG, RFI, and FCE were similar between IUHT and IUCL heifers. In utero heat-stressed and IUCL heifers produced similar amounts of CH4 and CO2, and no differences were found in the number of GreenFeed visits or latency to approach the GreenFeed. The concentrations of 6 blood metabolites involved in lipogenic pathways were different between in utero treatments. In conclusion, in utero heat stress does not seem to have long-term effects on feed efficiency or methane emissions during the postpubertal growing phase; however, IUCL heifers maintained a body-length advantage over their IUHT counterparts and differed in concentrations of several candidate metabolites that encourage further exploration of their potential function in key organs, such as the liver and mammary gland.
Collapse
Affiliation(s)
- Kaylee A Riesgraf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Matthew S Akins
- USDA-ARS Institute for Environmentally Integrated Dairy Management, Marshfield, WI 54449
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Kent A Weigel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Jurkovich V, Bakony M, Reiczigel J. A retrospective study of thermal events on the mortality rate of hutch-reared dairy calves. Front Vet Sci 2024; 11:1366254. [PMID: 38560627 PMCID: PMC10980180 DOI: 10.3389/fvets.2024.1366254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Heat stress in hutch-reared dairy calves (Bos taurus) is highly relevant due to its adverse effects on animal welfare, health, growth, and economic outcomes. This study aimed to provide arguments for protecting calves against heat stress. It was hypothesized that the thermal stress caused by high ambient temperature in summer months negatively affects the survival rate in preweaning calves. Methods In a retrospective study, we investigated how calf mortality varied by calendar month and between thermoneutral and heat stress periods on a large-scale Hungarian dairy farm (data of 46,899 calves between 1991 and 2015). Results The daily mortality rate was higher in the summer (8.7-11.9 deaths per 10,000 calf days) and winter months (10.7-12.5 deaths per 10,000 calf-days) than in the spring (6.8-9.2 deaths per 10,000 calf-days) and autumn months (7.1-9.5 deaths per 10,000 calf-days). The distribution of calf deaths per calendar month differed between the 0-14-day and 15-60-day age groups. The mortality risk ratio was highest in July (6.92). The mortality risk in the 0-14-day age group was twice as high in periods with a daily mean temperature above 22°C than in periods with a daily mean of 5-18°C. Conclusions Heat stress abatement is advised in outdoor calf rearing when the mean daily temperature reaches 22°C, which, due to global warming, will be a common characteristic of summer weather in a continental region.
Collapse
Affiliation(s)
- Viktor Jurkovich
- Centre for Animal Welfare, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Mikolt Bakony
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Jeno Reiczigel
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Tamminen LM, Båge R, Åkerlind M, Olmos Antillón G. Farmers´ sense of the biological impact of extreme heat and seasonality on Swedish high-yielding dairy cows - A mixed methods approach. Prev Vet Med 2024; 224:106131. [PMID: 38277818 DOI: 10.1016/j.prevetmed.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Supporting dairy farmers in becoming resilient towards extreme weather requires a broad understanding of the experiences and perceived risks associated with these events from those who undergo them. We used a mixed methods approach to explore national trends of biological consequences on dairy cow udder health and fertility, combined with in-depth farmer conversations around extreme weather events, focusing on heat. The aim is to provide a comprehensive picture of how dairy farmer perceptions, priorities and decision-making are related to the season and extreme weather to identify preventive pathways that can reduce biological costs of heat stress on Swedish dairy cattle during summer. Data collected monthly at cow and farm level between 2016-2019 as part of the Swedish milk and disease recording system confirm seasonal trends and show increased somatic cell counts (SCC) and negatively impacted fertility during summers. In addition, transcriptions of 18 interviews with dairy farmers across the country and seasonal variations of SCC and fertility were thematically analysed. The results suggest that farmers have a broad definition of extreme weather and are aware of the negative impacts. Yet handling of extreme weather events can mainly be classified as reactive. Nevertheless, there are long-term effects on the farm economy, health and herd dynamics. Swedish dairy farmers are currently showing resilience, albeit a fragile one. The capability to ensure sufficient feed production in extreme weather is critical for farm self-perceived resilience. However, acknowledging the long-term biological costs related to fertility, currently not perceived by farmers, has the potential to support proactive planning and improve farm resilience and profitability.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Renée Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | | | - Gabriela Olmos Antillón
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| |
Collapse
|
5
|
Yang X, Qu K, Liu J, Qi X, Li F, Zhang J, Huang B, Lei C. A missense mutation (rs209302038) of KRT9 gene associated with heat stress in Chinese cattle. Anim Biotechnol 2023; 34:1876-1882. [PMID: 35323100 DOI: 10.1080/10495398.2022.2053697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Type I keratin 9 encoded by the KRT9 gene serves an important special function either in the mature palmar and plantar skin tissue. The changes in skin conditions and thickening of the outer layer of the skin may be affected by environmental variables. A missense mutation rs209302038 (NC_037346.1: g.41782870 G > A) was detected in KRT9, which changing the isoleucine into valine. This study aimed to identify the frequency of allele in this locus in Chinese indigenous cattle, and analyze the connection with heat stress. Our results indicated that the frequency of allele A gradually decreases from south to north, while the frequency of G allele showed the opposite pattern. Further analysis of the association of the different genotypes with three climate factors, which showed that the genotypes (GG, GA, AA) were significantly related to climatic conditions (p < 0.01). Therefore, we speculated that the mutation of the rs209302038 in Chinese indigenous cattle might be a genetic marker to detect heat stress.
Collapse
Affiliation(s)
- Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Xinglei Qi
- Biyang Xianan Cattle Technology and Development Company Ltd, Biyang, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd, Lianyuan, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Yüzen D, Graf I, Diemert A, Arck PC. Climate change and pregnancy complications: From hormones to the immune response. Front Endocrinol (Lausanne) 2023; 14:1149284. [PMID: 37091849 PMCID: PMC10113645 DOI: 10.3389/fendo.2023.1149284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Pregnant women are highly vulnerable to adverse environments. Accumulating evidence highlights that increasing temperatures associated with the ongoing climate change pose a threat to successful reproduction. Heat stress caused by an increased ambient temperature can result in adverse pregnancy outcomes, e.g., preterm birth, stillbirth and low fetal weight. The pathomechanisms through which heat stress interferes with pregnancy maintenance still remain vague, but emerging evidence underscores that the endocrine system is severely affected. It is well known that the endocrine system pivotally contributes to the physiological progression of pregnancy. We review – sometimes speculate - how heat stress can offset hormonal dysregulations and subsequently derail other systems which interact with hormones, such as the immune response. This may account for the heat-stress related threat to successful pregnancy progression, fetal development and long-term children’s health.
Collapse
Affiliation(s)
- Dennis Yüzen
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Graf
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Holmes SM, Dressel S, Morel J, Spitzer R, Ball JP, Ericsson G, Singh NJ, Widemo F, Cromsigt JPGM, Danell K. Increased summer temperature is associated with reduced calf mass of a circumpolar large mammal through direct thermoregulatory and indirect, food quality, pathways. Oecologia 2023; 201:1123-1136. [PMID: 37017733 PMCID: PMC10113315 DOI: 10.1007/s00442-023-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Climate change represents a growing ecological challenge. The (sub) arctic and boreal regions of the world experience the most rapid warming, presenting an excellent model system for studying how climate change affects mammals. Moose (Alces alces) are a particularly relevant model species with their circumpolar range. Population declines across the southern edge of this range are linked to rising temperatures. Using a long-term dataset (1988-1997, 2017-2019), we examine the relative strength of direct (thermoregulatory costs) and indirect (food quality) pathways linking temperature, precipitation, and the quality of two important food items (birch and fireweed) to variation in moose calf mass in northern Sweden. The direct effects of temperature consistently showed stronger relationships to moose calf mass than did the indirect effects. The proportion of growing season days where the temperature exceeded a 20 °C threshold showed stronger direct negative relationships to moose calf mass than did mean temperature values. Finally, while annual forb (fireweed) quality was more strongly influenced by temperature and precipitation than were perennial (birch) leaves, this did not translate into a stronger relationship to moose calf weight. The only indirect path with supporting evidence suggested that mean growing season temperatures were positively associated with neutral detergent fiber, which was, in turn, negatively associated with calf mass. While indirect impacts of climate change deserve further investigation, it is important to recognize the large direct impacts of temperature on cold-adapted species.
Collapse
Affiliation(s)
- Sheila M Holmes
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| | - Sabrina Dressel
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
- Forest and Nature Conservation Policy Chair Group, Wageningen, The Netherlands
| | - Julien Morel
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Robert Spitzer
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - John P Ball
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Fredrik Widemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Kjell Danell
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
8
|
Miętkiewska K, Kordowitzki P, Pareek CS. Effects of Heat Stress on Bovine Oocytes and Early Embryonic Development-An Update. Cells 2022; 11:4073. [PMID: 36552837 PMCID: PMC9776454 DOI: 10.3390/cells11244073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress is a major threat to cattle reproduction today. It has been shown that the effect of high temperature not only has a negative effect on the hormonal balance, but also directly affects the quality of oocytes, disrupting the function of mitochondria, fragmenting their DNA and changing their maternal transcription. Studies suggest that the induction of HSP70 may reduce the apoptosis of granular layer cells caused by heat stress. It has been shown that the changes at the transcriptome level caused by heat stress are consistent with 46.4% of blastocyst development disorders. Cows from calves exposed to thermal stress in utero have a lower milk yield in their lifetime, exhibit immunological disorders, have a lower birth weight and display a shorter lifespan related to the expedited aging. In order to protect cow reproduction, the effects of heat stress at the intracellular and molecular levels should be tracked step by step, and the impacts of the dysregulation of thermal homeostasis (i.e., hyperthermy) should be taken into account.
Collapse
Affiliation(s)
- Klaudia Miętkiewska
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Chandra S. Pareek
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
9
|
Wichman LG, Redifer CA, Rathert-Williams AR, Duncan NB, Payne CA, Meyer AM. Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in beef cattle. Transl Anim Sci 2022; 6:txac136. [PMID: 36381953 PMCID: PMC9661251 DOI: 10.1093/tas/txac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 09/29/2023] Open
Abstract
To determine the effect of calving season on perinatal nutrient availability and neonatal beef calf vigor, data were collected from 4 spring- (average calving date: February 14; n = 203 total) and 4 fall- (average calving date: September 20; n = 179 total) calving experiments. Time to stand was determined as minutes from birth to standing for 5 s. After birth, calf weight and size (length, heart and abdominal girth, and cannon circumference) were recorded. Jugular blood samples and rectal temperatures were obtained at 0, 6, 12, and 24 h postnatally in 6 experiments and at 48 h postnatally in Exp. 2 to 8. Data were analyzed with fixed effects of season (single point) or season, hour, and their interaction (over time, using repeated measures). Experiment was a random effect; calf sex was included when P ≤ 0.25. Within calving season, correlations were determined between calf size, vigor, and 48-h serum total protein. Fall-born calves tended to have lighter (P = 0.09) birth weight and faster (P = 0.05) time to stand than spring-born calves. Season did not affect (P ≥ 0.18) gestation length, other calf size measures, or 48-h serum total protein. Fall-born calves had greater (P ≤ 0.003) rectal temperature at 0, 24, and 48 h postnatal. Spring-born calves had greater (P ≤ 0.009) circulating glucose at 0 h, serum non-esterified fatty acids at 0 and 6 h, and plasma triglycerides at 0, 6, 12, and 48 h. Fall-born calves had greater (P ≤ 0.03) sodium from 6 to 48 h and magnesium from 0 to 24 h of age. Phosphorus was greater (P ≤ 0.02) at 6 and 12 h of age in spring-born calves. Spring-born calves had greater (P ≤ 0.04) aspartate aminotransferase at 12 and 24 h and creatine kinase at 0 and 12 h of age. Fall-born calves had greater (P ≤ 0.03) albumin, calcium, and chloride, had lower (P ≤ 0.03) bicarbonate and direct bilirubin, and tended to have greater (P = 0.10) anion gap (all main effects of calving season). Calf birth weight had a weak positive relationship (P ≤ 0.03) with 48-h serum total protein and time to stand in fall-born, but not spring-born, calves. Overall, fetal growth was restricted and neonatal dehydration was increased by warm conditions for fall-born calves, but vigor and metabolism were negatively affected by cold conditions in spring-born calves. These data suggest that calving season influences perinatal nutrient availability, which may impact the transition of beef calves to postnatal life.
Collapse
Affiliation(s)
- Lindsey G Wichman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Colby A Redifer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Natalie B Duncan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Craig A Payne
- Department of Veterinary Extension and Continuing Education, University of Missouri, Columbia, MO 65211, USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Vautier AN, Cadaret CN. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.778440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental perturbations during gestation can alter fetal development and postnatal animal performance. In humans, intrauterine growth restriction (IUGR) resulting from adaptive fetal programming is known as a leading cause of perinatal morbidity and mortality and predisposes offspring to metabolic disease, however, the prevalence and impact in livestock is not characterized as well. Multiple animal models have been developed as a proxy to determine mechanistic changes that underlie the postnatal phenotype resulting from these programming events in humans but have not been utilized as robustly in livestock. While the overall consequences are similar between models, the severity of the conditions appear to be dependent on type, timing, and duration of insult, indicating that some environmental insults are of more relevance to livestock production than others. Thus far, maternofetal stress during gestation has been shown to cause increased death loss, low birth weight, inefficient growth, and aberrant metabolism. A breadth of this data comes from the fetal ruminant collected near term or shortly thereafter, with fewer studies following these animals past weaning. Consequently, even less is known about how adaptive fetal programming impacts subsequent progeny. In this review, we summarize the current knowledge of the postnatal phenotype of livestock resulting from different models of fetal programming, with a focus on growth, metabolism, and reproductive efficiency. We further describe what is currently known about generational impacts of fetal programming in production systems, along with gaps and future directions to consider.
Collapse
|
11
|
Maggiolino A, Landi V, Bartolomeo N, Bernabucci U, Santus E, Bragaglio A, De Palo P. Effect of Heat Waves on Some Italian Brown Swiss Dairy Cows' Production Patterns. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.800680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is impacting worldwide efficiency and welfare standards in livestock production systems. Considering the sensibility to heat stress reported for different milk production patterns in Italian Brown Swiss, this study aims to evaluate the effect of heat waves (HWs)of different lengths on some milk production traits (fat-corrected milk, energy-corrected milk, protein and fat yield, protein percentage, cheese production at 24 h, and cheese yield). A 10-year dataset (2009–2018), containing 202,776 test-day records from 23,296 Brown Swiss cows, was used. The dataset was merged both with the daily maximum temperature–humidity index (THI) recorded by weather stations and with the daily maximum THI threshold for each trait in Italian Brown Swiss cows. The study considered 4 different HWs according to their length: 2, 3, 4, and 5 consecutive days before the test-day over the weighted THI threshold. Milk production traits were determined as the difference in losses compared to those after only 1 day before the test-day over the weighted maximum THI. All traits showed to be affected by HWs. Particularly, protein percentage losses increased from −0.047% to −0.070% after 2 consecutive days over the daily THI threshold, reaching −0.10% to −0.14% after 5 days (p < 0.01), showing a worsening trend with the increasing length of HWs. First parity cows showed to be more sensitive to HWs than other parity classes, recording greater losses after shorter HWs, compared to multiparous cows, for protein yield and, consequently, for cheese production at 24 h. This suggests a less efficient metabolic response to heat stress and exposure time in primiparous, compared to multiparous cows, probably due to their incomplete growth process that overlaps milk production, making it more difficult for them to dissipate heat. Although actions to mitigate heat stress are always needed in livestock, this study points out that often time exposure to warm periods worsens milk production traits in Brown Swiss cows.
Collapse
|
12
|
Denoyelle L, de Villemereuil P, Boyer F, Khelifi M, Gaffet C, Alberto F, Benjelloun B, Pompanon F. Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Front Genet 2021; 12:745284. [PMID: 34650601 PMCID: PMC8508783 DOI: 10.3389/fgene.2021.745284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The way in which living organisms mobilize a combination of long-term adaptive mechanisms and short-term phenotypic plasticity to face environmental variations is still largely unknown. In the context of climate change, understanding the genetic and epigenetic bases for adaptation and plasticity is a major stake for preserving genomic resources and the resilience capacity of livestock populations. We characterized both epigenetic and genetic variations by contrasting 22 sheep and 21 goats from both sides of a climate gradient, focusing on free-ranging populations from Morocco. We produced for each individual Whole-Genome Sequence at 12X coverage and MeDIP-Seq data, to identify regions under selection and those differentially methylated. For both species, the analysis of genetic differences (FST) along the genome between animals from localities with high vs. low temperature annual variations detected candidate genes under selection in relation to environmental perception (5 genes), immunity (4 genes), reproduction (8 genes) and production (11 genes). Moreover, we found for each species one differentially methylated gene, namely AGPTA4 in goat and SLIT3 in sheep, which were both related, among other functions, to milk production and muscle development. In both sheep and goats, the comparison between genomic regions impacted by genetic and epigenetic variations suggests that climatic variations impacted similar biological pathways but different genes.
Collapse
Affiliation(s)
- Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études
- PSL, MNHN, CNRS, SU, UA, Paris, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Meidhi Khelifi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Clément Gaffet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Florian Alberto
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,Institut National de la Recherche Agronomique Maroc (INRA-Maroc), Centre Régional de Beni Mellal, Beni Mellal, Morocco
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
13
|
Livernois AM, Mallard BA, Cartwright SL, Cánovas A. Heat stress and immune response phenotype affect DNA methylation in blood mononuclear cells from Holstein dairy cows. Sci Rep 2021; 11:11371. [PMID: 34059695 PMCID: PMC8166884 DOI: 10.1038/s41598-021-89951-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Heat stress negatively affects health and production in cows. Examining the cellular response to heat stress could reveal underlying protective molecular mechanisms associated with superior resilience and ultimately enable selection for more resilient cattle. This type of investigation is increasingly important as future predictions for the patterns of heat waves point to increases in frequency, severity, and duration. Cows identified as high immune responders based on High Immune Response technology (HIR) have lower disease occurrence compared to their average and low immune responder herd-mates. In this study, our goal was to identify epigenetic differences between high and low immune responder cows in response to heat stress. We examined genome-wide DNA methylation of blood mononuclear cells (BMCs) isolated from high and low cows, before and after in vitro heat stress. We identified differential methylation of promoter regions associated with a variety of biological processes including immune function, stress response, apoptosis, and cell signalling. The specific differentially methylated promoter regions differed between samples from high and low cows, and results revealed pathways associated with cellular protection during heat stress.
Collapse
Affiliation(s)
- A M Livernois
- Deptartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | - B A Mallard
- Deptartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - S L Cartwright
- Deptartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
van Niekerk JK, Fischer-Tlustos AJ, Wilms JN, Hare KS, Welboren AC, Lopez AJ, Yohe TT, Cangiano LR, Leal LN, Steele MA. ADSA Foundation Scholar Award: New frontiers in calf and heifer nutrition-From conception to puberty. J Dairy Sci 2021; 104:8341-8362. [PMID: 34053756 DOI: 10.3168/jds.2020-20004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Dairy calf nutrition is traditionally one of the most overlooked aspects of dairy management, despite its large effect on the efficiency and profitability of dairy operations. Unfortunately, among all animals on the dairy farm, calves suffer from the highest rates of morbidity and mortality. These challenges have catalyzed calf nutrition research over the past decade to mitigate high incidences of disease and death, and improve animal health, growth, welfare, and industry sustainability. However, major knowledge gaps remain in several crucial stages of development. The purpose of this review is to summarize the key concepts of nutritional physiology and programming from conception to puberty and their subsequent effects on development of the calf, and ultimately, future performance. During fetal development, developmental plasticity is highest. At this time, maternal energy and protein consumption can influence fetal development, likely playing a critical role in calf and heifer development and, importantly, future production. After birth, the calf's first meal of colostrum is crucial for the transfer of immunoglobulin to support calf health and survival. However, colostrum also contains numerous bioactive proteins, lipids, and carbohydrates that may play key roles in calf growth and health. Extending the delivery of these bioactive compounds to the calf through a gradual transition from colostrum to milk (i.e., extended colostrum or transition milk feeding) may confer benefits in the first days and weeks of life to prepare the calf for the preweaning period. Similarly, optimal nutrition during the preweaning period is vital. Preweaning calves are highly susceptible to health challenges, and improved calf growth and health can positively influence future milk production. Throughout the world, the majority of dairy calves rely on milk replacer to supply adequate nutrition. Recent research has started to re-evaluate traditional formulations of milk replacers, which can differ significantly in composition compared with whole milk. Transitioning from a milk-based diet to solid feed is critical in the development of mature ruminants. Delaying weaning age and providing long and gradual step-down protocols have become common to avoid production and health challenges. Yet, determining how to appropriately balance the amount of energy and protein supplied in both liquid and solid feeds based on preweaning milk allowances, and further acknowledging their interactions, shows great promise in improving growth and health during weaning. After weaning and during the onset of puberty, heifers are traditionally offered high-forage diets. However, recent work suggests that an early switch to a high-forage diet will depress intake and development during the time when solid feed efficiency is greatest. It has become increasingly clear that there are great opportunities to advance our knowledge of calf nutrition; yet, a more concentrated and rigorous approach to research that encompasses the long-term consequences of nutritional regimens at each stage of life is required to ensure the sustainability and efficiency of the global dairy industry.
Collapse
Affiliation(s)
- J K van Niekerk
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - J N Wilms
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2; Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A C Welboren
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A J Lopez
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - T T Yohe
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - L R Cangiano
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - L N Leal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
15
|
Dado-Senn B, Ouellet V, Dahl GE, Laporta J. Methods for assessing heat stress in preweaned dairy calves exposed to chronic heat stress or continuous cooling. J Dairy Sci 2020; 103:8587-8600. [PMID: 32600767 DOI: 10.3168/jds.2020-18381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Although dairy calves are more thermotolerant relative to mature cows, they are still susceptible to heat stress, as demonstrated by elevated physiological responses and reduced feed intake under high ambient temperature and relative humidity. However, indicators of heat stress have not been well-characterized in calves. Herein, we evaluated associations between environmental and thermoregulatory and productive animal-based indicators of heat stress in dairy calves exposed to chronic heat stress or continuous cooling in a subtropical climate. Holstein calves were exposed to heat stress (HT; shade of barn, n = 24) or continuous cooling (CL; shade of barn plus 2 fans, n = 24) from 2 to 42 d of age. Environmental indices, including ambient temperature, relative humidity, temperature-humidity index (THI), and wind speed, and animal-based indices, including respiration (RR), heart rate (HR), rectal (RT), and skin temperature (ST) were recorded thrice daily (0900, 1300, and 1900 h). Milk replacer (MI) and grain intakes were recorded daily from 15 to 42 d of age. Using segmented regression models, we then estimated THI thresholds for significant changes in physiological responses. We found a strong, positive correlation between animal-based indicators (except for HR, MI, and grain intakes) and ambient temperature and THI, with the highest correlation obtained with ST and THI (r ≥ 0.72). Ambient temperature and ST and ambient temperature or THI and MI were the only correlations that differed between treatments. The coefficient of determination (R2) obtained from regression analyses to model animal-based indicators was substantially improved by the inclusion of environmental indicators, with the greatest improvement achieved with THI. Overall, continuous cooling by fans promoted calf heat loss as CL calves had lower RR, RT, ST, and higher feed intake compared with HT calves. Temperature-humidity index breakpoints could be determined for RT (THI = 67), RR (THI = 65), and MI (THI = 82) in HT calves, and only for RR (THI = 69) in CL calves. Skin temperature variables had no detectable breakpoints in either treatment due to the strong linear relationship to THI. Collectively, our results suggest that ST is appropriate to estimate chronic heat stress and that THI is the best environmental indicator of heat stress in dairy calves raised in a shaded, subtropical environment. At a practical level, calves should be closely monitored when THI reaches 65 to 69 to minimize the risk of heat stress-related impairments.
Collapse
Affiliation(s)
- B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - V Ouellet
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
16
|
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020; 154:190-202. [PMID: 32622199 DOI: 10.1016/j.theriogenology.2020.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
In cattle, genetic variation exists in regulation of body temperature and stabilization of cellular function during heat stress. There are opportunities to reduce the impact of heat stress on cattle production by identifying the causative mutations responsible for genetic variation in thermotolerance and transferring specific alleles that confer thermotolerance to breeds not adapted to hot climates. An example of a mutation conferring superior ability to regulate body temperature is the group of frame-sift mutations in the prolactin receptor gene (PRLR) that lead to a truncated receptor and development of cattle with a short, sleek hair coat. Slick mutations in PRLR have been found in several extant breeds derived from criollo cattle. The slick mutation in Senepol cattle has been introgressed into dairy cattle in Puerto Rico, Florida and New Zealand. An example of a mutation that confers cellular protection against elevated body temperature is a deletion mutation in the promoter region of a heat shock protein 70 gene called HSPA1L. Inheritance of the mutation results in amplification of the transcriptional response of HSPA1L to heat shock and increased cell survival. The case of PRLR provides a promising example of the efficacy of the genetic approach outlined in this paper. Identification of other mutations conferring thermotolerance at the whole-animal or cellular level will lead to additional opportunities for using genetic solutions to reduce the impact of heat stress.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
17
|
Dado-Senn B, Laporta J, Dahl GE. Carry over effects of late-gestational heat stress on dairy cattle progeny. Theriogenology 2020; 154:17-23. [PMID: 32470705 DOI: 10.1016/j.theriogenology.2020.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/02/2023]
Abstract
The impacts of late gestation heat stress on the dam and her subsequent lactation are well-recognized. However, more recent research has demonstrated the long-lasting and severe negative consequences on the in-utero heat-stressed progeny. Dairy calves born to late gestation heat-stressed dams weigh less at birth and up to one year of age and have compromised metabolism and immune function. In-utero programming of these offspring may coordinate alterations in thermoregulation, mammary development, and milk synthetic capacity at different developmental windows. Thus, prenatally heat-stressed dairy heifers will produce less milk across multiple lactations and have a lower herd survival rate, potentially negatively impacting the U.S. dairy economy. Dry period heat stress abatement strategies should be considered not only for the productivity and welfare of the pregnant dam but also for the developing calf.
Collapse
Affiliation(s)
- B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Rhoads ML. Effects of periconceptional heat stress on primiparous and multiparous daughters of Holstein dairy cows. Theriogenology 2020; 150:458-463. [PMID: 32234245 DOI: 10.1016/j.theriogenology.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 11/26/2022]
Abstract
To meet growing worldwide demands for animal products, animal production will need to increase in capacity and efficiency. Every opportunity to improve animal protein yield should be considered and explored. Developmental programming is one such opportunity that has not yet been thoroughly investigated in farm animal production. While developmental programming can be advantageous for the survival of the offspring, it is often described in conjunction with negative consequences. The known and potential causes and mechanisms are numerous, often stemming from some sort of stress experienced during the prenatal or early postnatal period. One stressor that is particularly concerning for farm animal production is heat stress. Heat stress is known to elicit adaptations associated with developmental programming in several species, but has not been investigated in dairy cattle until recently. Multiple studies have shown that heat stress experienced during the periconceptional period is generally associated with reduced milk production of resulting offspring. This could be the result of adaptations within the pre-ovulatory oocyte or early developing embryo. Interestingly, in a few select comparisons, periconceptional heat stress was associated with greater milk production. This was only observed when dairy cattle calved in the spring, and would therefore be reaching peak milk production in late spring or early summer (in heat stress). This is consistent with the match/mismatch theory associated with developmental programming, where matched prenatal/postnatal environments confer advantageous adaptations and mismatched prenatal/postnatal environments are generally detrimental to the offspring. While these studies are important additions to our growing knowledge of heat stress impacts on dairy cow production, the broader implication of developmental programming requires further investigation.
Collapse
Affiliation(s)
- M L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
19
|
Dado-Senn B, Vega Acosta L, Torres Rivera M, Field SL, Marrero MG, Davidson BD, Tao S, Fabris TF, Ortiz-Colón G, Dahl GE, Laporta J. Pre- and postnatal heat stress abatement affects dairy calf thermoregulation and performance. J Dairy Sci 2020; 103:4822-4837. [PMID: 32113780 DOI: 10.3168/jds.2019-17926] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
Prenatal heat stress during late gestation exerts long-term effects on growth and productivity of the dairy calf. Further, direct exposure to heat stress during the preweaning period impairs calf thermoregulation and performance. We examined the effects of heat stress abatement during the prenatal period, postnatal period, or both on calf performance. We hypothesized that calves exposed to pre- and postnatal heat stress abatement would perform most optimally in terms of thermoregulation, growth, and health responses when compared with calves that are heat-stressed at any time in the pre- or postnatal periods. Holstein calves born to heat-stressed (HT) or cooled (CL) dams during late gestation (44 ± 5 d; prenatal HT or CL) were exposed to heat stress or cooling postnatally for 56 d (postnatal HT or CL), resulting in 4 treatments: HT-HT, HT-CL, CL-HT, and CL-CL; n = 12/treatment. Calves were administered 4 L of pooled colostrum and after 2 d of age allotted 10 L/d milk replacer and up to 3 kg/d concentrate in automatic feeder group pens (n = 6/pen). Postnatal cooling was achieved by 2 fans (average wind speed 2 m/s). Thermoregulatory responses (respiration rate and heart rate; rectal, body, and skin temperature), feed intake, growth parameters including average daily gain and medication events were recorded, and blood samples were collected weekly. Thermoregulatory responses were lower in postnatal CL calves compared with postnatal HT. In the afternoon, HT-HT calves had the highest respiration rate and rectal temperature, HT-CL calves had the lowest respiration rate, and CL-HT calves had the lowest heart rate compared with the other treatment groups. Prenatal CL calves weighed more at birth and weaning with a tendency for greater average daily gain compared with prenatal HT calves, whereas postnatal CL calves had increased milk replacer and concentrate intake and a tendency for reduced fever, infection, and total medication events relative to postnatal HT. Prenatal HT calves were esophageal tube fed more often than prenatal CL. Blood hematocrit and 24-h serum IgG concentration were greater in prenatal CL calves relative to prenatal HT. Prenatal heat stress abatement improves weight gain, hematocrit, and immunoglobulin transfer, whereas postnatal heat stress abatement modulates thermoregulatory responses, feed intake, and calf health. This study is the first to characterize the combined effects of pre- and postnatal heat stress or active cooling on the dairy calf.
Collapse
Affiliation(s)
- B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - L Vega Acosta
- Department of Animal Sciences, University of Puerto Rico, Mayagüez Campus, Puerto Rico 00682
| | - M Torres Rivera
- Department of Animal Sciences, University of Puerto Rico, Mayagüez Campus, Puerto Rico 00682
| | - S L Field
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M G Marrero
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - B D Davidson
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - T F Fabris
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - G Ortiz-Colón
- Department of Animal Sciences, University of Puerto Rico, Mayagüez Campus, Puerto Rico 00682
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|